1932

Abstract

When integrated into microfluidic chips, ion-selective nanoporous polymer and solid-state membranes can be used for on-chip pumping, pH actuation, analyte concentration, molecular separation, reactive mixing, and molecular sensing. They offer numerous functionalities and are hence superior to paper-based devices for point-of-care biochips, with only slightly more investment in fabrication and material costs required. In this review, we first discuss the fundamentals of several nonequilibrium ion current phenomena associated with ion-selective membranes, many of them revealed by studies with fabricated single nanochannels/nanopores. We then focus on how the plethora of phenomena has been applied for transport, separation, concentration, and detection of biomolecules on biochips.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-071213-020155
2014-06-12
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/anchem/7/1/annurev-anchem-071213-020155.html?itemId=/content/journals/10.1146/annurev-anchem-071213-020155&mimeType=html&fmt=ahah

Literature Cited

  1. Strathmann H, Grabowski A, Eigenberger G. 1.  2013. Ion-exchange membranes in the chemical process industry. Ind. Eng. Chem. Res. 52:10364–79 [Google Scholar]
  2. Park S, Chung T, Kim H. 2.  2009. Ion bridges in microfluidic systems. Microfluid Nanofluid 6:315–31 [Google Scholar]
  3. Mortensen NA, Olesen LH, Okkels F, Bruus H. 3.  2007. Mass and charge transport in micro and nanofluidic channels. Nanoscale Microscale Thermophys. Eng. 11:57–69 [Google Scholar]
  4. Yuan Z, Garcia AL, Lopez GP, Petsev DN. 4.  2007. Electrokinetic transport and separations in fluidic nanochannels. Electrophoresis 28:595–610 [Google Scholar]
  5. Sparreboom W, van den Berg A, Eijkel JCT. 5.  2010. Transport in nanofluidic systems: a review of theory and applications. New J. Phys. 12:015004 [Google Scholar]
  6. Piruska A, Gong M, Sweedler JV, Bohn PW. 6.  2010. Nanofluidics in chemical analysis. Chem. Soc. Rev. 39:1060–72 [Google Scholar]
  7. Napoli M, Eijkel JCT, Pennathur S. 7.  2010. Nanofluidic technology for biomolecule applications: a critical review. Lab Chip 10:957–85 [Google Scholar]
  8. Sollner K.8.  1950. Recent advances in the electrochemistry of membranes of high ionic selectivity. J. Electrochem. Soc. 97:C139–51 [Google Scholar]
  9. Meyer KH.9.  1937. Artificial membranes: their structure and permeability. Trans. Faraday Soc. 33:1073–80 [Google Scholar]
  10. Teorell T.10.  1935. Studies on the “diffusion effect” upon ionic distribution I. Some theoretical considerations. Proc. Natl. Acad. Sci. USA 21:152–61 [Google Scholar]
  11. Teorell T.11.  1935. An attempt to formulate a quantitative theory of membrane permeability. Proc. Soc. Exp. Biol. Med. 33:282–85 [Google Scholar]
  12. Donnan FG.12.  1911. Theory of the balances of membranes and potential of membranes at the existence of non dialysing electrolytes—a contribution to physical chemical physiology. Z. Elektrochem. Angew. Phys. Chem. 17:572–81 [Google Scholar]
  13. Chang HC, Yeo LY. 13.  2010. Electrokinetically Driven Microfluidics and Nanofluidics Cambridge/New York: Cambridge Univ. Press
  14. Daiguji H.14.  2010. Ion transport in nanofluidic channels. Chem. Soc. Rev. 39:901–11 [Google Scholar]
  15. Postler T, Slouka Z, Svoboda M, Pribyl M, Snita D. 15.  2008. Parametrical studies of electroosmotic transport characteristics in submicrometer channels. J. Colloid Interface Sci. 320:321–32 [Google Scholar]
  16. Yan Y, Wang L, Xue JM, Chang HC. 16.  2013. Ion current rectification inversion in conic nanopores: nonequilibrium ion transport biased by ion selectivity and spatial asymmetry. J. Chem. Phys. 138:044706 [Google Scholar]
  17. Plecis A, Pallandre A, Haghiri-Gosnet AM. 17.  2011. Ionic and mass transport in micro-nanofluidic devices: a matter of volumic surface charge. Lab Chip 11:795–804 [Google Scholar]
  18. Tanaka Y.18.  2007. Chapter 1: Preparation of ion exchange membranes. Membrane Science and Technology T Yoshinobu 3–16 Amsterdam: Elsevier [Google Scholar]
  19. Prakash P, Hoskins D, SenGupta AK. 19.  2004. Application of homogeneous and heterogeneous cation-exchange membranes in coagulant recovery from water treatment plant residuals using Donnan membrane process. J. Membr. Sci. 237:131–44 [Google Scholar]
  20. Fornasiero F, Bin In J, Kim S, Park HG, Wang Y. 20.  et al. 2010. pH-Tunable ion selectivity in carbon nanotube pores. Langmuir 26:14848–53 [Google Scholar]
  21. Siwy ZS.21.  2006. Ion-current rectification in nanopores and nanotubes with broken symmetry. Adv. Funct. Mater. 16:735–46 [Google Scholar]
  22. Chang CC, Yeh CP, Yang RJ. 22.  2012. Ion concentration polarization near microchannel-nanochannel interfaces: effect of pH value. Electrophoresis 33:758–64 [Google Scholar]
  23. Kang MS, Choi YJ, Moon SH. 23.  2004. Effects of charge density on water splitting at cation-exchange membrane surface in the over-limiting current region. Korean J. Chem. Eng. 21:221–29 [Google Scholar]
  24. Cheng LJ, Guo LJ. 24.  2009. Ionic current rectification, breakdown, and switching in heterogeneous oxide nanofluidic devices. ACS Nano 3:575–84 [Google Scholar]
  25. Choi JH, Moon SH. 25.  2001. Pore size characterization of cation-exchange membranes by chronopotentiometry using homologous amine ions. J. Membr. Sci. 191:225–36 [Google Scholar]
  26. Vlassiouk I, Smirnov S, Siwy Z. 26.  2008. Ionic selectivity of single nanochannels. Nano Lett. 8:1978–85 [Google Scholar]
  27. Vlassiouk I, Apel PY, Dmitriev SN, Healy K, Siwy ZS. 27.  2009. Versatile ultrathin nanoporous silicon nitride membranes. Proc. Natl. Acad. Sci. USA 106:21039–44 [Google Scholar]
  28. Yossifon G, Chang HC. 28.  2008. Selection of nonequilibrium overlimiting currents: universal depletion layer formation dynamics and vortex instability. Phys. Rev. Lett. 101:254501 [Google Scholar]
  29. Yossifon G, Mushenheim P, Chang YC, Chang HC. 29.  2009. Nonlinear current-voltage characteristics of nanochannels. Phys. Rev. E 79:046305 [Google Scholar]
  30. Duan CH, Majumdar A. 30.  2010. Anomalous ion transport in 2-nm hydrophilic nanochannels. Nat. Nanotechnol. 5:848–52 [Google Scholar]
  31. Bottenus D, Oh YJ, Han SM, Ivory CF. 31.  2009. Experimentally and theoretically observed native pH shifts in a nanochannel array. Lab Chip 9:219–31 [Google Scholar]
  32. Svoboda M, Slouka Z, Schrott W, Snita D. 32.  2009. Cation exchange membrane integrated into a microfluidic device. Microelectron. Eng. 86:1371–74 [Google Scholar]
  33. Slouka Z, Senapati S, Yan Y, Chang HC. 33.  2013. Charge inversion, water splitting, and vortex suppression due to DNA sorption on ion-selective membranes and their ion-current signatures. Langmuir 29:8275–83 [Google Scholar]
  34. Svoboda M, Kratochvila J, Lindner J, Pribyl M, Snita D. 34.  2011. Dynamic behaviour of a diffusion layer around a cation-exchange membrane in an external electric field. Microelectron. Eng. 88:1789–91 [Google Scholar]
  35. Kwak R, Guan GF, Peng WK, Han JY. 35.  2013. Microscale electrodialysis: concentration profiling and vortex visualization. Desalination 308:138–46 [Google Scholar]
  36. Cheng LJ, Chang HC. 36.  2011. Microscale pH regulation by splitting water. Biomicrofluidics 5:046502 [Google Scholar]
  37. Ko SH, Song YA, Kim SJ, Kim M, Han J, Kang KH. 37.  2012. Nanofluidic preconcentration device in a straight microchannel using ion concentration polarization. Lab Chip 12:4472–82 [Google Scholar]
  38. Frilette VJ.38.  1957. Electrogravitational transport at synthetic ion exchange membrane surfaces. J. Phys. Chem. B 61:168–74 [Google Scholar]
  39. Krol JJ, Wessling M, Strathmann H. 39.  1999. Concentration polarization with monopolar ion exchange membranes: current-voltage curves and water dissociation. J. Membr. Sci. 162:145–54 [Google Scholar]
  40. Belova E, Lopatkova G, Pismenskaya N, Nikonenko V, Larchet C. 40.  2006. Role of water splitting in development in ion-exchange membrane of electroconvection systems. Desalination 199:59–61 [Google Scholar]
  41. Belova EI, Lopatkova GY, Pismenskaya ND, Nikonenko VV, Larchet C, Pourcelly G. 41.  2006. Effect of anion-exchange membrane surface properties on mechanisms of overlimiting mass transfer. J. Phys. Chem. B 110:13458–69 [Google Scholar]
  42. Choi JH, Kim SH, Moon SH. 42.  2001. Heterogeneity of ion-exchange membranes: the effects of membrane heterogeneity on transport properties. J. Colloid Interface Sci. 241:120–26 [Google Scholar]
  43. Rubinstein I, Staude E, Kedem O. 43.  1988. Role of the membrane-surface in concentration polarization at ion-exchange membrane. Desalination 69:101–14 [Google Scholar]
  44. Andersen MB, van Soestbergen M, Mani A, Bruus H, Biesheuvel PM, Bazant MZ. 44.  2012. Current-induced membrane discharge. Phys. Rev. Lett. 109:108301 [Google Scholar]
  45. Maletzki F, Rosler HW, Staude E. 45.  1992. Ion transfer across electrodialysis membranes in the overlimiting current range: stationary voltage current characteristics and current noise power spectra under different conditions of free convection. J. Membr. Sci. 71:105–15 [Google Scholar]
  46. Rubinstein I, Maletzki F. 46.  1991. Electroconvection at an electrically inhomogeneous permselective membrane surface. J. Chem. Soc.-Faraday Trans. 87:2079–87 [Google Scholar]
  47. Rubinstein I, Zaltzman B. 47.  2000. Electro-osmotically induced convection at a permselective membrane. Phys. Rev. E 62:2238–51 [Google Scholar]
  48. Druzgalski CL, Andersen MB, Mani A. 48.  2013. Direct numerical simulation of electroconvective instability and hydrodynamic chaos near an ion-selective surface. Phys. Fluids 25:110804–17 [Google Scholar]
  49. Pham VS, Li ZR, Lim KM, White JK, Han JY. 49.  2012. Direct numerical simulation of electroconvective instability and hysteretic current-voltage response of a permselective membrane. Phys. Rev. E 86:046310 [Google Scholar]
  50. Nandigana VVR, Aluru NR. 50.  2012. Understanding anomalous current-voltage characteristics in microchannel-nanochannel interconnect devices. J. Colloid Interface Sci. 384:162–71 [Google Scholar]
  51. Yossifon G, Mushenheim P, Chang HC. 51.  2010. Controlling nanoslot overlimiting current with the depth of a connecting microchamber. EPL 90:64004 [Google Scholar]
  52. Yossifon G, Chang HC. 52.  2010. Changing nanoslot ion flux with a dynamic nanocolloid ion-selective filter: secondary overlimiting currents due to nanocolloid-nanoslot interaction. Phys. Rev. E 81:066317 [Google Scholar]
  53. Yossifon G, Mushenheim P, Chang YC, Chang HC. 53.  2010. Eliminating the limiting-current phenomenon by geometric field focusing into nanopores and nanoslots. Phys. Rev. E 81:046301 [Google Scholar]
  54. Cheng LJ, Guo LJ. 54.  2010. Entrance effect on ion transport in nanochannels. Microfluid Nanofluid 9:1033–39 [Google Scholar]
  55. Wang YC, Stevens AL, Han JY. 55.  2005. Million-fold preconcentration of proteins and peptides by nanofluidic filter. Anal. Chem. 77:4293–99 [Google Scholar]
  56. Li GB, Wang SL, Byun CK, Wang XY, Liu SR. 56.  2009. A quantitative model to evaluate the ion-enrichment and ion-depletion effect at microchannel-nanochannel junctions. Anal. Chim. Acta 650:214–20 [Google Scholar]
  57. Wang Y, Pant K, Chen ZJ, Wang GR, Diffey WF. 57.  et al. 2009. Numerical analysis of electrokinetic transport in micro-nanofluidic interconnect preconcentrator in hydrodynamic flow. Microfluid Nanofluid 7:683–96 [Google Scholar]
  58. Kim SJ, Ko SH, Kwak R, Posner JD, Kang KH, Han J. 58.  2012. Multi-vortical flow inducing electrokinetic instability in ion concentration polarization layer. Nanoscale 4:7406–10 [Google Scholar]
  59. Ehlert S, Hlushkou D, Tallarek U. 59.  2008. Electrohydrodynamics around single ion-permselective glass beads fixed in a microfluidic device. Microfluid Nanofluid 4:471–87 [Google Scholar]
  60. Ben Y, Chang HC. 60.  2002. Nonlinear Smoluchowski slip velocity and micro-vortex generation. J. Fluid Mech. 461:229–38 [Google Scholar]
  61. Chang HC, Yossifon G, Demekhin EA. 61.  2012. Nanoscale electrokinetics and microvortices: how microhydrodynamics affects nanofluidic ion flux. Annu. Rev. Fluid Mech. 44:401–26 [Google Scholar]
  62. Harnisch F, Schroder U, Scholz F. 62.  2008. The suitability of monopolar and bipolar ion exchange membranes as separators for biological fuel cells. Environ. Sci. Technol. 42:1740–46 [Google Scholar]
  63. Aritomi T, van den Boomgaard T, Strathmann H. 63.  1996. Current-voltage curve of a bipolar membrane at high current density. Desalination 104:13–18 [Google Scholar]
  64. Conroy DT, Craster RV, Matar OK, Cheng LJ, Chang HC. 64.  2012. Nonequilibrium hysteresis and Wien effect water dissociation at a bipolar membrane. Phys. Rev. E 86:056104 [Google Scholar]
  65. Desharnais BM, Lewis BAG. 65.  2002. Electrochemical water splitting at bipolar interfaces of ion exchange membranes and soils. Soil Sci. Soc. Am. J. 66:1518–25 [Google Scholar]
  66. Wang XY, Cheng C, Wang SL, Liu SR. 66.  2009. Electroosmotic pumps and their applications in microfluidic systems. Microfluid Nanofluid 6:145–62 [Google Scholar]
  67. Paul PH, Arnold DW, Rakestraw DJ. 67.  2000. Electrokinetic generation of high pressures using porous microstructures. Micro Total Anal. Syst. 1998:49–52 [Google Scholar]
  68. Zeng SL, Chen CH, Mikkelsen JC, Santiago JG. 68.  2001. Fabrication and characterization of electroosmotic micropumps. Sens. Actuators B 79:107–14 [Google Scholar]
  69. Zeng SL, Chen CH, Santiago JG, Chen JR, Zare RN. 69.  et al. 2002. Electroosmotic flow pumps with polymer frits. Sens. Actuators B 82:209–12 [Google Scholar]
  70. Tripp JA, Svec F, Frechet JMJ, Zeng SL, Mikkelsen JC, Santiago JG. 70.  2004. High-pressure electroosmotic pumps based on porous polymer monoliths. Sens. Actuators B 99:66–73 [Google Scholar]
  71. Wang P, Chen ZL, Chang HC. 71.  2006. A new electro-osmotic pump based on silica monoliths. Sens. Actuators B 113:500–9 [Google Scholar]
  72. Berrouche Y, Avenas Y, Schaeffer C, Chang HC, Wang P. 72.  2009. Design of a porous electroosmotic pump used in power electronic cooling. IEEE Trans. Ind. Appl. 45:2073–79 [Google Scholar]
  73. Chen Z, Wang P, Chang HC. 73.  2005. An electro-osmotic micro-pump based on monolithic silica for micro-flow analyses and electro-sprays. Anal. Bioanal. Chem. 382:817–24 [Google Scholar]
  74. Wang SC, Wei HH, Chen HP, Tsai MH, Yu CC, Chang HC. 74.  2008. Dynamic superconcentration at critical-point double-layer gates of conducting nanoporous granules due to asymmetric tangential fluxes. Biomicrofluidics 2:014102 [Google Scholar]
  75. Cheng LJ, Guo LJ. 75.  2010. Nanofluidic diodes. Chem. Soc. Rev. 39:923–38 [Google Scholar]
  76. Nguyen G, Vlassiouk I, Siwy ZS. 76.  2010. Comparison of bipolar and unipolar ionic diodes. Nanotechnology 21:265301 [Google Scholar]
  77. Yossifon G, Chang YC, Chang HC. 77.  2009. Rectification, gating voltage, and interchannel communication of nanoslot arrays due to asymmetric entrance space charge polarization. Phys. Rev. Lett. 103:154502 [Google Scholar]
  78. Jung JY, Joshi P, Petrossian L, Thornton TJ, Posner JD. 78.  2009. Electromigration current rectification in a cylindrical nanopore due to asymmetric concentration polarization. Anal. Chem. 81:3128–33 [Google Scholar]
  79. Cheng LJ, Guo LJ. 79.  2007. Rectified ion transport through concentration gradient in homogeneous silica nanochannels. Nano Lett. 7:3165–71 [Google Scholar]
  80. García-Giménez E, Alcaraz A, Aguilella VM, Ramírez P. 80.  2009. Directional ion selectivity in a biological nanopore with bipolar structure. J. Membr. Sci. 331:137–42 [Google Scholar]
  81. Apel PY, Blonskaya IV, Levkovich NV, Orelovich OL. 81.  2011. Asymmetric track membranes: relationship between nanopore geometry and ionic conductivity. Pet. Chem. 51:555–67 [Google Scholar]
  82. Hlushkou D, Perry JM, Jacobson SC, Tallarek U. 82.  2012. Propagating concentration polarization and ionic current rectification in a nanochannel-nanofunnel device. Anal. Chem. 84:267–74 [Google Scholar]
  83. Perry JM, Zhou KM, Harms ZD, Jacobson SC. 83.  2010. Ion transport in nanofluidic funnels. ACS Nano 4:3897–902 [Google Scholar]
  84. Yan RX, Liang WJ, Fan R, Yang PD. 84.  2009. Nanofluidic diodes based on nanotube heterojunctions. Nano Lett. 9:3820–25 [Google Scholar]
  85. Karnik R, Duan CH, Castelino K, Daiguji H, Majumdar A. 85.  2007. Rectification of ionic current in a nanofluidic diode. Nano Lett. 7:547–51 [Google Scholar]
  86. Constantin D, Siwy ZS. 86.  2007. Poisson-Nernst-Planck model of ion current rectification through a nanofluidic diode. Phys. Rev. E 76:041202 [Google Scholar]
  87. Vlassiouk I, Siwy ZS. 87.  2007. Nanofluidic diode. Nano Lett. 7:552–56 [Google Scholar]
  88. Miedema H, Vrouenraets M, Wierenga J, Meijberg W, Robillard G, Eisenberg B. 88.  2007. A biological porin engineered into a molecular, nanofluidic diode. Nano Lett. 7:2886–91 [Google Scholar]
  89. Venkatesan BM, Bashir R. 89.  2011. Nanopore sensors for nucleic acid analysis. Nat. Nanotechnol. 6:615–24 [Google Scholar]
  90. Liu AH, Zhao QT, Guan XY. 90.  2010. Stochastic nanopore sensors for the detection of terrorist agents: current status and challenges. Anal. Chim. Acta 675:106–15 [Google Scholar]
  91. Jayawardhana DA, Crank JA, Zhao Q, Armstrong DW, Guan XY. 91.  2009. Nanopore stochastic detection of a liquid explosive component and sensitizers using boromycin and an ionic liquid supporting electrolyte. Anal. Chem. 81:460–64 [Google Scholar]
  92. Krishantha DMM, Breitbach ZS, Padivitage NLT, Armstrong DW, Guan XY. 92.  2011. Rapid determination of sample purity and composition by nanopore stochastic sensing. Nanoscale 3:4593–96 [Google Scholar]
  93. Lee JH, Song YA, Han JY. 93.  2008. Multiplexed proteomic sample preconcentration device using surface-patterned ion-selective membrane. Lab Chip 8:596–601 [Google Scholar]
  94. Liu V, Song YA, Han JY. 94.  2010. Capillary-valve-based fabrication of ion-selective membrane junction for electrokinetic sample preconcentration in PDMS chip. Lab Chip 10:1485–90 [Google Scholar]
/content/journals/10.1146/annurev-anchem-071213-020155
Loading
/content/journals/10.1146/annurev-anchem-071213-020155
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error