1932

Abstract

Mass spectrometry is the science and technology of ions. As such, it is concerned with generating ions, measuring their properties, following their reactions, isolating them, and using them to build and transform materials. Instrumentation is an essential element of these activities, and analytical applications are one driving force. Work from the Aston Laboratories at Purdue University's Department of Chemistry is described here, with an emphasis on accelerated reactions of ions in solution and small-scale synthesis; ion/surface collision processes, including surface-induced dissociation (SID) and ion soft landing; and applications to tissue imaging. Our special interest in chirality and the chemistry behind the origins of life is also featured together with the exciting area of tissue diagnostics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061417-125820
2018-06-12
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/11/1/annurev-anchem-061417-125820.html?itemId=/content/journals/10.1146/annurev-anchem-061417-125820&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Whitesides GM 2013. Is the focus on “molecules” obsolete?. Annu. Rev. Anal. Chem. 6:1–29
    [Google Scholar]
  2. 2.  Bard AJ 2014. A life in electrochemistry. Annu. Rev. Anal. Chem. 7:1–21
    [Google Scholar]
  3. 3.  McLafferty FW 2011. A century of progress in molecular mass spectrometry. Annu. Rev. Anal. Chem. 4:1–22
    [Google Scholar]
  4. 4.  Takats Z, Nanita SC, Cooks RG 2003. Serine octamer reactions: indicators of prebiotic relevance. Angew. Chem. 115:3645–47
    [Google Scholar]
  5. 5.  Eberlin LS, Norton I, Dill AL, Golby AJ, Ligon KL et al. 2012. Classifying human brain tumors by lipid imaging with mass spectrometry. Cancer Res 72:645–54
    [Google Scholar]
  6. 6.  Müller T, Badu-Tawiah A, Cooks RG 2012. Accelerated carbon–carbon bond-forming reactions in preparative electrospray. Angew. Chem. Int. Ed. 51:11832–35
    [Google Scholar]
  7. 7.  Baird Z, Wei P, Cooks RG 2015. Ion creation, ion focusing, ion/molecule reactions, ion separation, and ion detection in the open air in a small plastic device. Analyst 140:696–700
    [Google Scholar]
  8. 8.  Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM 1989. Electrospray ionization for mass-spectrometry of large biomolecules. Science 246:64–71
    [Google Scholar]
  9. 9.  Fenn JB 2003. Electrospray wings for molecular elephants (Nobel lecture). Angew. Chem. Int. Ed. 42:3871–94
    [Google Scholar]
  10. 10.  Kondrat RW, Cooks RG 1978. Direct analysis of mixtures by mass spectrometry. Anal. Chem. 50:81A–92A
    [Google Scholar]
  11. 11.  Kondrat RW, McClusky GA, Cooks RG 1978. Multiple reaction monitoring in mass spectrometry/mass spectrometry for direct analysis of complex mixtures. Anal. Chem. 50:2017–21
    [Google Scholar]
  12. 12.  Schulten HR, Beckey HD 1972. Field desorption mass-spectrometry with high-temperature activated emitters. Organ. Mass Spectrom. 6:885–95
    [Google Scholar]
  13. 13.  Winkler HU, Beckey HD 1972. Field desorption mass-spectrometry of amino acids. J. Mass Spectrom. 6:655–60
    [Google Scholar]
  14. 14.  Macfarlane RD, Torgerson DF 1976. Californium-252 plasma desorption mass-spectroscopy. Science 191:920–25
    [Google Scholar]
  15. 15.  Benninghoven A 1971. Observation on surface-reactions with static method of secondary ion mass-spectrometry. 1. Method. Surface Sci 28:541–62
    [Google Scholar]
  16. 16.  Barber M, Bordoli RS, Sedgwick RD, Tyler AN 1981. Fast atom bombardment mass-spectrometry of cobalamines. Biomed. Mass Spectrom. 8:492–95
    [Google Scholar]
  17. 17.  Barber M, Bordoli RS, Sedgwick RD, Tyler AN, Whalley ET 1981. Fast atom bombardment mass-spectrometry of bradykinin and related oligopeptides. Biomed. Mass Spectrom. 8:337–42
    [Google Scholar]
  18. 18.  Hillenkamp F, Karas M 1990. Mass-spectrometry of peptides and proteins by matrix-assisted ultraviolet-laser desorption ionization. Methods Enzymol 193:280–95
    [Google Scholar]
  19. 19.  Hillenkamp F, Karas M, Ingendoh A, Stahl B 1990. Matrix assisted UV-laser desorption ionization—a new approach to mass-spectrometry of large biomolecules. Biological Mass Spectrometry AL Burlingame, JA McCloskey 49–60 Amsterdam: Elsevier
    [Google Scholar]
  20. 20.  Overberg A, Karas M, Bahr U, Kaufmann R, Hillenkamp F 1990. Matrix-assisted infrared-laser (2.94 μm) desorption ionization mass-spectrometry of large biomolecules. Rapid Commun. Mass Spectrom. 4:293–96
    [Google Scholar]
  21. 21.  Cooks RG, Zhang D, Koch KJ, Gozzo FC, Eberlin MN 2001. Chiroselective self-directed octamerization of serine: implications for homochirogenesis. Anal. Chem. 73:3646–55
    [Google Scholar]
  22. 22.  Julian RR, Hodyss R, Kinnear B, Jarrold MF, Beauchamp J 2002. Nanocrystalline aggregation of serine detected by electrospray ionization mass spectrometry: origin of the stable homochiral gas-phase serine octamer. J. Phys. Chem. B 106:1219–28
    [Google Scholar]
  23. 23.  Counterman AE, Clemmer DE 2001. Magic number clusters of serine in the gas phase. J. Phys. Chem. B 105:8092–96
    [Google Scholar]
  24. 24.  Kong X, Lin C, Infusini G, Oh HB, Jiang H et al. 2009. Numerous isomers of serine octamer ions characterized by infrared photodissociation spectroscopy. Chem. Phys. Chem. 10:2603–6
    [Google Scholar]
  25. 25.  Nanita SC, Sokol E, Cooks RG 2007. Alkali metal-cationized serine clusters studied by sonic spray ionization tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 18:856–68
    [Google Scholar]
  26. 26.  Nanita SC, Cooks RG 2005. Negatively-charged halide adducts of homochiral serine octamers. J. Phys. Chem. B 109:4748–53
    [Google Scholar]
  27. 27.  Koch KJ, Gozzo FC, Nanita SC, Takats Z, Eberlin MN, Cooks RG 2002. Chiral transmission between amino acids: chirally selective amino acid substitution in the serine octamer as a possible step in homochirogenesis. Angew. Chem. Int. Ed. 41:1721–24
    [Google Scholar]
  28. 28.  Yang P, Xu R, Nanita SC, Cooks RG 2006. Thermal formation of homochiral serine clusters and implications for the origin of homochirality. J. Am. Chem. Soc. 128:17074–86
    [Google Scholar]
  29. 29.  Perry RH, Wu C, Nefliu M, Cooks RG 2007. Serine sublimes with spontaneous chiral amplification. Chem. Commun. 10:1071–73
    [Google Scholar]
  30. 30.  Cooks RG, Zhang D, Koch KJ, Gozzo FC, Eberlin MN 2001. Chiroselective self-directed octamerization of serine: implications for homochirogenesis. Anal. Chem. 73:3646–55
    [Google Scholar]
  31. 31.  Quack M 2011. Fundamental symmetries and symmetry violations from high resolution spectroscopy. Handbook of High-Resolution Spectroscopy M Quack, F Merkt 659–722 Hoboken, NJ: John Wiley & Sons
    [Google Scholar]
  32. 32.  Sander C, Schneider R 1991. Database of homology-derived protein structures and the structural meaning of sequence alignment. Proteins Struct. Funct. Bioinform. 9:56–68
    [Google Scholar]
  33. 33.  Wagner AJ, Zubarev DY, Aspuru-Guzik A, Blackmond DG 2017. Chiral sugars drive enantioenrichment in prebiotic amino acid synthesis. ACS Central Sci 3:322–28
    [Google Scholar]
  34. 34.  Seo J, Warnke S, Pagel K, Bowers MT, von Helden G 2017. Infrared spectrum and structure of the homochiral serine octamer–dichloride complex. Nat Chem 9:1263–68
    [Google Scholar]
  35. 35.  Lewis ES 1961. General methods of determining reaction mechanisms. Investigation of Rates and Mechanisms of Reactions SL Friess, ES Lewis, A Weissberger 1–14 London: Intersci. Publ.
    [Google Scholar]
  36. 36.  Ingold CK 1953. Structure and Mechanism in Organic Chemistry Ithaca, NY: Cornell Univ. Press
  37. 37.  Yan X, Bain RM, Li Y, Qiu R, Flick TG, Cooks RG 2016. Online inductive electrospray ionization mass spectrometry as a process analytical technology tool to monitor the synthetic route to anagliptin. Org. Process Res. Dev. 20:940–47
    [Google Scholar]
  38. 38.  Panikov NS 2002. Kinetics, microbial growth. Encyclopedia of Bioprocess Technology1513–43 Hoboken, NJ: John Wiley & Sons
    [Google Scholar]
  39. 39.  Barve A, Rodrigues JFM, Wagner A 2012. Superessential reactions in metabolic networks. PNAS 109:E1121–30
    [Google Scholar]
  40. 40.  Ingram AJ, Boeser CL, Zare RN 2016. Going beyond electrospray: mass spectrometric studies of chemical reactions in and on liquids. Chem. Sci. 7:39–55
    [Google Scholar]
  41. 41.  Perry RH, Splendore M, Chien A, Davis NK, Zare RN 2011. Detecting reaction intermediates in liquids on the millisecond time scale using desorption electrospray ionization. Angew. Chem. Int. Ed. 50:250–54
    [Google Scholar]
  42. 42.  Amarante GW, Benassi M, Milagre HMS, Braga AAC, Maseras F et al. 2009. Brønsted acid catalyzed Morita-Baylis-Hillman reaction: a new mechanistic view for thioureas revealed by ESI-MS(/MS) monitoring and DFT calculations. Chem. Eur. J. 15:12460–69
    [Google Scholar]
  43. 43.  Yunker LPE, Stoddard RL, McIndoe JS 2014. Practical approaches to the ESI-MS analysis of catalytic reactions. J. Mass Spectrom. 49:1–8
    [Google Scholar]
  44. 44.  Müller CA, Pfaltz A 2008. Mass spectrometric screening of chiral catalysts by monitoring the back reaction of quasienantiomeric products: palladium-catalyzed allylic substitution. Angew. Chem. 120:3411–14
    [Google Scholar]
  45. 45.  Zheng Q, Liu Y, Chen Q, Hu M, Helmy R et al. 2015. Capture of reactive monophosphine-ligated palladium(0) intermediates by mass spectrometry. J. Am. Chem. Soc. 137:14035–38
    [Google Scholar]
  46. 46.  Coelho F, Eberlin MN 2011. The bridge connecting gas‐phase and solution chemistries. Angew. Chem. Int. Ed. 50:5261–63
    [Google Scholar]
  47. 47.  Huang G, Li G, Cooks RG 2011. Induced nanoelectrospray ionization for matrix-tolerant and high-throughput mass spectrometry. Angew. Chem. Int. Ed. 50:9907–10
    [Google Scholar]
  48. 48.  Yan X, Sokol E, Li X, Li G, Xu S, Cooks RG 2014. On-line reaction monitoring and mechanistic studies by mass spectrometry: Negishi cross-coupling, hydrogenolysis, and reductive amination. Angew. Chem. Int. Ed. 53:5931–35
    [Google Scholar]
  49. 49.  Negishi E 2011. Magical power of transition metals: past, present, and future (Nobel lecture). Angew. Chem. Int. Ed. 50:6738–64
    [Google Scholar]
  50. 50.  Yan X 2015. Novel analytical and preparative mass spectrometric methodologies in reaction monitoring and acceleration PhD Thesis, Purdue Univ West Lafayette, IN:
  51. 51.  Hornung G, Schroeder D, Schwarz H 1995. Diastereoselective gas-phase carbon-carbon bond activation mediated by “bare” Co+ cations. J. Am. Chem. Soc. 117:8192–96
    [Google Scholar]
  52. 52.  Hornung G, Schröder D, Schwarz H 1997. Regiospecific and diastereoselective C–H and C–Si bond activation of ω-silyl-substituted alkane nitriles by “bare” Co+ cations in the gas phase. J. Am. Chem. Soc. 119:2273–79
    [Google Scholar]
  53. 53.  Seemeyer K, Schroeder D, Kempf M, Lettau O, Mueller J, Schwarz H 1995. Face selectivity of the CH bond activation of cyclohexane by the “bare” first-row transition-metal cations Sc+-Zn+. Organometallics 14:4465–70
    [Google Scholar]
  54. 54.  Fujii T 1992. A novel method for detection of radical species in the gas-phase: usage of Li+ ion attachment to chemical-species. Chem. Phys. Lett. 191:162–68
    [Google Scholar]
  55. 55.  Sablier M, Fujii T 2002. Mass spectrometry of free radicals. Chem. Rev. 102:2855–924
    [Google Scholar]
  56. 56.  Fujii T, Kim HS 1997. Mass spectrometric analysis of the neutral products in a C2H4 microwave plasma: carbon carbenes and aromatic compounds. Chem. Phys. Lett. 268:229–34
    [Google Scholar]
  57. 57.  Schalley CA, Hornung G, Schröder D, Schwarz H 1998. Mass spectrometry as a tool to probe the gas-phase reactivity of neutral molecules. Int. J. Mass Spectrom. Ion Process. 172:181–208
    [Google Scholar]
  58. 58.  Liu P, Zhao P, Cooks RG, Chen H 2017. Atmospheric pressure neutral reionization mass spectrometry for structural analysis. Chem. Sci. 8:6499–507
    [Google Scholar]
  59. 59.  Wang H, Liu J, Cooks RG, Ouyang Z 2010. Paper spray for direct analysis of complex mixtures using mass spectrometry. Angew. Chem. 122:889–92
    [Google Scholar]
  60. 60.  Verkade JG 1986. Triangular and related molecules. A Pictorial Approach to Molecular Bonding JG Verkade 102–24 New York, NY: Springer
    [Google Scholar]
  61. 61.  Li G, Li X, Ouyang Z, Cooks RG 2013. Carbon–carbon bond activation in saturated hydrocarbons by field-assisted nitrogen fixation. Angew. Chem. Int. Ed. 52:1040–43
    [Google Scholar]
  62. 62.  Li X, Yan X, Cooks RG 2017. Functionalization of saturated hydrocarbons using nitrogen ion insertion reactions in mass spectrometry. Int. J. Mass Spectrom. 418:79–85
    [Google Scholar]
  63. 63.  Fletcher JS, Vickerman JC, Winograd N 2011. Label free biochemical 2D and 3D imaging using secondary ion mass spectrometry. Curr. Opin. Chem. Biol. 15:733–40
    [Google Scholar]
  64. 64.  Passarelli MK, Winograd N 2011. Lipid imaging with time-of-flight secondary ion mass spectrometry (ToF-SIMS). Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1811:976–90
    [Google Scholar]
  65. 65.  Day R, Unger S, Cooks R 1980. Molecular secondary ion mass spectrometry. Anal. Chem. 52:557–72
    [Google Scholar]
  66. 66.  Grade H, Cooks RG 1978. Secondary ion mass-spectrometry. Cationization of organic-molecules with metals. J. Am. Chem. Soc. 100:5615–21
    [Google Scholar]
  67. 67.  Grade H, Winograd N, Cooks R 1977. Cationization of organic molecules in secondary ion mass spectrometry. J. Am. Chem. Soc. 99:7725–26
    [Google Scholar]
  68. 68.  Liu LK, Busch KL, Cooks R 1981. Matrix-assisted secondary ion mass spectra of biological compounds. Anal. Chem. 53:109–13
    [Google Scholar]
  69. 69.  Aberth W, Straub KM, Burlingame A 1982. Secondary ion mass spectrometry with cesium ion primary beam and liquid target matrix for analysis of bioorganic compounds. Anal. Chem. 54:2029–34
    [Google Scholar]
  70. 70.  Hillenkamp F, Karas M, Beavis RC, Chait BT 1991. Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers. Anal. Chem. 63:1193A–203A
    [Google Scholar]
  71. 71.  Pierce JL, Busch KL, Cooks RG, Walton RA 1982. Desorption ionization mass spectrometry: secondary ion and laser desorption mass spectra of transition-metal complexes of β-diketones. Inorg. Chem. 21:2597–602
    [Google Scholar]
  72. 72.  Caprioli RM, Farmer TB, Gile J 1997. Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal. Chem. 69:4751–60
    [Google Scholar]
  73. 73.  Takats Z, Wiseman JM, Gologan B, Cooks RG 2004. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306:471–73
    [Google Scholar]
  74. 74.  Wiseman JM, Puolitaival SM, Takáts Z, Cooks RG, Caprioli RM 2005. Mass spectrometric profiling of intact biological tissue by using desorption electrospray ionization. Angew. Chem. 117:7256–59
    [Google Scholar]
  75. 75.  Jarmusch AK, Pirro V, Baird Z, Hattab EM, Cohen-Gadol AA, Cooks RG 2016. Lipid and metabolite profiles of human brain tumors by desorption electrospray ionization-MS. PNAS 113:1486–91
    [Google Scholar]
  76. 76.  Calligaris D, Caragacianu D, Liu X, Norton I, Thompson CJ et al. 2014. Application of desorption electrospray ionization mass spectrometry imaging in breast cancer margin analysis. PNAS 111:15184–89
    [Google Scholar]
  77. 77.  Wu C, Dill AL, Eberlin LS, Cooks RG, Ifa DR 2013. Mass spectrometry imaging under ambient conditions. Mass Spectrom. Rev. 32:218–43
    [Google Scholar]
  78. 78.  Santagata S, Eberlin LS, Norton I, Calligaris D, Feldman DR et al. 2014. Intraoperative mass spectrometry mapping of an onco-metabolite to guide brain tumor surgery. PNAS 111:11121–26
    [Google Scholar]
  79. 79.  Dill AL, Ifa DR, Manicke NE, Costa AB, Ramos-Vara JA et al. 2009. Lipid profiles of canine invasive transitional cell carcinoma of the urinary bladder and adjacent normal tissue by desorption electrospray ionization imaging mass spectrometry. Anal. Chem. 81:8758–64
    [Google Scholar]
  80. 80.  Eberlin LS, Tibshirani RJ, Zhang J, Longacre TA, Berry GJ et al. 2014. Molecular assessment of surgical-resection margins of gastric cancer by mass-spectrometric imaging. PNAS 111:2436–41
    [Google Scholar]
  81. 81.  Balog J, Szaniszlo T, Schaefer K-C, Denes J, Lopata A et al. 2010. Identification of biological tissues by rapid evaporative ionization mass spectrometry. Anal. Chem. 82:7343–50
    [Google Scholar]
  82. 82.  Jarmusch AK, Kerian KS, Pirro V, Peat T, Thompson CA et al. 2015. Characteristic lipid profiles of canine non-Hodgkin's lymphoma from surgical biopsy tissue sections and fine needle aspirate smears by desorption electrospray ionization–mass spectrometry. Analyst 140:6321–29
    [Google Scholar]
  83. 83.  Eberlin LS, Dill AL, Golby AJ, Ligon KL, Wiseman JM et al. 2010. Discrimination of human astrocytoma subtypes by lipid analysis using desorption electrospray ionization imaging mass spectrometry. Angew. Chem. Int. Ed. 49:5953–56
    [Google Scholar]
  84. 84.  Dill AL, Eberlin LS, Zheng C, Costa AB, Ifa DR et al. 2010. Multivariate statistical differentiation of renal cell carcinomas based on lipidomic analysis by ambient ionization imaging mass spectrometry. Anal. Bioanal. Chem. 398:2969–78
    [Google Scholar]
  85. 85.  Kerian KS, Jarmusch AK, Pirro V, Koch MO, Masterson TA et al. 2015. Differentiation of prostate cancer from normal tissue in radical prostatectomy specimens by desorption electrospray ionization and touch spray ionization mass spectrometry. Analyst 140:1090–98
    [Google Scholar]
  86. 86.  Eberlin LS, Dill AL, Costa AB, Ifa DR, Cheng L et al. 2010. Cholesterol sulfate imaging in human prostate cancer tissue by desorption electrospray ionization mass spectrometry. Anal. Chem. 82:3430–34
    [Google Scholar]
  87. 87.  Balog J, Kumar S, Alexander J, Golf O, Huang J et al. 2015. In vivo endoscopic tissue identification by rapid evaporative ionization mass spectrometry (REIMS). Angew. Chem. Int. Ed. 54:11059–62
    [Google Scholar]
  88. 88.  Masterson TA, Dill AL, Eberlin LS, Mattarozzi M, Cheng L et al. 2011. Distinctive glycerophospholipid profiles of human seminoma and adjacent normal tissues by desorption electrospray ionization imaging mass spectrometry. J. Am. Soc. Mass Spectrom. 22:1326–33
    [Google Scholar]
  89. 89.  Dill AL, Eberlin LS, Costa AB, Zheng C, Ifa DR et al. 2011. Multivariate statistical identification of human bladder carcinomas using ambient ionization imaging mass spectrometry. Chemistry 17:2897–902
    [Google Scholar]
  90. 90.  Alfaro CM, Jarmusch AK, Pirro V, Kerian KS, Masterson TA et al. 2016. Ambient ionization mass spectrometric analysis of human surgical specimens to distinguish renal cell carcinoma from healthy renal tissue. Anal. Bioanal. Chem. 408:5407–14
    [Google Scholar]
  91. 91.  Eberlin LS, Norton I, Dill AL, Golby AJ, Ligon KL et al. 2012. Classifying human brain tumors by lipid imaging with mass spectrometry. Cancer Res 72:645–54
    [Google Scholar]
  92. 92.  Zhang J, Feider CL, Nagi C, Yu W, Carter SA et al. 2017. Detection of metastatic breast and thyroid cancer in lymph nodes by desorption electrospray ionization mass spectrometry imaging. J. Am. Soc. Mass Spectrom. 28:1166–74
    [Google Scholar]
  93. 93.  Gerbig S, Golf O, Balog J, Denes J, Baranyai Z et al. 2012. Analysis of colorectal adenocarcinoma tissue by desorption electrospray ionization mass spectrometric imaging. Anal. Bioanal. Chem. 403:2315–25
    [Google Scholar]
  94. 94.  Banerjee S, Zare RN, Tibshirani RJ, Kunder CA, Nolley R et al. 2017. Diagnosis of prostate cancer by desorption electrospray ionization mass spectrometric imaging of small metabolites and lipids. PNAS 114:3334–39
    [Google Scholar]
  95. 95.  Eberlin LS, Norton I, Orringer D, Dunn IF, Liu X et al. 2013. Ambient mass spectrometry for the intraoperative molecular diagnosis of human brain tumors. PNAS 110:1611–16
    [Google Scholar]
  96. 96.  Ren KYM, Kaufmann M, Morse N, Xu AS, Rudan J et al. 2017. Potential role of desorption electrospray ionization (DESI) mass spectrometry imaging (MSI) as an adjunct to histology for margin assessment in lumpectomies for breast cancer. Modern Pathol 30:67A
    [Google Scholar]
  97. 97.  Balog J, Sasi-Szabó L, Kinross J, Lewis MR, Muirhead LJ et al. 2013. Intraoperative tissue identification using rapid evaporative ionization mass spectrometry. Sci. Transl. Med. 5:194ra93
    [Google Scholar]
  98. 98.  McKenzie J 2017. Desorption electrospray ionisation mass spectrometry imaging of esophageal lymph node metastases PhD Thesis, Imperial Coll London:
  99. 99.  Eberlin LS, Gabay M, Fan AC, Gouw AM, Tibshirani RJ et al. 2014. Alteration of the lipid profile in lymphomas induced by MYC overexpression. PNAS 111:10450–55
    [Google Scholar]
  100. 100.  St. John ER, Balog J, McKenzie JS, Rossi M, Covington A et al. 2017. Rapid evaporative ionisation mass spectrometry of electrosurgical vapours for the identification of breast pathology: towards an intelligent knife for breast cancer surgery. Breast Cancer Res 19:59
    [Google Scholar]
  101. 101.  Calligaris D, Feldman DR, Norton I, Brastianos PK, Dunn IF et al. 2015. Molecular typing of meningiomas by desorption electrospray ionization mass spectrometry imaging for surgical decision-making. Int. J. Mass Spectrom. 377:690–98
    [Google Scholar]
  102. 102.  Pirro V, Alfaro CM, Jarmusch AK, Hattab EM, Cohen-Gadol AA, Cooks RG 2017. Intraoperative assessment of tumor margins during glioma resection by desorption electrospray ionization-mass spectrometry. PNAS 114:6700–5
    [Google Scholar]
  103. 103.  Zakett D, Flynn RGA, Cooks RG 1978. Chlorine isotope effects in mass spectrometry by multiple reaction monitoring. J. Phys. Chem. 82:2359–62
    [Google Scholar]
  104. 104.  Schwartz JC, Wade AP, Enke CG, Cooks RG 1990. Systematic delineation of scan modes in multidimensional mass spectrometry. Anal. Chem. 62:1809–18
    [Google Scholar]
  105. 105.  Ferreira CR, Yannell KE, Mollenhauer B, Espy RD, Cordeiro FB et al. 2016. Chemical profiling of cerebrospinal fluid by multiple reaction monitoring mass spectrometry. Analyst 141:5252–55
    [Google Scholar]
  106. 106.  Cordeiro FB, Ferreira CR, Sobreira TJP, Yannell KE, Jarmusch AK et al. 2017. Multiple reaction monitoring (MRM)‐profiling for biomarker discovery applied to human polycystic ovarian syndrome. Rapid Commun. Mass Spectrom. 31:1462–70
    [Google Scholar]
  107. 107.  Brauman JI, Blair LK 1970. Gas-phase acidities of alcohols. J. Am. Chem. Soc. 92:5986–92
    [Google Scholar]
  108. 108.  Chabinyc ML, Craig SL, Regan CK, Brauman JI 1998. Gas-phase ionic reactions: dynamics and mechanism of nucleophilic displacements. Science 279:1882–86
    [Google Scholar]
  109. 109.  Olmstead WN, Brauman JI 1977. Gas-phase nucleophilic displacement reactions. J. Am. Chem. Soc. 99:4219–28
    [Google Scholar]
  110. 110.  Beauchamp JL, Holtz D, Woodgate SD, Patt SL 1972. Thermochemical properties and ion-molecule reactions of alkyl-halides in gas-phase by ion-cyclotron resonance spectroscopy. J. Am. Chem. Soc. 94:2798–807
    [Google Scholar]
  111. 111.  Halle LF, Armentrout PB, Beauchamp JL 1982. Ion-beam studies of the reactions of group-8 metal-ions with alkanes: correlation of thermochemical properties and reactivity. Organometallics 1:963–68
    [Google Scholar]
  112. 112.  Yan X, Bain RM, Cooks RG 2016. Organic reactions in microdroplets: reaction acceleration revealed by mass spectrometry. Angew. Chem. Int. Ed. 55:12960–72
    [Google Scholar]
  113. 113.  Huang G, Chen H, Zhang X, Cooks RG, Ouyang Z 2007. Rapid screening of anabolic steroids in urine by reactive desorption electrospray ionization. Anal. Chem. 79:8327–32
    [Google Scholar]
  114. 114.  Girod M, Moyano E, Campbell DI, Cooks RG 2011. Accelerated bimolecular reactions in microdroplets studied by desorption electrospray ionization mass spectrometry. Chem. Sci. 2:501–10
    [Google Scholar]
  115. 115.  Bain RM, Pulliam CJ, Yan X, Moore KF, Müller T, Cooks RG 2014. Mass spectrometry in organic synthesis: Claisen–Schmidt base-catalyzed condensation and Hammett correlation of substituent effects. J. Chem. Educ. 91:1985–89
    [Google Scholar]
  116. 116.  Banerjee S, Gnanamani E, Yan X, Zare RN 2017. Can all bulk-phase reactions be accelerated in microdroplets?. Analyst 142:1399–402
    [Google Scholar]
  117. 117.  Banerjee S, Zare RN 2015. Syntheses of isoquinoline and substituted quinolines in charged microdroplets. Angew. Chem. Int. Ed. 54:14795–99
    [Google Scholar]
  118. 118.  Wei Z, Wleklinski M, Ferreira C, Cooks RG 2017. Reaction acceleration in thin films with continuous product deposition for organic synthesis. Angew. Chem. 129:9514–18
    [Google Scholar]
  119. 119.  Müller T, Badu-Tawiah A, Cooks RG 2012. Accelerated carbon-carbon bond-forming reactions in preparative electrospray. Angew. Chem. Int. Ed. 51:11832–35
    [Google Scholar]
  120. 120.  Yan X, Augusti R, Li X, Cooks RG 2013. Chemical reactivity assessment using reactive paper spray ionization mass spectrometry: the Katritzky reaction. ChemPlusChem 78:1142–48
    [Google Scholar]
  121. 121.  Bain RM, Pulliam CJ, Cooks RG 2015. Accelerated Hantzsch electrospray synthesis with temporal control of reaction intermediates. Chem. Sci. 6:397–401
    [Google Scholar]
  122. 122.  Fallah-Araghi A, Meguellati K, Baret J-C, El Harrak A, Mangeat T et al. 2014. Enhanced chemical synthesis at soft interfaces: a universal reaction-adsorption mechanism in microcompartments. Phys. Rev. Lett. 112:028301
    [Google Scholar]
  123. 123.  Lee JK, Kim S, Nam HG, Zare RN 2015. Microdroplet fusion mass spectrometry for fast reaction kinetics. PNAS 112:3898–903
    [Google Scholar]
  124. 124.  Bain RM, Pulliam CJ, Thery F, Cooks RG 2016. Accelerated chemical reactions and organic synthesis in Leidenfrost droplets. Angew. Chem. Int. Ed. 55:10478–82
    [Google Scholar]
  125. 125.  Yan X, Cheng H, Zare RN 2017. Two‐phase reactions in microdroplets without the use of phase‐transfer catalysts. Angew. Chem. Int. Ed. 56:3562–65
    [Google Scholar]
  126. 126.  Manicke NE, Kistler T, Ifa DR, Cooks RG, Ouyang Z 2009. High-throughput quantitative analysis by desorption electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 20:321–25
    [Google Scholar]
  127. 127.  Wleklinski M, Loren BP, Ferreira CR, Jaman Z, Avramova L et al. 2018. High throughput reactions and reaction screening using desorption electrospray ionization mass spectrometry. Chem. Sci. 9:1647–53
    [Google Scholar]
  128. 128.  Nier AO 1989. Some reminiscences of mass spectrometry and the Manhattan Project. J. Chem. Educ. 66:385
    [Google Scholar]
  129. 129.  Franchetti V, Solka BH, Baitinger WE, Amy JW, Cooks RG 1977. Soft landing of ions as a means of surface modification. Int. J. Mass Spectrom. Ion Phys. 23:29–35
    [Google Scholar]
  130. 130.  Miller SA, Luo H, Pachuta SJ, Cooks RG 1997. Soft-landing of polyatomic ions at fluorinated self-assembled monolayer surfaces. Science 275:1447–50
    [Google Scholar]
  131. 131.  Badu-Tawiah AK, Wu C, Cooks RG 2011. Ambient ion soft landing. Anal. Chem. 83:2648–54
    [Google Scholar]
  132. 132.  Ouyang Z, Takáts Z, Blake TA, Gologan B, Guymon AJ et al. 2003. Preparing protein microarrays by soft-landing of mass-selected ions. Science 301:1351–54
    [Google Scholar]
  133. 133.  Johnson GE, Hu Q, Laskin J 2011. Soft landing of complex molecules on surfaces. Annu. Rev. Anal. Chem. 4:83–104
    [Google Scholar]
  134. 134.  Peng W-P, Johnson GE, Fortmeyer IC, Wang P, Hadjar O et al. 2011. Redox chemistry in thin layers of organometallic complexes prepared using ion soft landing. Phys. Chem. Chem. Phys. 13:267–75
    [Google Scholar]
  135. 135.  Rauschenbach S, Ternes M, Harnau L, Kern K 2016. Mass spectrometry as a preparative tool for the surface science of large molecules. Annu. Rev. Anal. Chem. 9:473–98
    [Google Scholar]
  136. 136.  Mikhailov VA, Mize TH, Benesch JLP, Robinson CV 2014. Mass-selective soft-landing of protein assemblies with controlled landing energies. Anal. Chem. 86:8321–28
    [Google Scholar]
  137. 137.  Luo H, Miller SA, Cooks RG, Pachuta SJ 1998. Soft landing of polyatomic ions for selective modification of fluorinated self-assembled monolayer surfaces. Int. J. Mass Spectrom. Ion Process. 174:193–217
    [Google Scholar]
  138. 138.  Cyriac J, Pradeep T, Kang H, Souda R, Cooks R 2012. Low-energy ionic collisions at molecular solids. Chem. Rev. 112:5356–411
    [Google Scholar]
  139. 139.  Mabud MA, Dekrey MJ, Cooks RG 1985. Surface-induced dissociation of molecular ions. Int. J. Mass Spectrom. Ion Process. 67:285–94
    [Google Scholar]
  140. 140.  Rahaman A, Zhou JB, Hase WL 2006. Effects of projectile orientation and surface impact site on the efficiency of projectile excitation in surface-induced dissociation: protonated diglycine collisions with diamond {1 1 1}. Int. J. Mass Spectrom. 249:321–29
    [Google Scholar]
  141. 141.  Blackwell AE, Dodds ED, Bandarian V, Wysocki VH 2011. Revealing the quaternary structure of a heterogeneous noncovalent protein complex through surface-induced dissociation. Anal. Chem. 83:2862–65
    [Google Scholar]
  142. 142.  Pratihar S, Barnes GL, Laskin J, Hase WL 2016. Dynamics of protonated peptide ion collisions with organic surfaces: consonance of simulation and experiment. J. Phys. Chem. Lett. 7:3142–50
    [Google Scholar]
  143. 143.  Pratihar S, Barnes GL, Hase WL 2016. Chemical dynamics simulations of energy transfer, surface-induced dissociation, soft-landing, and reactive-landing in collisions of protonated peptide ions with organic surfaces. Chem. Soc. Rev. 45:3595–608
    [Google Scholar]
  144. 144.  Baird D 2004. Thing Knowledge: A Philosophy of Scientific Instruments Berkeley: Univ. Calif. Press
    [Google Scholar]
  145. 145.  Cooks RG 2017. Jonathan W. Amy and the Amy Facility for instrumentation development. Anal. Chem. 89:5171–73
    [Google Scholar]
  146. 146.  Snyder DT, Pulliam CJ, Ouyang Z, Cooks RG 2016. Miniature and fieldable mass spectrometers: recent advances. Anal. Chem. 88:2–29
    [Google Scholar]
  147. 147.  Snyder DT, Pulliam CJ, Cooks RG 2016. Single analyzer precursor scans using an ion trap. Rapid Commun. Mass Spectrom. 30:800–04
    [Google Scholar]
  148. 148.  Snyder DT, Cooks RG 2017. Single analyzer neutral loss scans in a linear quadrupole ion trap using orthogonal double resonance excitation. Anal. Chem. 89:8148–55
    [Google Scholar]
  149. 149.  Badu-Tawiah AK 2012. Ion generation, ion collection and ionic reactions outside the mass spectrometer PhD Thesis, Purdue Univ West Lafayette, IN:
  150. 150.  Hollerbach A, Baird Z, Cooks RG 2017. Ion separation in air using a three-dimensional printed ion mobility spectrometer. Anal. Chem. 89:5058–65
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-061417-125820
Loading
/content/journals/10.1146/annurev-anchem-061417-125820
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error