1932

Abstract

Surface charge density and distribution play an important role in almost all interfacial processes, influencing, for example, adsorption, colloidal stability, functional material activity, electrochemical processes, corrosion, nanoparticle toxicity, and cellular processes such as signaling, absorption, and adhesion. Understanding the heterogeneity in, and distribution of, surface and interfacial charge is key to elucidating the mechanisms underlying reactivity, the stability of materials, and biophysical processes. Atomic force microscopy (AFM) and scanning ion conductance microscopy (SICM) are highly suitable for probing the material/electrolyte interface at the nanoscale through recent advances in probe design, significant instrumental (hardware and software) developments, and the evolution of multifunctional imaging protocols. Here, we assess the capability of AFM and SICM for surface charge mapping, covering the basic underpinning principles alongside experimental considerations. We illustrate and compare the use of AFM and SICM for visualizing surface and interfacial charge with examples from materials science, geochemistry, and the life sciences.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-121521-122615
2022-06-13
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/anchem/15/1/annurev-anchem-121521-122615.html?itemId=/content/journals/10.1146/annurev-anchem-121521-122615&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Trefalt G, Ruiz-Cabello FJM, Borkovec M. 2014. Interaction forces, heteroaggregation, and deposition involving charged colloidal particles. J. Phys. Chem. B 118:236346–55
    [Google Scholar]
  2. 2.
    Metwally S, Stachewicz U. 2019. Surface potential and charges impact on cell responses on biomaterials interfaces for medical applications. Mater. Sci. Eng. C 104:109883
    [Google Scholar]
  3. 3.
    Gonella G, Backus EHG, Nagata Y, Bonthuis DJ, Loche P et al. 2021. Water at charged interfaces. Nat. Rev. Chem. 5:7466–85
    [Google Scholar]
  4. 4.
    Bard AJ, Faulkner LR. 2001. Electrochemical Methods New York: John Wiley & Sons. , 2nd ed..
  5. 5.
    Hunter RJ. 1988. Zeta Potential in Colloid Science: Principles and Applications London: Elsevier. , 3rd ed..
  6. 6.
    Grahame DC. 1947. The electrical double layer and the theory of electrocapillarity. Chem. Rev. 41:3441–501
    [Google Scholar]
  7. 7.
    Szekeres M, Tombácz E. 2012. Surface charge characterization of metal oxides by potentiometric acid-base titration, revisited theory and experiment. Colloids Surf. A Physicochem. Eng. Asp. 414:302–13
    [Google Scholar]
  8. 8.
    Nam K-M, Chang B-Y. 2014. Electrochemical impedance method to measure the potential of the outer Helmholtz plane. J. Electrochem. Soc. 161:6H379–83
    [Google Scholar]
  9. 9.
    Williams DJA, Williams KP. 1978. Electrophoresis and zeta potential of kaolinite. J. Colloid Interface Sci. 65:179–87
    [Google Scholar]
  10. 10.
    Israelachvili J, Min Y, Akbulut M, Alig A, Carver G et al. 2010. Recent advances in the surface forces apparatus (SFA) technique. Rep. Prog. Phys. 73:3036601
    [Google Scholar]
  11. 11.
    Ouyang L, Shaik R, Xu R, Zhang G, Zhe J. 2021. Mapping surface charge distribution of single-cell via charged nanoparticle. Cells 10:61519
    [Google Scholar]
  12. 12.
    Nishino M, Matsuzaki I, Musangil FY, Takahashi Y, Iwahashi Y et al. 2020. Measurement and visualization of cell membrane surface charge in fixed cultured cells related with cell morphology. PLOS ONE 15:7e0236373
    [Google Scholar]
  13. 13.
    Wu F, Zhou B, Wang J, Zhong M, Das A et al. 2019. Photoelectrochemical imaging system for the mapping of cell surface charges. Anal. Chem. 91:95896–903
    [Google Scholar]
  14. 14.
    Decker R, Wang Y, Brar VW, Regan W, Tsai H-Z et al. 2011. Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy. Nano Lett 11:62291–95
    [Google Scholar]
  15. 15.
    Yoo MJ, Fulton TA, Hess HF, Willett RL, Dunkleberger LN et al. 1997. Scanning single-electron transistor microscopy: imaging individual charges. Science 276:5312579–82
    [Google Scholar]
  16. 16.
    Ye S, Yan X, Husain MK, Saito S, De Groot CH, Tsuchiya Y. 2021. Direct observation of surface charge redistribution in active nanoscale conducting channels by Kelvin Probe Force Microscopy. Nanotechnology 32:32325206
    [Google Scholar]
  17. 17.
    Araki K, Le Y, Aso Y, Ohoyama H, Matsumoto T. 2019. Time-resolved electrostatic force microscopy using tip-synchronized charge generation with pulsed laser excitation. Commun. Phys. 2:110
    [Google Scholar]
  18. 18.
    Maddar FM, Perry D, Brooks R, Page A, Unwin PR. 2019. Nanoscale surface charge visualization of human hair. Anal. Chem. 91:74632–39
    [Google Scholar]
  19. 19.
    Happel P, Thatenhorst D, Dietzel ID. 2012. Scanning ion conductance microscopy for studying biological samples. Sensors 12:1114983–88
    [Google Scholar]
  20. 20.
    Butt H-J. 1991. Measuring electrostatic, van der Waals, and hydration forces in electrolyte solutions with an atomic force microscope. Biophys. J. 60:61438–44
    [Google Scholar]
  21. 21.
    Jarmusik KE, Eppell SJ, Lacks DJ, Zypman FR. 2011. Obtaining charge distributions on geometrically generic nanostructures using scanning force microscopy. Langmuir 27:51803–10
    [Google Scholar]
  22. 22.
    Benaglia S, Uhlig MR, Hernández-Muñoz J, Chacón E, Tarazona P, Garcia R. 2021. Tip charge dependence of three-dimensional AFM mapping of concentrated ionic solutions. Phys. Rev. Lett. 127:19196101
    [Google Scholar]
  23. 23.
    Schmickler W. 2009. Electrochemical theory: double layer. Encyclopedia of Electrochemical Power Sources, ed. J Garche8–13 Amsterdam: Elsevier
    [Google Scholar]
  24. 24.
    Dorwling-Carter L, Aramesh M, Han H, Zambelli T, Momotenko D. 2018. Combined ion conductance and atomic force microscope for fast simultaneous topographical and surface charge imaging. Anal. Chem. 90:1911453–60
    [Google Scholar]
  25. 25.
    McKelvey K, Kinnear SL, Perry D, Momotenko D, Unwin PR. 2014. Surface charge mapping with a nanopipette. J. Am. Chem. Soc. 136:3913735–44
    [Google Scholar]
  26. 26.
    Page A, Perry D, Young P, Mitchell D, Frenguelli BG, Unwin PR. 2016. Fast nanoscale surface charge mapping with pulsed-potential scanning ion conductance microscopy. Anal. Chem. 88:2210854–59
    [Google Scholar]
  27. 27.
    Perry D, Al Botros R, Momotenko D, Kinnear SL, Unwin PR 2015. Simultaneous nanoscale surface charge and topographical mapping. ACS Nano 9:77266–76
    [Google Scholar]
  28. 28.
    Perry D, Nadappuram BP, Momotenko D, Voyias PD, Page A et al. 2016. Surface charge visualization at viable living cells. J. Am. Chem. Soc. 138:93152–60
    [Google Scholar]
  29. 29.
    Zhu C, Zhou L, Choi M, Baker LA. 2018. Mapping surface charge of individual microdomains with scanning ion conductance microscopy. ChemElectroChem 5:202986–90
    [Google Scholar]
  30. 30.
    Marlière C, Dhahri S. 2015. An in vivo study of electrical charge distribution on the bacterial cell wall by atomic force microscopy in vibrating force mode. Nanoscale 7:198843–57
    [Google Scholar]
  31. 31.
    Li L, Eppell SJ, Zypman FR. 2020. Method to quantify nanoscale surface charge in liquid with atomic force microscopy. Langmuir 36:154123–34
    [Google Scholar]
  32. 32.
    Stumm W, Morgan JJ. 1996. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters New York: John Wiley & Sons. , 3rd ed..
  33. 33.
    Hiemenz PC, Rajagopalan R, eds. 1997. Principles of Colloid and Surface Chemistry Boca Raton, FL: CRC Press. , 3rd ed..
  34. 34.
    Schmickler W, Santos E. 2010. Interfacial Electrochemistry Berlin: Springer Sci. Bus. Media. , 2nd ed..
  35. 35.
    Henderson D, Boda D. 2009. Insights from theory and simulation on the electrical double layer. Phys. Chem. Chem. Phys. 11:203822–30
    [Google Scholar]
  36. 36.
    Gschwend GC, Olaya A, Girault HH. 2020. How to polarise an interface with ions: the discrete Helmholtz model. Chem. Sci. 11:3910807–13
    [Google Scholar]
  37. 37.
    Groß A, Sakong S. 2019. Modelling the electric double layer at electrode/electrolyte interfaces. Curr. Opin. Electrochem. 14:1–6
    [Google Scholar]
  38. 38.
    Brown MA, Bossa GV, May S 2015. Emergence of a Stern layer from the incorporation of hydration interactions into the Gouy–Chapman model of the electrical double layer. Langmuir 31:4211477–83
    [Google Scholar]
  39. 39.
    Yi M, Nymeyer H, Zhou H-X. 2008. Test of the Gouy-Chapman theory for a charged lipid membrane against explicit-solvent molecular dynamics simulations. Phys. Rev. Lett. 101:3038103
    [Google Scholar]
  40. 40.
    Dewan S, Carnevale V, Bankura A, Eftekhari-Bafrooei A, Fiorin G et al. 2014. Structure of water at charged interfaces: a molecular dynamics study. Langmuir 30:278056–65
    [Google Scholar]
  41. 41.
    Finney AR, McPherson IJ, Unwin PR, Salvalaglio M. 2021. Electrochemistry, ion adsorption and dynamics in the double layer: a study of NaCl(aq) on graphite. Chem. Sci. 12:3311166–80
    [Google Scholar]
  42. 42.
    Zhu C, Huang K, Siepser NP, Baker LA. 2020. Scanning ion conductance microscopy. Chem. Rev. 121:1911726–68
    [Google Scholar]
  43. 43.
    Garcia R. 2020. Nanomechanical mapping of soft materials with the atomic force microscope: methods, theory and applications. Chem. Soc. Rev. 49:165850–84
    [Google Scholar]
  44. 44.
    Ducker WA, Senden TJ, Pashley RM. 1991. Direct measurement of colloidal forces using an atomic force microscope. Nature 353:6341239–41
    [Google Scholar]
  45. 45.
    Israelachvili JN. 2011. Intermolecular and Surface Forces Amsterdam: Elsevier. , 3rd ed..
  46. 46.
    Derjaguin B, Landau L. 1993. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Prog. Surf. Sci. 43:1–430–59
    [Google Scholar]
  47. 47.
    Butt H-J, Cappella B, Kappl M 2005. Force measurements with the atomic force microscope: technique, interpretation and applications. Surf. Sci. Rep. 59:1–61–152
    [Google Scholar]
  48. 48.
    Dong Y, Laaksonen A, Cao W, Ji X, Lu X 2019. AFM study of pH-dependent adhesion of single protein to TiO2 surface. Adv. Mater. Interfaces 6:141900411
    [Google Scholar]
  49. 49.
    Almonte L, Lopez-Elvira E, Baró AM 2014. Surface-charge differentiation of streptavidin and avidin by atomic force microscopy-force spectroscopy. ChemPhysChem 15:132768–73
    [Google Scholar]
  50. 50.
    Yang Y, Mayer KM, Hafner JH. 2007. Quantitative membrane electrostatics with the atomic force microscope. Biophys. J. 92:61966–74
    [Google Scholar]
  51. 51.
    Israelachvili JN 2011. Solvation, structural, and hydration forces. Intermolecular and Surface Forces JN Israelachvili 341–80 San Diego, CA: Academic. , 3rd ed..
    [Google Scholar]
  52. 52.
    Zhmud BV, Meurk A, Bergström L. 2000. Application of charge regulation model for evaluation of surface ionization parameters from atomic force microscopy (AFM) data. Colloids Surf. A Physicochem. Eng. Asp. 164:13–7
    [Google Scholar]
  53. 53.
    Senden TJ, Drummond CJ, Kekicheff P. 1994. Atomic force microscopy: imaging with electrical double layer interactions. Langmuir 10:2358–62
    [Google Scholar]
  54. 54.
    Raiteri R, Margesin B, Grattarola M. 1998. An atomic force microscope estimation of the point of zero charge of silicon insulators. Sens. Actuators B Chem. 46:2126–32
    [Google Scholar]
  55. 55.
    Zhmud BV, Meurk A, Bergström L. 1998. Evaluation of surface ionization parameters from AFM data. J. Colloid Interface Sci. 207:2332–43
    [Google Scholar]
  56. 56.
    Heinz WF, Hoh JH. 1999. Relative surface charge density mapping with the atomic force microscope. Biophys. J. 76:1528–38
    [Google Scholar]
  57. 57.
    Zhao C, Ebeling D, Siretanu I, van den Ende D, Mugele F. 2015. Extracting local surface charges and charge regulation behavior from atomic force microscopy measurements at heterogeneous solid-electrolyte interfaces. Nanoscale 7:3916298–311
    [Google Scholar]
  58. 58.
    Li L, Steinmetz NF, Eppell SJ, Zypman FR. 2020. Charge calibration standard for atomic force microscope tips in liquids. Langmuir 36:4513621–32
    [Google Scholar]
  59. 59.
    Hansma PK, Cleveland JP, Radmacher M, Walters DA, Hillner PE et al. 1994. Tapping mode atomic force microscopy in liquids. Appl. Phys. Lett. 64:131738–40
    [Google Scholar]
  60. 60.
    Giessibl FJ. 2019. The qPlus sensor, a powerful core for the atomic force microscope. Rev. Sci. Instrum. 90:1011101
    [Google Scholar]
  61. 61.
    Giessibl FJ. 2003. Advances in atomic force microscopy. Rev. Mod. Phys. 75:3949–83
    [Google Scholar]
  62. 62.
    Fukuma T, Jarvis SP. 2006. Development of liquid-environment frequency modulation atomic force microscope with low noise deflection sensor for cantilevers of various dimensions. Rev. Sci. Instrum. 77:443701
    [Google Scholar]
  63. 63.
    Fukuma T, Kobayashi K, Matsushige K, Yamada H. 2005. True atomic resolution in liquid by frequency-modulation atomic force microscopy. Appl. Phys. Lett. 87:3034101
    [Google Scholar]
  64. 64.
    Kobayashi K, Yamada H, Matsushige K. 2009. Frequency noise in frequency modulation atomic force microscopy. Rev. Sci. Instrum. 80:4043708
    [Google Scholar]
  65. 65.
    Ueyama H, Sugawara Y, Morita S. 1998. Stable operation mode for dynamic noncontact atomic force microscopy. Appl. Phys. A Mater. Sci. Process. 66:7S295–97
    [Google Scholar]
  66. 66.
    Hansma PK, Drake B, Marti O, Gould SAC, Prater CB. 1989. The scanning ion-conductance microscope. Science 243:4891641–43
    [Google Scholar]
  67. 67.
    Page A, Perry D, Unwin PR. 2017. Multifunctional scanning ion conductance microscopy. Proc. R. Soc. A 473:220020160889
    [Google Scholar]
  68. 68.
    Chen CC, Zhou Y, Baker LA. 2012. Scanning ion conductance microscopy. Annu. Rev. Anal. Chem. 5:207–28
    [Google Scholar]
  69. 69.
    Bentley CL, Perry D, Unwin PR. 2018. Stability and placement of Ag/AgCl quasi-reference counter electrodes in confined electrochemical cells. Anal. Chem. 90:127700–7
    [Google Scholar]
  70. 70.
    Momotenko D, McKelvey K, Kang M, Meloni GN, Unwin PR. 2016. Simultaneous interfacial reactivity and topography mapping with scanning ion conductance microscopy. Anal. Chem. 88:52838–46
    [Google Scholar]
  71. 71.
    Teahan J, Perry D, Chen B, McPherson IJ, Meloni GN, Unwin PR. 2021. Scanning ion conductance microscopy: surface charge effects on electroosmotic flow delivery from a nanopipette. Anal. Chem. 93:3612281–88
    [Google Scholar]
  72. 72.
    Shi W, Sa N, Thakar R, Baker LA. 2015. Nanopipette delivery: influence of surface charge. Analyst 140:144835–42
    [Google Scholar]
  73. 73.
    Wei C, Bard AJ, Feldberg SW. 1997. Current rectification at quartz nanopipet electrodes. Anal. Chem. 69:224627–33
    [Google Scholar]
  74. 74.
    Siwy ZS. 2006. Ion-current rectification in nanopores and nanotubes with broken symmetry. Adv. Funct. Mater. 16:6735–46
    [Google Scholar]
  75. 75.
    White HS, Bund A. 2008. Ion current rectification at nanopores in glass membranes. Langmuir 24:52212–18
    [Google Scholar]
  76. 76.
    Rabinowitz J, Edwards MA, Whittier E, Jayant K, Shepard KL. 2019. Nanoscale fluid vortices and nonlinear electroosmotic flow drive ion current rectification in the presence of concentration gradients. J. Phys. Chem. A 123:388285–93
    [Google Scholar]
  77. 77.
    McPherson IJ, Brown P, Meloni GN, Unwin PR. 2021. Visualization of ion fluxes in nanopipettes: detection and analysis of electro-osmosis of the second kind. Anal. Chem. 93:4916302–7
    [Google Scholar]
  78. 78.
    Kenis PJA, Ismagilov RF, Takayama S, Whitesides GM, Li S, White HS 2000. Fabrication inside microchannels using fluid flow. Acc. Chem. Res. 33:12841–47
    [Google Scholar]
  79. 79.
    Perry D, Momotenko D, Lazenby RA, Kang M, Unwin PR. 2016. Characterization of nanopipettes. Anal. Chem. 88:105523–30
    [Google Scholar]
  80. 80.
    Sa N, Lan W-J, Shi W, Baker LA. 2013. Rectification of ion current in nanopipettes by external substrates. ACS Nano 7:1211272–82
    [Google Scholar]
  81. 81.
    Cremin K, Jones BA, Teahan J, Meloni GN, Perry D et al. 2020. Scanning ion conductance microscopy reveals differences in the ionic environments of gram-positive and negative bacteria. Anal. Chem. 92:2416024–32
    [Google Scholar]
  82. 82.
    Perry D, Page A, Chen B, Frenguelli BG, Unwin PR. 2017. Differential-concentration scanning ion conductance microscopy. Anal. Chem. 89:2212458–65
    [Google Scholar]
  83. 83.
    Rheinlaender J, Schäffer TE. 2009. Image formation, resolution, and height measurement in scanning ion conductance microscopy. J. Appl. Phys. 105:994905
    [Google Scholar]
  84. 84.
    Edwards MA, Williams CG, Whitworth AL, Unwin PR. 2009. Scanning ion conductance microscopy: a model for experimentally realistic conditions and image interpretation. Anal. Chem. 81:114482–92
    [Google Scholar]
  85. 85.
    Gramse G, Edwards MA, Fumagalli L, Gomila G. 2012. Dynamic electrostatic force microscopy in liquid media. Appl. Phys. Lett. 101:21213108
    [Google Scholar]
  86. 86.
    Hernández-Muñoz J, Chacón E, Tarazona P 2019. Density functional analysis of atomic force microscopy in a dense fluid. J. Chem. Phys. 151:3034701
    [Google Scholar]
  87. 87.
    Kumar N, Andersson MP, van den Ende D, Mugele F, Siretanu I. 2017. Probing the surface charge on the basal planes of kaolinite particles with high-resolution atomic force microscopy. Langmuir 33:5014226–37
    [Google Scholar]
  88. 88.
    Butt H-J. 2007. Analyzing electric double layers with the atomic force microscope. Encyclopedia of Electrochemistry AJ Bard 236–47 New York: John Wiley & Sons
    [Google Scholar]
  89. 89.
    Shevchuk AI, Gorelik J, Harding SE, Lab MJ, Klenerman D, Korchev YE. 2001. Simultaneous measurement of Ca2+ and cellular dynamics: combined scanning ion conductance and optical microscopy to study contracting cardiac myocytes. Biophys. J. 81:31759–64
    [Google Scholar]
  90. 90.
    Hillier AC, Kim S, Bard AJ 1996. Measurement of double-layer forces at the electrode/electrolyte interface using the atomic force microscope: potential and anion dependent interactions. J. Phys. Chem. 100:4818808–17
    [Google Scholar]
  91. 91.
    Hu K, Fan F-RF, Bard AJ, Hillier AC. 1997. Direct measurement of diffuse double-layer forces at the semiconductor/electrolyte interface using an atomic force microscope. J. Phys. Chem. B 101:418298–303
    [Google Scholar]
  92. 92.
    Butt H-J, Jaschke M, Ducker W. 1995. Measuring surface forces in aqueous electrolyte solution with the atomic force microscope. Bioelectrochem. Bioenerg. 38:1191–201
    [Google Scholar]
  93. 93.
    Miyatani T, Horii M, Rosa A, Fujihira M, Marti O. 1997. Mapping of electrical double-layer force between tip and sample surfaces in water with pulsed-force-mode atomic force microscopy. Appl. Phys. Lett. 71:182632–34
    [Google Scholar]
  94. 94.
    Kobayashi N, Asakawa H, Fukuma T. 2010. Nanoscale potential measurements in liquid by frequency modulation atomic force microscopy. Rev. Sci. Instrum. 81:12123705
    [Google Scholar]
  95. 95.
    Hu K, Chai Z, Whitesell JK, Bard AJ. 1999. In situ monitoring of diffuse double layer structure changes of electrochemically addressable self-assembled monolayers with an atomic force microscope. Langmuir 15:93343–47
    [Google Scholar]
  96. 96.
    Wang J, Bard AJ. 2001. Direct atomic force microscopic determination of surface charge at the gold/electrolyte interface—the inadequacy of classical GCS theory in describing the double-layer charge distribution. J. Phys. Chem. B 105:225217–22
    [Google Scholar]
  97. 97.
    Wang J, Bard AJ. 2001. On the absence of a diffuse double layer at electronically conductive polymer film electrodes. Direct evidence by atomic force microscopy of complete charge compensation. J. Am. Chem. Soc. 123:3498–99
    [Google Scholar]
  98. 98.
    Wang J, Feldberg SW, Bard AJ. 2002. Measurement of double-layer forces at the polymer film/electrolyte interfaces using atomic force microscopy: concentration and potential-dependent interactions. J. Phys. Chem. B 106:4010440–46
    [Google Scholar]
  99. 99.
    Hernando-Pérez M, Cartagena-Rivera AX, Božič AL, Carrillo PJP, San Martín C et al. 2015. Quantitative nanoscale electrostatics of viruses. Nanoscale 7:4117289–98
    [Google Scholar]
  100. 100.
    Sotres J, Baró AM. 2010. AFM imaging and analysis of electrostatic double layer forces on single DNA molecules. Biophys. J. 98:91995–2004
    [Google Scholar]
  101. 101.
    Rosa-Zeiser A, Weilandt E, Hild S, Marti O. 1997. The simultaneous measurement of elastic, electrostatic and adhesive properties by scanning force microscopy: pulsed-force mode operation. Meas. Sci. Technol. 8:111333–38
    [Google Scholar]
  102. 102.
    Miyatani T, Okamoto S, Rosa A, Marti O, Fujihira M. 1998. Surface charge mapping of solid surfaces in water by pulsed-force-mode atomic force microscopy. Appl. Phys. A Mater. Sci. Process. 66:7S349–52
    [Google Scholar]
  103. 103.
    Kobayashi N, Asakawa H, Fukuma T. 2011. Quantitative potential measurements of nanoparticles with different surface charges in liquid by open-loop electric potential microscopy. J. Appl. Phys. 110:4044315
    [Google Scholar]
  104. 104.
    Gramse G, Dols-Perez A, Edwards MA, Fumagalli L, Gomila G. 2013. Nanoscale measurement of the dielectric constant of supported lipid bilayers in aqueous solutions with electrostatic force microscopy. Biophys. J. 104:61257–62
    [Google Scholar]
  105. 105.
    Su S, Siretanu I, Ende D, Mei B, Mul G, Mugele F. 2021. Facet-dependent surface charge and hydration of semiconducting nanoparticles at variable pH. Adv. Mater. 33:522106229
    [Google Scholar]
  106. 106.
    Umeda K, Kobayashi K, Oyabu N, Matsushige K, Yamada H. 2015. Molecular-scale quantitative charge density measurement of biological molecule by frequency modulation atomic force microscopy in aqueous solutions. Nanotechnology 26:28285103
    [Google Scholar]
  107. 107.
    Martínez NF, Lozano JR, Herruzo ET, Garcia F, Richter C et al. 2008. Bimodal atomic force microscopy imaging of isolated antibodies in air and liquids. Nanotechnology 19:38384011
    [Google Scholar]
  108. 108.
    Sa N, Baker LA. 2011. Rectification of nanopores at surfaces. J. Am. Chem. Soc. 133:2710398–401
    [Google Scholar]
  109. 109.
    Ma Y, Liu R, Shen X, Wang D. 2021. Quantification of asymmetric ion transport in glass nanopipettes near charged substrates. ChemElectroChem 8:203917–22
    [Google Scholar]
  110. 110.
    Zhou Y, Chen C-C, Weber AE, Zhou L, Baker LA, Hou J. 2013. Potentiometric-scanning ion conductance microscopy for measurement at tight junctions. Tissue Barriers 1:4e25585
    [Google Scholar]
  111. 111.
    Chen C-C, Baker LA. 2011. Effects of pipette modulation and imaging distances on ion currents measured with Scanning Ion Conductance Microscopy (SICM). Analyst 136:190–97
    [Google Scholar]
  112. 112.
    McKelvey K, Perry D, Byers JC, Colburn AW, Unwin PR. 2014. Bias modulated scanning ion conductance microscopy. Anal. Chem. 86:73639–46
    [Google Scholar]
  113. 113.
    Klausen LH, Fuhs T, Dong M. 2016. Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy. Nat. Commun. 7:112447
    [Google Scholar]
  114. 114.
    Edmondson JF, Meloni GN, Costantini G, Unwin PR. 2020. Synchronous electrical conductance- and electron tunnelling-scanning electrochemical microscopy measurements. ChemElectroChem 7:3697–706
    [Google Scholar]
  115. 115.
    Fuhs T, Klausen LH, Sønderskov SM, Han X, Dong M. 2018. Direct measurement of surface charge distribution in phase separating supported lipid bilayers. Nanoscale 10:94538–44
    [Google Scholar]
  116. 116.
    Sønderskov SM, Klausen LH, Skaanvik SA, Han X, Dong M. 2020. In situ surface charge density visualization of self-assembled DNA nanostructures after ion exchange. ChemPhysChem 21:131474–82
    [Google Scholar]
  117. 117.
    Wang D, Brown W, Li Y, Kvetny M, Liu J, Wang G. 2017. Correlation of ion transport hysteresis with the nanogeometry and surface factors in single conical nanopores. Anal. Chem. 89:2111811–17
    [Google Scholar]
  118. 118.
    Ma Y, Wang D. 2021. Revealing electrical double-layer potential of substrates by hysteresis ion transport in scanning ion conductance microscopy. Anal. Chem. 93:4815821–25
    [Google Scholar]
  119. 119.
    Chen F, He J, Manandhar P, Yang Y, Liu P, Gu N. 2021. Gauging surface charge distribution of live cell membrane by ionic current change using scanning ion conductance microscopy. Nanoscale 13:4719973–84
    [Google Scholar]
  120. 120.
    Chen F, Manandhar P, Ahmed MS, Chang S, Panday N et al. 2019. Extracellular surface potential mapping by scanning ion conductance microscopy revealed transient transmembrane pore formation induced by conjugated polymer nanoparticles. Macromol. Biosci. 19:2e1800271
    [Google Scholar]
  121. 121.
    Chen F, Panday N, Li X, Ma T, Guo J et al. 2020. Simultaneous mapping of nanoscale topography and surface potential of charged surfaces by scanning ion conductance microscopy. Nanoscale 12:4020737–48
    [Google Scholar]
  122. 122.
    Zhou Y, Chen C-C, Weber AE, Zhou L, Baker LA. 2014. Potentiometric-scanning ion conductance microscopy. Langmuir 30:195669–75
    [Google Scholar]
  123. 123.
    Chen C-C, Zhou Y, Morris CA, Hou J, Baker LA. 2013. Scanning ion conductance microscopy measurement of paracellular channel conductance in tight junctions. Anal. Chem. 85:73621–28
    [Google Scholar]
  124. 124.
    Attwood SJ, Kershaw R, Uddin S, Bishop SM, Welland ME. 2019. Understanding how charge and hydrophobicity influence globular protein adsorption to alkanethiol and material surfaces. J. Mater. Chem. B 7:142349–61
    [Google Scholar]
  125. 125.
    Tao L, Qiao M, Jin R, Li Y, Xiao Z et al. 2019. Bridging the surface charge and catalytic activity of a defective carbon electrocatalyst. Angew. Chem. Int. Ed. 58:41019–24
    [Google Scholar]
  126. 126.
    Payne NA, Dawkins JIG, Schougaard SB, Mauzeroll J. 2019. Effect of substrate permeability on scanning ion conductance microscopy: uncertainty in tip-substrate separation and determination of ionic conductivity. Anal. Chem. 91:2415718–25
    [Google Scholar]
  127. 127.
    Kumar N, Zhao C, Klaassen A, van den Ende D, Mugele F, Siretanu I. 2016. Characterization of the surface charge distribution on kaolinite particles using high resolution atomic force microscopy. Geochim. Cosmochim. Acta 175:100–12
    [Google Scholar]
  128. 128.
    Siretanu I, Ebeling D, Andersson MP, Stipp SLS, Philipse A et al. 2014. Direct observation of ionic structure at solid-liquid interfaces: a deep look into the Stern layer. Sci. Rep. 4:14956
    [Google Scholar]
  129. 129.
    Chen C, Petterson T, Illergård J, Ek M, Wågberg L. 2019. Influence of cellulose charge on bacteria adhesion and viability to PVAm/CNF/PVAm-modified cellulose model surfaces. Biomacromolecules 20:52075–83
    [Google Scholar]
  130. 130.
    Ushiki T, Ishizaki K, Mizutani Y, Nakajima M, Iwata F. 2021. Scanning ion conductance microscopy of isolated metaphase chromosomes in a liquid environment. Chromosome Res. 29:195–106
    [Google Scholar]
  131. 131.
    Chen B, Perry D, Page A, Kang M, Unwin PR. 2019. Scanning ion conductance microscopy: quantitative nanopipette delivery-substrate electrode collection measurements and mapping. Anal. Chem. 91:32516–24
    [Google Scholar]
  132. 132.
    Strelcov E, Arble C, Guo H, Hoskins BD, Yulaev A et al. 2020. Nanoscale mapping of the double layer potential at the graphene-electrolyte interface. Nano Lett 20:21336–44
    [Google Scholar]
  133. 133.
    Jin R, Huang Y, Cheng L, Lu H, Jiang D, Chen H-Y. 2020. In situ observation of heterogeneous charge distribution at the electrode unraveling the mechanism of electric field-enhanced electrochemical activity. Chem. Sci. 11:164158–63
    [Google Scholar]
  134. 134.
    Chen C-H, Luo S-C. 2015. Tuning surface charge and morphology for the efficient detection of dopamine under the interferences of uric acid, ascorbic acid, and protein adsorption. ACS Appl. Mater. Interfaces 7:3921931–38
    [Google Scholar]
  135. 135.
    Yang C-W, Miyazawa K, Fukuma T, Miyata K, Hwang I-S. 2018. Direct comparison between subnanometer hydration structures on hydrophilic and hydrophobic surfaces via three-dimensional scanning force microscopy. Phys. Chem. Chem. Phys. 20:3623522–27
    [Google Scholar]
  136. 136.
    Hirata K, Kitagawa T, Miyazawa K, Okamoto T, Fukunaga A et al. 2018. Visualizing charges accumulated in an electric double layer by three-dimensional open-loop electric potential microscopy. Nanoscale 10:3014736–46
    [Google Scholar]
  137. 137.
    Patel AN, Collignon MG, O'Connell MA, Hung WOY, McKelvey K et al. 2012. A new view of electrochemistry at highly oriented pyrolytic graphite. J. Am. Chem. Soc. 134:4920117–30
    [Google Scholar]
  138. 138.
    Lai SCS, Patel AN, McKelvey K, Unwin PR. 2012. Definitive evidence for fast electron transfer at pristine basal plane graphite from high-resolution electrochemical imaging. Angew. Chem. Int. Ed. 51:225405–8
    [Google Scholar]
  139. 139.
    Unwin PR, Güell AG, Zhang G. 2016. Nanoscale electrochemistry of sp2 carbon materials: from graphite and graphene to carbon nanotubes. Acc. Chem. Res. 49:92041–48
    [Google Scholar]
  140. 140.
    Shi W, Sa N, Thakar R, Baker LA. 2015. Nanopipette delivery: influence of surface charge. Analyst 140:144835–42
    [Google Scholar]
  141. 141.
    Chen B, Perry D, Teahan J, McPherson IJ, Edmondson J et al. 2021. Artificial synapse: spatiotemporal heterogeneities in dopamine electrochemistry at a carbon fiber ultramicroelectrode. ACS Meas. Sci. Au 1:16–10
    [Google Scholar]
  142. 142.
    Gan Y, Franks GV. 2006. Charging behavior of the gibbsite basal (001) surface in NaCl solution investigated by AFM colloidal probe technique. Langmuir 22:146087–92
    [Google Scholar]
  143. 143.
    Herruzo ET, Asakawa H, Fukuma T, Garcia R. 2013. Three-dimensional quantitative force maps in liquid with 10 piconewton, angstrom and sub-minute resolutions. Nanoscale 5:72678–85
    [Google Scholar]
  144. 144.
    Uhlig MR, Benaglia S, Thakkar R, Comer J, Garcia R. 2021. Atomically resolved interfacial water structures on crystalline hydrophilic and hydrophobic surfaces. Nanoscale 13:105275–83
    [Google Scholar]
  145. 145.
    Zhu C, Jagdale G, Gandolfo A, Alanis K, Abney R et al. 2021. Surface charge measurements with scanning ion conductance microscopy provide insights into nitrous acid speciation at the kaolin mineral-air interface. Environ. Sci. Technol. 55:1812233–42
    [Google Scholar]
  146. 146.
    Kominami H, Kobayashi K, Yamada H. 2019. Molecular-scale visualization and surface charge density measurement of Z-DNA in aqueous solution. Sci. Rep. 9:16851
    [Google Scholar]
  147. 147.
    Yamamoto Y, Kominami H, Kobayashi K, Yamada H. 2021. Surface charge density measurement of a single protein molecule with a controlled orientation by AFM. Biophys. J. 120:122490–97
    [Google Scholar]
  148. 148.
    Ushiki T, Ishizaki K, Mizutani Y, Nakajima M, Iwata F. 2021. Scanning ion conductance microscopy of isolated metaphase chromosomes in a liquid environment. Chromosome Res. 29:195–106
    [Google Scholar]
  149. 149.
    Novak P, Li C, Shevchuk AI, Stepanyan R, Caldwell M et al. 2009. Nanoscale live-cell imaging using hopping probe ion conductance microscopy. Nat. Methods 6:4279–81
    [Google Scholar]
  150. 150.
    Sader JE, Chon JWM, Mulvaney P. 1999. Calibration of rectangular atomic force microscope cantilevers. Rev. Sci. Instrum. 70:103967–69
    [Google Scholar]
  151. 151.
    Sun L, Shigyou K, Ando T, Watanabe S. 2019. Thermally driven approach to fill sub-10-nm pipettes with batch production. Anal. Chem. 91:2114080–84
    [Google Scholar]
  152. 152.
    Takahashi Y, Zhou Y, Miyamoto T, Higashi H, Nakamichi N et al. 2020. High-speed SICM for the visualization of nanoscale dynamic structural changes in hippocampal neurons. Anal. Chem. 92:22159–67
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-121521-122615
Loading
/content/journals/10.1146/annurev-anchem-121521-122615
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error