1932

Abstract

Ion mobility spectrometry (IMS) is a widely used analytical technique for rapid molecular separations in the gas phase. Though IMS alone is useful, its coupling with mass spectrometry (MS) and front-end separations is extremely beneficial for increasing measurement sensitivity, peak capacity of complex mixtures, and the scope of molecular information available from biological and environmental sample analyses. In fact, multiple disease screening and environmental evaluations have illustrated that the IMS-based multidimensional separations extract information that cannot be acquired with each technique individually. This review highlights three-dimensional separations using IMS-MS in conjunction with a range of front-endtechniques, such as gas chromatography, supercritical fluid chromatography, liquid chromatography, solid-phase extractions, capillary electrophoresis, field asymmetric ion mobility spectrometry, and microfluidic devices. The origination, current state, various applications, and future capabilities of these multidimensional approaches are described in detail to provide insight into their uses and benefits.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061516-045212
2017-06-12
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/anchem/10/1/annurev-anchem-061516-045212.html?itemId=/content/journals/10.1146/annurev-anchem-061516-045212&mimeType=html&fmt=ahah

Literature Cited

  1. Ewing RG, Atkinson DA, Eiceman GA, Ewing GJ. 1.  2001. A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds. Talanta 54:3515–29 [Google Scholar]
  2. Borsdorf H, Eiceman GA. 2.  2006. Ion mobility spectrometry: principles and applications. Appl. Spectrosc. Rev. 41:4323–75 [Google Scholar]
  3. Mäkinen MA, Anttalainen OA, Sillanpää MET. 3.  2010. Ion mobility spectrometry and its applications in detection of chemical warfare agents. Anal. Chem. 82:239594–600 [Google Scholar]
  4. Armenta S, Alcala M, Blanco M. 4.  2011. A review of recent, unconventional applications of ion mobility spectrometry (IMS). Anal. Chim. Acta 703:2114–23 [Google Scholar]
  5. Lapthorn C, Pullen F, Chowdhry BZ. 5.  2013. Ion mobility spectrometry-mass spectrometry (IMS-MS) of small molecules: separating and assigning structures to ions. Mass Spectrom. Rev. 32:143–71 [Google Scholar]
  6. Lanucara F, Holman SW, Gray CJ, Eyers CE. 6.  2014. The power of ion mobility-mass spectrometry for structural characterization and the study of conformational dynamics. Nat. Chem. 6:4281–94 [Google Scholar]
  7. Chouinard CD, Wei MS, Beekman CR, Kemperman RHJ, Yost RA. 7.  2016. Ion mobility in clinical analysis: current progress and future perspectives. Clin. Chem. 62:1124–33 [Google Scholar]
  8. May JC, Gant-Branum RL, McLean JA. 8.  2016. Targeting the untargeted in molecular phenomics with structurally-selective ion mobility-mass spectrometry. Curr. Opin. Biotechnol. 39:192–97 [Google Scholar]
  9. Mason E, McDaniel E. 9.  1988. Transport Properites of Ions in Gases. New York: Wiley
  10. Guevremont R, Siu KW, Wang J, Ding L. 10.  1997. Combined ion mobility/time-of-flight mass spectrometry study of electrospray-generated ions. Anal. Chem. 69:193959–65 [Google Scholar]
  11. Cohen MJ, Karasek FW. 11.  1970. Plasma Chromatography™—a new dimension for gas chromatography and mass spectrometry. J. Chromatogr. Sci. 8:6330–37 [Google Scholar]
  12. Hoaglund CS, Valentine SJ, Sporleder CR, Reilly JP, Clemmer DE. 12.  1998. Three-dimensional ion mobility/TOFMS analysis of electrosprayed biomolecules. Anal. Chem. 70:112236–42 [Google Scholar]
  13. Wyttenbach T, Kemper PR, Bowers MT. 13.  2001. Design of a new electrospray ion mobility mass spectrometer. Int. J. Mass Spectrom. 212:1–313–23 [Google Scholar]
  14. Tang K, Shvartsburg AA, Lee HN, Prior DC, Buschbach MA. 14.  et al. 2005. High-sensitivity ion mobility spectrometry/mass spectrometry using electrodynamic ion funnel interfaces. Anal. Chem. 77:103330–39 [Google Scholar]
  15. Pringle SD, Giles K, Wildgoose JL, Williams JP, Slade SE. 15.  et al. 2007. An investigation of the mobility separation of some peptide and protein ions using a new hybrid quadrupole/travelling wave IMS/oa-ToF instrument. Int. J. Mass Spectrom. 261:11–12 [Google Scholar]
  16. Michelmann K, Silveira JA, Ridgeway ME, Park MA. 16.  2015. Fundamentals of trapped ion mobility spectrometry. J. Am. Soc. Mass Spectrom. 26:114–24 [Google Scholar]
  17. Ewing MA, Conant CRP, Zucker SM, Griffith KJ, Clemmer DE. 17.  2015. Selected overtone mobility spectrometry. Anal. Chem. 87:105132–38 [Google Scholar]
  18. Zucker SM, Ewing MA, Clemmer DE. 18.  2013. Gridless overtone mobility spectrometry. Anal. Chem. 85:2110174–79 [Google Scholar]
  19. Rus J, Moro D, Sillero JA, Royuela J, Casado A. 19.  et al. 2010. IMS–MS studies based on coupling a differential mobility analyzer (DMA) to commercial API–MS systems. Int. J. Mass Spectrom. 298:1–330–40 [Google Scholar]
  20. Brown LJ, Creaser CS. 20.  2013. Field asymmetric waveform ion mobility spectrometry analysis of proteins and peptides: a review. Curr. Anal. Chem. 9:2192–98 [Google Scholar]
  21. Guevremont R. 21.  2004. High-field asymmetric waveform ion mobility spectrometry: a new tool for mass spectrometry. J. Chromatogr. A 1058:1–23–19 [Google Scholar]
  22. Kolakowski BM, Mester Z. 22.  2007. Review of applications of high-field asymmetric waveform ion mobility spectrometry (FAIMS) and differential mobility spectrometry (DMS). Analyst 132:9842–64 [Google Scholar]
  23. Vidal-de-Miguel G, Macía M, Cuevas J. 23.  2012. Transversal modulation ion mobility spectrometry (TM-IMS), a new mobility filter overcoming turbulence related limitations. Anal. Chem. 84:187831–37 [Google Scholar]
  24. May JC, McLean JA. 24.  2015. Ion mobility-mass spectrometry: time-dispersive instrumentation. Anal. Chem. 87:31422–36 [Google Scholar]
  25. Thomson JJ, Rutherford E. 25.  1896. XL. On the passage of electricity through gases exposed to Röntgen rays. Phil. Mag. Ser. 5 42:258392–407 [Google Scholar]
  26. Von Helden G, Hsu MT, Kemper PR, Bowers MT. 26.  1991. Structures of carbon cluster ions from 3 to 60 atoms: linears to rings to fullerenes. J. Chem. Phys. 95:53835–37 [Google Scholar]
  27. Von Helden G, Hsu MT, Gotts N, Bowers MT. 27.  1993. Carbon cluster cations with up to 84 atoms: structures, formation mechanism, and reactivity. J. Phys. Chem. 97:318182–92 [Google Scholar]
  28. Shelimov KB, Hunter JM, Jarrold MF. 28.  1994. Small carbon rings: dissociation, isomerization, and a simple-model based on strain. Int. J. Mass Spectrom. 138:17–31 [Google Scholar]
  29. Hunter JM, Jarrold MF. 29.  1995. Drift-tube studies of large carbon clusters: new isomers and the mechanism of giant fullerene formation. J. Am. Chem. Soc. 117:4110317–24 [Google Scholar]
  30. Henderson SC, Valentine SJ, Counterman AE, Clemmer DE. 30.  1999. ESI/ion trap/ion mobility/time-of-flight mass spectrometry for rapid and sensitive analysis of biomolecular mixtures. Anal. Chem. 71:2291–301 [Google Scholar]
  31. Hoaglund CS, Valentine SJ, Sporleder CR, Reilly JP, Clemmer DE. 31.  1998. Three-dimensional ion mobility TOFMS analysis of electrosprayed biomolecules. Anal. Chem. 70:112236–42 [Google Scholar]
  32. Bernstein SL, Dupuis NF, Lazo ND, Wyttenbach T, Condron MM. 32.  et al. 2009. Amyloid-β protein oligomerization and the importance of tetramers and dodecamers in the aetiology of Alzheimer's disease. Nat. Chem. 1:4326–31 [Google Scholar]
  33. Groessl M, Graf S, Knochenmuss R. 33.  2015. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140:206904–11 [Google Scholar]
  34. Liu YS, Valentine SJ, Counterman AE, Hoaglund CS, Clemmer DE. 34.  1997. Injected-ion mobility analysis of biomolecules. Anal. Chem. 69:23A728–35 [Google Scholar]
  35. Enders JR, McLean JA. 35.  2009. Chiral and structural analysis of biomolecules using mass spectrometry and ion mobility-mass spectrometry. Chirality 21:1eE253–64 [Google Scholar]
  36. Belov ME, Buschbach MA, Prior DC, Tang K, Smith RD. 36.  2007. Multiplexed ion mobility spectrometry-orthogonal time-of-flight mass spectrometry. Anal. Chem. 79:62451–62 [Google Scholar]
  37. Clowers BH, Belov ME, Prior DC 3rd, Danielson WF, Ibrahim Y, Smith RD. 37.  2008. Pseudorandom sequence modifications for ion mobility orthogonal time-of-flight mass spectrometry. Anal. Chem. 80:72464–73 [Google Scholar]
  38. Kelly RT, Tolmachev AV, Page JS, Tang K, Smith RD. 38.  2010. The ion funnel: theory, implementations, and applications. Mass Spectrom. Rev. 29:2294–312 [Google Scholar]
  39. Baker ES, Livesay EA, Orton DJ, Moore RJ, 3rd Danielson WF. 39.  et al. 2010. An LC-IMS-MS platform providing increased dynamic range for high-throughput proteomic studies. J. Proteome Res. 9:2997–1006 [Google Scholar]
  40. Kanu AB, Hill HH Jr. 40.  2008. Ion mobility spectrometry detection for gas chromatography. J. Chromatogr. A 1177:112–27 [Google Scholar]
  41. Creaser CS, Griffiths JR, Bramwell CJ, Noreen S, Hill CA, Thomas CLP. 41.  2004. Ion mobility spectrometry: a review. Part 1. Structural analysis by mobility measurement. Analyst 129:11984–94 [Google Scholar]
  42. Cook GW, LaPuma PT, Hook GL, Eckenrode BA. 42.  2010. Using gas chromatography with ion mobility spectrometry to resolve explosive compounds in the presence of interferents. J. Forensic Sci. 55:61582–91 [Google Scholar]
  43. Reyes-Garcés N, Gómez-Ríos GA, Souza Silva ÉA, Pawliszyn J. 43.  2013. Coupling needle trap devices with gas chromatography–ion mobility spectrometry detection as a simple approach for on-site quantitative analysis. J. Chromatogr. A 1300:193–98 [Google Scholar]
  44. Denawaka CJ, Fowlis IA, Dean JR. 44.  2014. Evaluation and application of static headspace–multicapillary column-gas chromatography–ion mobility spectrometry for complex sample analysis. J. Chromatogr. A 1338:136–48 [Google Scholar]
  45. Garrido-Delgado R, Dobao-Prieto MM, Arce L, Valcárcel M. 45.  2015. Determination of volatile compounds by GC–IMS to assign the quality of virgin olive oil. Food Chem 187:572–79 [Google Scholar]
  46. Wallace WT, Gazda DB, Limero TF, Minton JM, Macatangay AV. 46.  et al. 2015. Electrothermal vaporization sample introduction for spaceflight water quality monitoring via gas chromatography-differential mobility spectrometry. Anal. Chem. 87:125981–88 [Google Scholar]
  47. Schumann A, Lenth C, Hasener J, Steckel V. 47.  2012. Detection of volatile organic compounds from wood-based panels by gas chromatography-field asymmetric ion mobility spectrometry (GC-FAIMS). Int. J. Ion Mobil. Spec. 15:3157–68 [Google Scholar]
  48. Crawford CL, Graf S, Gonin M, Fuhrer K, Zhang X, Hill HH. 48.  2011. The novel use of gas chromatography-ion mobility-time of flight mass spectrometry with secondary electrospray ionization for complex mixture analysis. Int. J. Ion Mobil. Spec. 14:123–30 [Google Scholar]
  49. Klesper E, Corwin AH, Turner DA. 49.  1962. High pressure gas chromatography above critical temperatures. J. Org. Chem. 27:2700–6 [Google Scholar]
  50. Taguchi K, Fukusaki E, Bamba T. 50.  2014. Supercritical fluid chromatography/mass spectrometry in metabolite analysis. Bioanalysis 6:121679–89 [Google Scholar]
  51. Desfontaine V, Guillarme D, Francotte E, Nováková L. 51.  2015. Supercritical fluid chromatography in pharmaceutical analysis. J. Pharm. Biomed. Anal 11356–71 [Google Scholar]
  52. Grand-Guillaume Perrenoud A, Guillarme D, Boccard J, Veuthey J-L, Barron D, Moco S. 52.  2016. Ultra-high performance supercritical fluid chromatography coupled with quadrupole-time-of-flight mass spectrometry as a performing tool for bioactive analysis. J. Chromatogr. A 1450:101–11 [Google Scholar]
  53. Rokushika S, Hatano H, Hill HH. 53.  1987. Ion mobility spectrometry after supercritical fluid chromatography. Anal. Chem. 59:18–12 [Google Scholar]
  54. Eatherton RL, Morrissey MA, Hill HH. 54.  1988. Comparison of ion mobility constants of selected drugs after capillary gas chromatography and capillary supercritical fluid chromatography. Anal. Chem. 60:202240–43 [Google Scholar]
  55. Wu C, Siems WF, Jr. Hill HH, Hannan RM. 55.  1998. Analytical determination of nicotine in tobacco by supercritical fluid chromatography–ion mobility detection. J. Chromatogr. A 811:1–2157–61 [Google Scholar]
  56. Wu C, Siems WF, Hill HH, Hannan RM. 56.  1999. Improved supercritical fluid chromatography–ion mobility spectrometry interface. J. Microcolumn Sep. 11:4251–57 [Google Scholar]
  57. Beucher L, Dervilly-Pinel G, Cesbron N, Penot M, Gicquiau A. 57.  et al. 2016. Specific characterization of non-steroidal selective androgen peceptor modulators using supercritical fluid chromatography coupled to ion-mobility mass spectrometry: application to the detection of enobosarm in bovine urine. Drug Test. Anal. 9:2179–87 [Google Scholar]
  58. Sowell RA, Koeniger SL, Valentine SJ, Moon MH, Clemmer DE. 58.  2004. Nanoflow LC/IMS-MS and LC/IMS-CID/MS of protein mixtures. J. Am. Soc. Mass Spectrom. 15:91341–53 [Google Scholar]
  59. Crowell KL, Baker ES, Payne SH, Ibrahim YM, Monroe ME. 59.  et al. 2013. Increasing confidence of LC-MS identifications by utilizing ion mobility spectrometry. Int. J. Mass Spectrom. 354–55:312–17 [Google Scholar]
  60. Valentine SJ, Kulchania M, Barnes CAS, Clemmer DE. 60.  2001. Multidimensional separations of complex peptide mixtures: a combined high-performance liquid chromatography/ion mobility/time-of-flight mass spectrometry approach. Int. J. Mass Spectrom. 212:1–397–109 [Google Scholar]
  61. Counterman AE, Hilderbrand AE, Barnes CAS, Clemmer DE. 61.  2001. Formation of peptide aggregates during ESI: size, charge, composition, and contributions to noise. J. Am. Soc. Mass Spectrom. 12:91020–35 [Google Scholar]
  62. Valentine SJ, Plasencia MD, Liu XY, Krishnan M, Naylor S. 62.  et al. 2006. Toward plasma proteome profiling with ion mobility-mass spectrometry. J. Proteome Res. 5:112977–84 [Google Scholar]
  63. Paglia G, Williams JP, Menikarachchi L, Thompson JW, Tyldesley-Worster R. 63.  et al. 2014. Ion mobility derived collision cross sections to support metabolomics applications. Anal. Chem. 86:83985–93 [Google Scholar]
  64. Causon TJ, Hann S. 64.  2015. Theoretical evaluation of peak capacity improvements by use of liquid chromatography combined with drift tube ion mobility-mass spectrometry. J. Chromatogr. A 1416:47–56 [Google Scholar]
  65. Kyle JE, Zhang X, Weitz KK, Monroe ME, Ibrahim YM. 65.  et al. 2016. Uncovering biologically significant lipid isomers with liquid chromatography, ion mobility spectrometry and mass spectrometry. Analyst 141:51649–59 [Google Scholar]
  66. Paglia G, Angel P, Williams JP, Richardson K, Olivos HJ. 66.  et al. 2015. Ion mobility-derived collision cross section as an additional measure for lipid fingerprinting and identification. Anal. Chem. 87:21137–44 [Google Scholar]
  67. Sowell RA, Koeniger SL, Valentine SJ, Moon MH, Clemmer DE. 67.  2004. Nanoflow LCAMS-MS and LCAMS-CID/MS of protein mixtures. J. Am. Soc. Mass Spectrom. 15:91341–53 [Google Scholar]
  68. Liu XY, Valentine SJ, Plasencia MD, Trimpin S, Naylor S, Clemmer DE. 68.  2007. Mapping the human plasma proteome by SCX-LC-IMS-MS. J. Am. Soc. Mass Spectrom. 18:71249–64 [Google Scholar]
  69. Moon MH, Myung S, Plasencia M, Hilderbrand AE, Clemmer DE. 69.  2003. Nanoflow LC/ion mobility/CID/TOF for proteomics: analysis of a human urinary proteome. J. Proteome Res. 2:6589–97 [Google Scholar]
  70. Baker ES, Burnum-Johnson KE, Ibrahim YM, Orton DJ, Monroe ME. 70.  et al. 2015. Enhancing bottom-up and top-down proteomic measurements with ion mobility separations. Proteomics 15:162766–76 [Google Scholar]
  71. Baker ES, Burnum-Johnson KE, Jacobs JM, Diamond DL, Brown RN. 71.  et al. 2014. Advancing the high throughput identification of liver fibrosis protein signatures using multiplexed ion mobility spectrometry. Mol. Cell. Proteom. 13:41119–27 [Google Scholar]
  72. Lareau NM, May JC, McLean JA. 72.  2015. Non-derivatized glycan analysis by reverse phase liquid chromatography and ion mobility-mass spectrometry. Analyst 140:103335–38 [Google Scholar]
  73. Liu X, Valentine SJ, Plasencia MD, Trimpin S, Naylor S, Clemmer DE. 73.  2007. Mapping the human plasma proteome by SCX-LC-IMS-MS. J. Am. Soc. Mass Spectrom. 18:71249–64 [Google Scholar]
  74. Stephan S, Hippler J, Köhler T, Deeb AA, Schmidt TC, Schmitz OJ. 74.  2016. Contaminant screening of wastewater with HPLC-IM-qTOF-MS and LC+LC-IM-qTOF-MS using a CCS database. Anal. Bioanal. Chem. 408:246545–55 [Google Scholar]
  75. MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL. 75.  et al. 2010. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26:7966–68 [Google Scholar]
  76. Sarafraz-Yazdi A, Amiri A. 76.  2010. Liquid-phase microextraction. TRAC Trends Anal. Chem. 29:11–14 [Google Scholar]
  77. Andrade-Eiroa A, Canle M, Leroy-Cancellieri V, Cerdà V. 77.  2016. Solid-phase extraction of organic compounds: a critical review (Part I). TRAC Trends Anal. Chem. 80:641–54 [Google Scholar]
  78. Andrade-Eiroa A, Canle M, Leroy-Cancellieri V, Cerdà V. 78.  2016. Solid-phase extraction of organic compounds: a critical review. Part II. TRAC Trends Anal. Chem. 80:655–67 [Google Scholar]
  79. Soulard P, McLaughlin M, Stevens J, Connolly B, Coli R. 79.  et al. 2008. Development of a high-throughput screening assay for stearoyl-CoA desaturase using rat liver microsomes, deuterium labeled stearoyl-CoA and mass spectrometry. Anal. Chim. Acta 627:1105–11 [Google Scholar]
  80. Lim KB, Özbal CC, Kassel DB. 80.  2010. Development of a high-throughput online solid-phase extraction/tandem mass spectrometry method for cytochrome P450 inhibition screening. J. Biomol. Screen. 15:4447–52 [Google Scholar]
  81. Luippold AH, Arnhold T, Jörg W, Süssmuth RD. 81.  2010. An integrated platform for fully automated high-throughput LC–MS/MS analysis of in vitro metabolic stability assay samples. Int. J. Mass Spectrom. 296:1–31–9 [Google Scholar]
  82. Jian W, Romm MV, Edom RW, Miller VP, LaMarr WA, Weng N. 82.  2011. Evaluation of a high-throughput online solid phase extraction–tandem mass spectrometry system for in vivo bioanalytical studies. Anal. Chem. 83:218259–66 [Google Scholar]
  83. Hutchinson SE, Leveridge MV, Heathcote ML, Francis P, Williams L. 83.  et al. 2012. Enabling lead discovery for histone lysine demethylases by high-throughput RapidFire mass spectrometry. J. Biomol. Screen. 17:139–48 [Google Scholar]
  84. Razavi M, Frick LE, LaMarr WA, Pope ME, Miller CA. 84.  et al. 2012. High-throughput SISCAPA quantitation of peptides from human plasma digests by ultrafast, liquid chromatography-free mass spectrometry. J. Proteome Res. 11:125642–49 [Google Scholar]
  85. Lowe DM, Gee M, Haslam C, Leavens B, Christodoulou E. 85.  et al. 2014. Lead discovery for human kynurenine 3-monooxygenase by high-throughput RapidFire mass spectrometry. J. Biomol. Screen. 19:4508–15 [Google Scholar]
  86. Rye PT, LaMarr WA. 86.  2015. Measurement of glycolysis reactants by high-throughput solid phase extraction with tandem mass spectrometry: characterization of pyrophosphate-dependent phosphofructokinase as a case study. Anal. Biochem. 482:40–47 [Google Scholar]
  87. Zhang X, Romm M, Zheng X, Zink EM, Kim Y-M. 87.  et al. 2016. SPE-IMS-MS: an automated platform for sub-sixty second surveillance of endogenous metabolites and xenobiotics in biofluids. Clin. Mass Spectrom. In press
  88. Arthur CL, Pawliszyn J. 88.  1990. Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal. Chem. 62:192145–48 [Google Scholar]
  89. Vas G, Vékey K. 89.  2004. Solid-phase microextraction: a powerful sample preparation tool prior to mass spectrometric analysis. J. Mass Spectrom. 39:3233–54 [Google Scholar]
  90. Li X, Zeng Z, Zeng Y. 90.  2007. Solid-phase microextraction coupled to gas chromatography for the determination of 2,3-dimethyl-2,3-dinitrobutane as a marking agent for explosives. Talanta 72:41581–85 [Google Scholar]
  91. Alvarez-Rivera G, Vila M, Lores M, Garcia-Jares C, Llompart M. 91.  2014. Development of a multi-preservative method based on solid-phase microextraction–gas chromatography–tandem mass spectrometry for cosmetic analysis. J. Chromatogr. A 1339:13–25 [Google Scholar]
  92. Pereira J, Silva CL, Perestrelo R, Gonçalves J, Alves V, Câmara JS. 92.  2014. Re-exploring the high-throughput potential of microextraction techniques, SPME and MEPS, as powerful strategies for medical diagnostic purposes. Innovative approaches, recent applications and future trends. Anal. Bioanal. Chem. 406:82101–22 [Google Scholar]
  93. Rearden P, Harrington PB. 93.  2005. Rapid screening of precursor and degradation products of chemical warfare agents in soil by solid-phase microextraction ion mobility spectrometry (SPME–IMS). Anal. Chim. Acta 545:113–20 [Google Scholar]
  94. Wang Y, Nacson S, Pawliszyn J. 94.  2007. The coupling of solid-phase microextraction/surface enhanced laser desorption/ionization to ion mobility spectrometry for drug analysis. Anal. Chim. Acta 582:150–54 [Google Scholar]
  95. Lai H, Leung A, Magee M, Almirall JR. 95.  2010. Identification of volatile chemical signatures from plastic explosives by SPME-GC/MS and detection by ion mobility spectrometry. Anal. Bioanal. Chem. 396:82997–3007 [Google Scholar]
  96. Holopainen S, Luukkonen V, Nousiainen M, Sillanpää M. 96.  2013. Determination of chlorophenols in water by headspace solid phase microextraction ion mobility spectrometry (HS-SPME-IMS). Talanta 114:176–82 [Google Scholar]
  97. Jafari MT, Saraji M, Ameri AH. 97.  2015. Coupling of solid phase microextraction with electrospray ionization ion mobility spectrometry and direct analysis of venlafaxine in human urine and plasma. Anal. Chim. Acta 853:460–68 [Google Scholar]
  98. Revercomb HE, Mason EA. 98.  1975. Theory of plasma chromatography gaseous electrophoresis—a review. Anal. Chem. 47:7970–83 [Google Scholar]
  99. Giddings JC. 99.  1969. Generation of variance, “theoretical plates,” resolution, and peak capacity in electrophoresis and sedimentation. Sep. Sci. Tech. 4:3181–89 [Google Scholar]
  100. Hjerten S. 100.  1958. Free zone electrophoresis—preliminary note. Ark. Kemi. 13:1–2151–52 [Google Scholar]
  101. Hjerten S, Zhu MD. 101.  1985. Micropreparative version of high-performance electrophoresis: the electrophoretic counterpart of narrow-bore high-performance liquid-chromatography. J. Chromatogr. 327:157–64 [Google Scholar]
  102. Jorgenson JW, Lukacs KD. 102.  1981. Free-zone electrophoresis in glass-capillaries. Clin. Chem. 27:91551–53 [Google Scholar]
  103. Moore AW, Jorgenson JW. 103.  1995. Rapid comprehensive 2-dimensional separations of peptides via RPLC optically gated capillary zone electrophoresis. Anal. Chem. 67:193448–55 [Google Scholar]
  104. Leriche ED, Afonso C, Lange CM, Grossel MC, Truong L. 104.  et al. 2014. Glycine-modified polyamidoamine dendrimers: synthesis and structural characterization using nuclear magnetic resonance, ion-mobility mass spectrometry and capillary electrophoresis. RSC Adv 4:41744–53 [Google Scholar]
  105. Mironov GG, Okhonin V, Khan N, Clouthier CM, Berezovski MV. 105.  2014. Conformational dynamics of DNA G-quadruplex in solution studied by kinetic capillary electrophoresis coupled on-line with mass spectrometry. ChemistryOpen 3:258–64 [Google Scholar]
  106. Hallen RW, Shumate CB, Siems WF, Tsuda T, Hill HH. 106.  1989. Preliminary investigation of ion mobility spectrometry after capillary electrophoretic introduction. J. Chromatogr. 480:233–45 [Google Scholar]
  107. Shumate CB, Hill HH. 107.  1989. Coronaspray nebulization and ionization of liquid samples for ion mobility spectrometry. Anal. Chem. 61:6601–6 [Google Scholar]
  108. Li J, Purves RW, Richards JC. 108.  2004. Coupling capillary electrophoresis and high-field asymmetric waveform ion mobility spectrometry mass spectrometry for the analysis of complex lipopolysaccharides. Anal. Chem. 76:164676–83 [Google Scholar]
  109. Venne K, Bonneil E, Eng K, Thibault P. 109.  2005. Improvement in peptide detection for proteomics analyses using nanoLC-MS and high-field asymmetry waveform ion mobility mass spectrometry. Anal. Chem. 77:72176–86 [Google Scholar]
  110. Moini M. 110.  2002. Capillary electrophoresis mass spectrometry and its application to the analysis of biological mixtures. Anal. Bioanal. Chem. 373:6466–80 [Google Scholar]
  111. Guo XJ, Fillmore TL, Gao YQ, Tang KQ. 111.  2016. Capillary electrophoresis-nanoelectrospray ionization-selected reaction monitoring mass spectrometry via a true sheathless metal-coated emitter interface for robust and high-sensitivity sample quantification. Anal. Chem. 88:84418–25 [Google Scholar]
  112. Maxwell EJ, Zhong XF, Zhang H, van Zeijl N, Chen DDY. 112.  2010. Decoupling CE and ESI for a more robust interface with MS. Electrophoresis 31:71130–37 [Google Scholar]
  113. Sun LL, Zhu GJ, Zhang ZB, Mou S, Dovichi NJ. 113.  2015. Third-generation electrokinetically pumped sheath-flow nanospray interface with improved stability and sensitivity for automated capillary zone electrophoresis-mass spectrometry analysis of complex proteome digests. J. Proteome Res. 14:52312–21 [Google Scholar]
  114. Wojcik R, Dada OO, Sadilek M, Dovichi NJ. 114.  2010. Simplified capillary electrophoresis nanospray sheath-flow interface for high efficiency and sensitive peptide analysis. Rapid Commun. Mass Spectrom. 24:172554–60 [Google Scholar]
  115. Gorshkov M. 115.  1982. USSR inventor's certificate no. 966583. Byull Izobret 38: [Google Scholar]
  116. Guevremont R. 116.  2004. High-field asymmetric waveform ion mobility spectrometry: a new tool for mass spectrometry. J. Chromatogr. A 1058:13–19 [Google Scholar]
  117. Shvartsburg AA, Tang K, Smith RD. 117.  2005. Optimization of the design and operation of FAIMS analyzers. J. Am. Soc. Mass Spectrom. 16:12–12 [Google Scholar]
  118. Viehland LA, Guevremontb R, Purves RW, Barnett DA. 118.  2000. Comparison of high-field ion mobility obtained from drift tubes and a FAIMS apparatus. Int. J. Mass Spectrom. 197:1123–30 [Google Scholar]
  119. Hatsis P, Kapron JT. 119.  2008. A review on the application of high‐field asymmetric waveform ion mobility spectrometry (FAIMS) in drug discovery. Rapid Commun. Mass Spectrom. 22:5735–38 [Google Scholar]
  120. Brown LJ, Toutoungi DE, Devenport NA, Reynolds JC, Kaur-Atwal G. 120.  2010. Miniaturized ultra high field asymmetric waveform ion mobility spectrometry combined with mass spectrometry for peptide analysis. Anal. Chem.829827–34 [Google Scholar]
  121. De La Mora JF, Ude S, Thomson BA. 121.  2006. The potential of differential mobility analysis coupled to MS for the study of very large singly and multiply charged proteins and protein complexes in the gas phase. Biotechnol. J. 1:9988–97 [Google Scholar]
  122. Shvartsburg AA, Tang K, Smith RD, Holden M, Rush M. 122.  et al. 2009. Ultrafast differential ion mobility spectrometry at extreme electric fields coupled to mass spectrometry. Anal. Chem. 81:198048–53 [Google Scholar]
  123. Xuan Y, Creese AJ, Horner JA, Cooper HJ. 123.  2009. High‐field asymmetric waveform ion mobility spectrometry (FAIMS) coupled with high‐resolution electron transfer dissociation mass spectrometry for the analysis of isobaric phosphopeptides. Rapid Commun. Mass Spectrom. 23:131963–69 [Google Scholar]
  124. Kaszycki JL, Bowman AP, Shvartsburg AA. 124.  2016. Ion mobility separation of peptide isotopomers. J. Am. Soc. Mass Spectrom. 27:5795–99 [Google Scholar]
  125. Papadopoulos G, Svendsen A, Boyarkin OV, Rizzo TR. 125.  2012. Conformational distribution of bradykinin [bk + 2 H]2+ revealed by cold ion spectroscopy coupled with FAIMS. J. Am. Soc. Mass Spectrom. 23:71173–81 [Google Scholar]
  126. Bohrer BC, Merenbloom SI, Koeniger SL, Hilderbrand AE, Clemmer DE. 126.  2008. Biomolecule analysis by ion mobility spectrometry. Annu. Rev. Anal. Chem. 1:293–327 [Google Scholar]
  127. Saba J, Bonneil E, Pomies C, Eng K, Thibault P. 127.  2009. Enhanced sensitivity in proteomics experiments using FAIMS coupled with a hybrid linear ion trap/orbitrap mass spectrometer. J. Proteome Res. 8:73355–66 [Google Scholar]
  128. McLean JA, Ruotolo BT, Gillig KJ, Russell DH. 128.  2005. Ion mobility–mass spectrometry: a new paradigm for proteomics. Int. J. Mass Spectrom. 240:3301–15 [Google Scholar]
  129. Bonneil E, Pfammatter S, Thibault P. 129.  2015. Enhancement of mass spectrometry performance for proteomic analyses using high‐field asymmetric waveform ion mobility spectrometry (FAIMS). J. Mass Spectrom. 50:111181–95 [Google Scholar]
  130. Kliman M, May JC, McLean JA. 130.  2011. Lipid analysis and lipidomics by structurally selective ion mobility-mass spectrometry. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1811:11935–45 [Google Scholar]
  131. Jackson SN, Ugarov M, Egan T, Post JD, Langlais D. 131.  et al. 2007. MALDI‐ion mobility‐TOFMS imaging of lipids in rat brain tissue. J. Mass Spectrom. 42:81093–98 [Google Scholar]
  132. Fenn LS, Kliman M, Mahsut A, Zhao SR, McLean JA. 132.  2009. Characterizing ion mobility-mass spectrometry conformation space for the analysis of complex biological samples. Anal. Bioanal. Chem. 394:1235–44 [Google Scholar]
  133. Tang K, Li F, Shvartsburg AA, Strittmatter EF, Smith RD. 133.  2005. Two-dimensional gas-phase separations coupled to mass spectrometry for analysis of complex mixtures. Anal. Chem. 77:196381–88 [Google Scholar]
  134. Wilks A, Hart M, Koehl A, Somerville J, Boyle B, Ruiz-Alonso D. 134.  2012. Characterization of a miniature, ultra-high-field, ion mobility spectrometer. Int. J. Ion Mobil. Spec. 15:3199–222 [Google Scholar]
  135. Schneider BB, Covey TR, Coy SL, Krylov EV, Nazarov EG. 135.  2010. Planar differential mobility spectrometer as a pre-filter for atmospheric pressure ionization mass spectrometry. Int. J. Mass Spectrom. 298:1–345–54 [Google Scholar]
  136. Zhang X, Ibrahim YM, Chen T-C, Kyle JE, Norheim RV. 136.  et al. 2015. Enhancing biological analyses with three dimensional field asymmetric ion mobility, low field drift tube ion mobility and mass spectrometry (μFAIMS/IMS-MS) separations. Analyst 140:206955–63 [Google Scholar]
  137. Sackmann EK, Fulton AL, Beebe DJ. 137.  2014. The present and future role of microfluidics in biomedical research. Nature 507:181–89 [Google Scholar]
  138. Volpatti LR, Yetisen AK. 138.  2014. Commercialization of microfluidic devices. Trends Biotechnol 32:7347–50 [Google Scholar]
  139. Gao D, Liu H, Jiang Y, Lin J-M. 139.  2013. Recent advances in microfluidics combined with mass spectrometry: technologies and applications. Lab Chip 13:173309–22 [Google Scholar]
  140. Feng X, Liu B-F, Li J, Liu X. 140.  2015. Advances in coupling microfluidic chips to mass spectrometry. Mass Spectrom. Rev. 34:5535–57 [Google Scholar]
  141. Wang X, Yi L, Mukhitov N, Schrell AM, Dhumpa R, Roper MG. 141.  2015. Microfluidics-to-mass spectrometry: a review of coupling methods and applications. J. Chromatogr. A 1382:98–116 [Google Scholar]
  142. Cong Y, Katipamula S, Trader CD, Orton DJ, Geng T. 142.  et al. 2016. Mass spectrometry-based monitoring of millisecond protein-ligand binding dynamics using an automated microfluidic platform. Lab Chip 16:91544–48 [Google Scholar]
  143. Enders JR, Marasco CC, Kole A, Nguyen B, Sevugarajan S. 143.  et al. 2010. Towards monitoring real-time cellular response using an integrated microfluidicsmatrix assisted laser desorption ionisation/ nanoelectrospray ionisation-ion mobility-mass spectrometry platform. IET Syst. Biol. 4:6416–27 [Google Scholar]
  144. Marasco CC, Enders JR, Seale KT, McLean JA, Wikswo JP. 144.  2015. Real-time cellular exometabolome analysis with a microfluidic-mass spectrometry platform. PLOS ONE 10:2e0117685 [Google Scholar]
  145. Revercomb HE, Mason EA. 145.  1975. Theory of plasma chromatography/gaseous electrophoresis—a review. Anal. Chem. 47:7970–83 [Google Scholar]
  146. Merenbloom SI, Glaskin RS, Henson ZB, Clemmer DE. 146.  2009. High-resolution ion cyclotron mobility spectrometry. Anal. Chem. 81:41482–87 [Google Scholar]
  147. Kemper PR, Dupuis NF, Bowers MT. 147.  2009. A new, higher resolution, ion mobility mass spectrometer. Int. J. Mass Spectrom. 287:1–346–57 [Google Scholar]
  148. Giles K, Wildgoose JL, Pringle S, Langridge D, Nixon P. 148.  et al. 2015. Characterising a T-wave enabled multi-pass cyclic ion mobility separator Presented at Am. Soc. Mass. Spectrom. Conf., 63rd, St. Louis, MO
  149. Deng L, Ibrahim YM, Baker ES, Aly NA, Hamid AM. 149.  et al. 2016. Ion mobility separations of isomers based upon long path length structures for lossless ion manipulations combined with mass spectrometry. Chem. Select 1:102396–99 [Google Scholar]
  150. Deng L, Ibrahim YM, Hamid AM, Garimella SVB, Webb IK. 150.  et al. 2016. Ultra-high resolution ion mobility separations utilizing traveling waves in a 13-m serpentine path length structures for lossless ion manipulations module. Anal. Chem. 88:188957–64 [Google Scholar]
  151. Garimella SVB, Ibrahim YM, Tang K, Webb IK, Baker ES. 151.  et al. 2016. Spatial ion peak compression and its utility in ion mobility spectrometry. J. Am. Soc. Mass Spectrom. 27:61–8 [Google Scholar]
/content/journals/10.1146/annurev-anchem-061516-045212
Loading
/content/journals/10.1146/annurev-anchem-061516-045212
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error