1932

Abstract

Conservation genomics aims to preserve the viability of populations and the biodiversity of living organisms. Invertebrate organisms represent 95% of animal biodiversity; however, few genomic resources currently exist for the group. The subset of marine invertebrates includes the most ancient metazoan lineages and possesses codes for unique gene products and possible keys to adaptation. The benefits of supporting invertebrate conservation genomics research (e.g., likely discovery of novel genes, protein regulatory mechanisms, genomic innovations, and transposable elements) outweigh the various hurdles (rare, small, or polymorphic starting materials). Here we review best conservation genomics practices in the laboratory and in silico when applied to marine invertebrates and also showcase unique features in several case studies of acroporid corals, crown-of-thorns starfish, apple snails, and abalone. Marine conservation genomics should also address how diversity can lead to unique marine innovations, the impact of deleterious variation, and how genomic monitoring and profiling could positively affect broader conservation goals (e.g., value of baseline data for in situ/ex situ genomic stocks).

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-020518-115034
2019-02-15
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/animal/7/1/annurev-animal-020518-115034.html?itemId=/content/journals/10.1146/annurev-animal-020518-115034&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Crutzen PJ 2002. Geology of mankind. Nature 415:23
    [Google Scholar]
  2. 2. 
    Shendure J, Balasubramanian S, Church GM, Gilbert W, Rogers J et al. 2017. DNA sequencing at 40: past, present and future. Nature 550:345–53
    [Google Scholar]
  3. 3. 
    O'Brien SJ 1994. A role for molecular genetics in biological conservation. PNAS 91:5748–55
    [Google Scholar]
  4. 4. 
    Allendorf FW, Hohenlohe PA, Luikart G 2010. Genomics and the future of conservation genetics. Nat. Rev. Genet. 11:697
    [Google Scholar]
  5. 5. 
    Allendorf FW, Luikart G, Aitken SN 2012. Conservation and the Genetics of Populations Hoboken, NJ: John Wiley & Sons. , 2nd. ed.
  6. 6. 
    Baums IB 2008. A restoration genetics guide for coral reef conservation. Mol. Ecol. 17:2796–811
    [Google Scholar]
  7. 7. 
    Zhang Z-Q 2011. Animal Biodiversity: An Outline of Higher-Level Classification and Survey of Taxonomic Richness Longwood, FL: Magnolia
  8. 8. 
    GIGA Community Sci. 2013. The Global Invertebrate Genomics Alliance (GIGA): developing community resources to study diverse invertebrate genomes. J. Hered. 105:1–18
    [Google Scholar]
  9. 9. 
    Watson JD, Baker TA, Bell SP, Gann A, Levine M, Losick R 2013. Molecular Biology of the Gene London: Pearson Educ.
  10. 10. 
    Knowlton N 2010. Citizens of the Sea: Wondrous Creatures from the Census of Marine Life Washington, DC: Natl. Geogr.
  11. 11. 
    Martini S, Haddock SH 2017. Quantification of bioluminescence from the surface to the deep sea demonstrates its predominance as an ecological trait. Sci. Rep. 7:45750
    [Google Scholar]
  12. 12. 
    World Resour. Inst., World Conserv. Union, UN Environ. Progr. 1992. Global Biodiversity Strategy: Guidelines for Action to Save, Study, and Use Earth's Biotic Wealth Sustainably and Equitably Washington, DC: World Resour. Inst., World Conserv. Union, UN Environ. Progr.
  13. 13. 
    Loker ES, Adema CM, Zhang SM, Kepler TB 2004. Invertebrate immune systems—not homogeneous, not simple, not well understood. Immunol. Rev. 198:10–24
    [Google Scholar]
  14. 14. 
    Rast JP, Smith LC, Loza-Coll M, Hibino T, Litman GW 2006. Genomic insights into the immune system of the sea urchin. Science 314:952–56
    [Google Scholar]
  15. 15. 
    Sodergren E, Weinstock GM, Davidson EH, Cameron RA, Gibbs RA et al. 2006. The genome of the sea urchin Strongylocentrotus purpuratus. Science 314:941–52
    [Google Scholar]
  16. 16. 
    Pearson RG 2016. Reasons to conserve nature. Trends Ecol. Evol. 31:366–71
    [Google Scholar]
  17. 17. 
    Fothergill-Gilmore LA, Michels PA 1993. Evolution of glycolysis. Prog. Biophys. Mol. Biol. 59:105–235
    [Google Scholar]
  18. 18. 
    Richards S 2015. It's more than stamp collecting: how genome sequencing can unify biological research. Trends Genet 31:411–21
    [Google Scholar]
  19. 19. 
    Goldman AD, Bernhard TM, Dolzhenko E, Landweber LF 2012. LUCApedia: a database for the study of ancient life. Nucleic Acids Res 41:D1079–D82
    [Google Scholar]
  20. 20. 
    Dawkins R 1976. The Selfish Gene New York: Oxford Univ. Press
  21. 21. 
    Yu H, Greenbaum D, Xin Lu H, Zhu X, Gerstein M 2004. Genomic analysis of essentiality within protein networks. Trends Genet 20:227–31
    [Google Scholar]
  22. 22. 
    Rancati G, Moffat J, Typas A, Pavelka N 2018. Emerging and evolving concepts in gene essentiality. Mol. Ecol. Resour. 19:34–49
    [Google Scholar]
  23. 23. 
    Lewin HA, Robinson GE, Kress WJ, Baker WJ, Coddington J et al. 2018. Earth BioGenome Project: sequencing life for the future of life. PNAS 115:4325–33
    [Google Scholar]
  24. 24. 
    Kumar S, Dudley JT, Filipski A, Liu L 2011. Phylomedicine: an evolutionary telescope to explore and diagnose the universe of disease mutations. Trends Genet 27:377–86
    [Google Scholar]
  25. 25. 
    Avise J 2004. Molecular Markers, Natural History and Evolution Sunderland, MA: Sinauer Assoc. , 2nd. ed.
  26. 26. 
    Heather JM, Chain B 2016. The sequence of sequencers: the history of sequencing DNA. Genomics 107:1–8
    [Google Scholar]
  27. 27. 
    Gong J, Pan K, Fakih M, Pal S, Salgia R 2018. Value-based genomics. Oncotarget 9:15792–815
    [Google Scholar]
  28. 28. 
    Katzman S, Kern AD, Bejerano G, Fewell G, Fulton L et al. 2007. Human genome ultraconserved elements are ultraselected. Nat. Biotechnol. 317:915
    [Google Scholar]
  29. 29. 
    Vavouri T, Lehner B 2009. Conserved noncoding elements and the evolution of animal body plans. BioEssays 31:727–35
    [Google Scholar]
  30. 30. 
    Polychronopoulos D, Weitschek E, Dimitrieva S, Bucher P, Felici G, Almirantis Y 2014. Classification of selectively constrained DNA elements using feature vectors and rule-based classifiers. Genomics 104:79–86
    [Google Scholar]
  31. 31. 
    Polychronopoulos D, King JWD, Nash AJ, Tan G, Lenhard B 2017. Conserved non-coding elements: Developmental gene regulation meets genome organization. Nucleic Acids Res 45:12611–24
    [Google Scholar]
  32. 32. 
    Ryu T, Seridi L, Ravasi T 2012. The evolution of ultraconserved elements with different phylogenetic origins. BMC Evol. Biol. 12:236
    [Google Scholar]
  33. 33. 
    Quattrini AM, Faircloth BC 2018. Universal target-enrichment baits for anthozoan (Cnidaria) phylogenomics: new approaches to long-standing problems. Mol. Ecol. Resour. 18:281–95
    [Google Scholar]
  34. 34. 
    Casillas S, Barbadilla A, Bergman CM 2007. Purifying selection maintains highly conserved noncoding sequences in Drosophila. Mol. Biol. Evol 24:2222–34
    [Google Scholar]
  35. 35. 
    Dunn CW, Ryan JF 2015. The evolution of animal genomes. Curr. Opin. Genet. Dev. 35:25–32
    [Google Scholar]
  36. 36. 
    Pang KC, Frith MC, Mattick JS 2006. Rapid evolution of noncoding RNAs: Lack of conservation does not mean lack of function. Trends Genet 22:1–5
    [Google Scholar]
  37. 37. 
    Plaisance L, Knowlton N, Paulay G, Meyer C 2009. Reef-associated crustacean fauna: biodiversity estimates using semi-quantitative sampling and DNA barcoding. Coral Reefs 28:977–86
    [Google Scholar]
  38. 38. 
    Mardis ER 2017. DNA sequencing technologies: 2006–2016. Nat. Protoc. 12:213–18
    [Google Scholar]
  39. 39. 
    Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J et al. 2017. A communal catalogue reveals Earth's multiscale microbial diversity. Nature 551:457–63
    [Google Scholar]
  40. 40. 
    Parker J, Helmstetter AJ 2017. Field-based species identification of closely-related plants using real-time nanopore sequencing. Sci. Rep. 7:8345
    [Google Scholar]
  41. 41. 
    Leray M, Knowlton N 2015. DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity. PNAS 112:2076–81
    [Google Scholar]
  42. 42. 
    Reaka-Kudla ML 1997. The global biodiversity of coral reefs: a comparison with rain forests. Biodiversity II: Understanding and Protecting Our Biological Resources ML Reaka-Kudla, DE Wilson, EO Wilson 83–108 Washington, DC: Natl. Acad. Press
    [Google Scholar]
  43. 43. 
    Knowlton N, Brainard RE, Fisher R, Moews M, Plaisance L, Caley MJ 2010. Coral reef biodiversity. Life in the World's Oceans: Diversity, Distribution, and Abundance AD McIntyre 65–74 Oxford, UK: Wiley-Blackwell
    [Google Scholar]
  44. 44. 
    Hughes TP, Kerry JT, Baird AH, Connolly SR, Dietzel A et al. 2018. Global warming transforms coral reef assemblages. Nature 556:492–96
    [Google Scholar]
  45. 45. 
    Webster NS, Taylor MW, Behnam F, Lucker S, Rattei T et al. 2010. Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts. Environ. Microbiol. 12:2070–82
    [Google Scholar]
  46. 46. 
    Sunagawa S, Woodley CM, Medina M 2010. Threatened corals provide underexplored microbial habitats. PLOS ONE 5:e9554
    [Google Scholar]
  47. 47. 
    Zaneveld JR, McMinds R, Vega Thurber R 2017. Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nat. Microbiol. 2:17121
    [Google Scholar]
  48. 48. 
    Peixoto RS, Rosado PM, Leite DC, Rosado AS, Bourne DG 2017. Beneficial Microorganisms for Corals (BMC): proposed mechanisms for coral health and resilience. Front. Microbiol. 8:341
    [Google Scholar]
  49. 49. 
    Brannock PM, Halanych KM 2015. Meiofaunal community analysis by high-throughput sequencing: comparison of extraction, quality filtering, and clustering methods. Mar. Genom. 23:67–75
    [Google Scholar]
  50. 50. 
    Carugati L, Corinaldesi C, Dell'Anno A, Danovaro R 2015. Metagenetic tools for the census of marine meiofaunal biodiversity: an overview. Mar. Genom. 24:Pt. 111–20
    [Google Scholar]
  51. 51. 
    Bik HM 2017. Let's rise up to unite taxonomy and technology. PLOS Biol 15:e2002231
    [Google Scholar]
  52. 52. 
    Voolstra CR, GIGA Community Sci., Wörheide G, Lopez JV 2017. Advancing genomics through the Global Invertebrate Genomics Alliance (GIGA). Invert. Syst 31:1–7
    [Google Scholar]
  53. 53. 
    Wikipedia. 2013. List of sequenced animal genomes. Wikipedia.org. https://en.wikipedia.org/wiki/List_of_sequenced_animal_genomes
  54. 54. 
    Fielman KT, Marsh AG 2005. Genome complexity and repetitive DNA in metazoans from extreme marine environments. Gene 362:98–108
    [Google Scholar]
  55. 55. 
    Gregory TR 2005. The Evolution of the Genome. Burlington, MA: Elsevier Acad.
    [Google Scholar]
  56. 56. 
    Kocot KM, Jeffery NW, Mulligan K, Halanych KM, Gregory TR 2015. Genome size estimates for Aplacophora, Polyplacophora and Scaphopoda: small solenogasters and sizeable scaphopods. J. Molluscan Stud. 82:216–19
    [Google Scholar]
  57. 57. 
    Hardie DC, Gregory TR, Hebert PD 2002. From pixels to picograms: a beginners’ guide to genome quantification by Feulgen image analysis densitometry. J. Histochem. Cytochem. 50:735–49
    [Google Scholar]
  58. 58. 
    Liu B, Shi Y, Yuan J, Hu X, Zhang H et al. 2013. Estimation of genomic characteristics by analyzing k-mer frequency in de novo genome projects. arXiv:1308.2012 [q-bio.GN]
  59. 59. 
    Sun H, Ding J, Piednoël M, Schneeberger K 2018. findGSE: estimating genome size variation within human and Arabidopsis using k-mer frequencies. Bioinformatics 34:550–57
    [Google Scholar]
  60. 60. 
    Guo LT, Wang SL, Wu QJ, Zhou XG, Xie W, Zhang YJ 2015. Flow cytometry and K-mer analysis estimates of the genome sizes of Bemisia tabaci B and Q (Hemiptera: Aleyrodidae). Front. Physiol. 6:144
    [Google Scholar]
  61. 61. 
    Evans T, Johnson A, Loose M 2018. Virtual Genome Walking across the 32 Gb Ambystoma mexicanum genome; assembling gene models and intronic sequence. Sci. Rep. 8:618
    [Google Scholar]
  62. 62. 
    Nowoshilow S, Schloissnig S, Fei J-F, Dahl A, Pang AW et al. 2018. The axolotl genome and the evolution of key tissue formation regulators. Nature 554:50
    [Google Scholar]
  63. 63. 
    Minio A, Lin J, Gaut BS, Cantu D 2017. How single molecule real-time sequencing and haplotype phasing have enabled reference-grade diploid genome assembly of wine grapes. Front. Plant Sci. 8:826
    [Google Scholar]
  64. 64. 
    English AC, Richards S, Han Y, Wang M, Vee V et al. 2012. Mind the gap: upgrading genomes with Pacific Biosciences RS long-read sequencing technology. PLOS ONE 7:e47768
    [Google Scholar]
  65. 65. 
    van Heesch S, Kloosterman WP, Lansu N, Ruzius F-P, Levandowsky E et al. 2013. Improving mammalian genome scaffolding using large insert mate-pair next-generation sequencing. BMC Genom 14:257
    [Google Scholar]
  66. 66. 
    Panova M, Aronsson H, Cameron RA, Dahl P, Godhe A et al. 2016. DNA extraction protocols for whole-genome sequencing in marine organisms. Methods Mol. Biol. 1452:13–44
    [Google Scholar]
  67. 67. 
    Sambrook J, Russell DW 2001. Molecular Cloning: A Laboratory Manual New York: Cold Spring Harb. Lab. Press
  68. 68. 
    Goodwin S, Gurtowski J, Ethe-Sayers S, Deshpande P, Schatz MC, McCombie WR 2015. Oxford Nanopore sequencing, hybrid error correction, and de novo assembly of a eukaryotic genome. Genome Res 25:1750–56
    [Google Scholar]
  69. 69. 
    Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM 2017. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 27:722–36
    [Google Scholar]
  70. 70. 
    Xiao C-L, Chen Y, Xie S-Q, Chen K-N, Wang Y et al. 2017. MECAT: fast mapping, error correction, and de novo assembly for single-molecule sequencing reads. Nat. Methods 14:1072–74
    [Google Scholar]
  71. 71. 
    Zimin AV, Puiu D, Luo M-C, Zhu T, Koren S et al. 2017. Hybrid assembly of the large and highly repetitive genome of Aegilops tauschii, a progenitor of bread wheat, with the MaSuRCA mega-reads algorithm. Genome Res 27:787–92
    [Google Scholar]
  72. 72. 
    Otto SP, Whitton J 2000. Polyploid incidence and evolution. Annu. Rev. Genet. 34:401–37
    [Google Scholar]
  73. 73. 
    Wilson JT, Dixon DR, Dixon LR 2002. Numerical chromosomal aberrations in the early life-history stages of a marine tubeworm, Pomatoceros lamarckii (Polychaeta: Serpulidae). Aquat. Toxicol. 59:163–75
    [Google Scholar]
  74. 74. 
    Gregory TR, Mable BK 2005. Polyploidy in animals. The Evolution of the Genome TR Gregory 427–517 Cambridge, MA: Academic
    [Google Scholar]
  75. 75. 
    Filipski A, Kumar S 2005. Comparative genomics in eukaryotes. The Evolution of the Genome TR Gregory 521–83 Cambridge, MA: Academic
    [Google Scholar]
  76. 76. 
    O'Brien SJ, Menninger JC, Nash WG 2006. An Atlas of Mammalian Chromosomes Hoboken, NJ: John Wiley & Sons
  77. 77. 
    Goldman MA, LoVerde PT, Chrisman CL 1983. Hybrid origin of polyploidy in freshwater snails of the genus Bulinus (Mollusca: Planorbidae). Evolution 37:592–600
    [Google Scholar]
  78. 78. 
    Weiss M, Weigand H, Weigand AM, Leese F 2018. Genome‐wide single‐nucleotide polymorphism data reveal cryptic species within cryptic freshwater snail species—the case of the Ancylus fluviatilis species complex. Ecol. Evol. 8:1063–72
    [Google Scholar]
  79. 79. 
    Foighil , Smith MJ 1995. Evolution of asexuality in the cosmopolitan marine clam Lasaea. Evolution 49:140–50
    [Google Scholar]
  80. 80. 
    Lee T 1999. Polyploidy and meiosis in the freshwater clam Sphaerium striatinum (Lamarck) and chromosome numbers in the Sphaeriidae (Bivalvia, Veneroida). Cytologia 64:247–52
    [Google Scholar]
  81. 81. 
    Burch JB, Jung Y 1993. Polyploid chromosome numbers in the Torquis group of the freshwater snail genus Gyraulus (Mollusca: Pulmonata: Planorbidae). Cytologia 58:145–49
    [Google Scholar]
  82. 82. 
    Marotta R, Crottini A, Raimondi E, Fondello C, Ferraguti M 2014. Alike but different: the evolution of the Tubifex tubifex species complex (Annelida, Clitellata) through polyploidization. BMC Evol. Biol. 14:73
    [Google Scholar]
  83. 83. 
    Tweeten KA, Morris SJ 2016. Flow cytometry analysis of DNA ploidy levels and protein profiles distinguish between populations of Lumbriculus (Annelida: Clitellata). Invert. Biol. 135:385–99
    [Google Scholar]
  84. 84. 
    Cilibrasi R, Van Iersel L, Kelk S, Tromp J 2005. On the complexity of several haplotyping problems Presented at the International Workshop on Algorithms in Bioinformatics, Mallorca Spain: Oct 3–6
  85. 85. 
    Bansal V, Bafna V 2008. HapCUT: an efficient and accurate algorithm for the haplotype assembly problem. Bioinformatics 24:i153–i59
    [Google Scholar]
  86. 86. 
    Wang R-S, Wu L-Y, Li Z-P, Zhang X-S 2005. Haplotype reconstruction from SNP fragments by minimum error correction. Bioinformatics 21:2456–62
    [Google Scholar]
  87. 87. 
    Jiao W-B, Schneeberger K 2017. The impact of third generation genomic technologies on plant genome assembly. Curr. Opin. Plant Biol. 36:64–70
    [Google Scholar]
  88. 88. 
    Ravi V, Venkatesh B 2018. The divergent genomes of teleosts. Annu. Rev. Anim. Biosci. 6:47–68
    [Google Scholar]
  89. 89. 
    Voolstra CR, Worheide G, Lopez JV 2017. Advancing genomics through the Global Invertebrate Genomics Alliance (GIGA). Invertebr. Syst. 31:1–7
    [Google Scholar]
  90. 90. 
    Schatz MC, Witkowski J, McCombie WR 2012. Current challenges in de novo plant genome sequencing and assembly. Genome Biol 13:243
    [Google Scholar]
  91. 91. 
    Tang H, Lyons E, Town CD 2015. Optical mapping in plant comparative genomics. GigaScience 4:3
    [Google Scholar]
  92. 92. 
    Mascher M, Muehlbauer GJ, Rokhsar DS, Chapman J, Schmutz J et al. 2013. Anchoring and ordering NGS contig assemblies by population sequencing (POPSEQ). Plant J 76:718–27
    [Google Scholar]
  93. 93. 
    Gardiner LJ, Bansept‐Basler P, Olohan L, Joynson R, Brenchley R et al. 2016. Mapping‐by‐sequencing in complex polyploid genomes using genic sequence capture: a case study to map yellow rust resistance in hexaploid wheat. Plant J 87:403–19
    [Google Scholar]
  94. 94. 
    Udall JA, Dawe RK 2018. Is it ordered correctly? Validating genome assemblies by optical mapping. Plant Cell 30:7–14
    [Google Scholar]
  95. 95. 
    Bickhart DM, Rosen BD, Koren S, Sayre BL, Hastie AR et al. 2017. Single-molecule sequencing and chromatin conformation capture enable de novo reference assembly of the domestic goat genome. Nat. Genet. 49:643
    [Google Scholar]
  96. 96. 
    Zhang W, Chen J, Yang Y, Tang Y, Shang J, Shen B 2011. A practical comparison of de novo genome assembly software tools for next-generation sequencing technologies. PLOS ONE 6:e17915
    [Google Scholar]
  97. 97. 
    Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W 2010. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 27:578–79
    [Google Scholar]
  98. 98. 
    Yeo S, Coombe L, Warren RL, Chu J, Birol I 2017. ARCS: scaffolding genome drafts with linked reads. Bioinformatics 34:725–31
    [Google Scholar]
  99. 99. 
    McCoy RC, Taylor RW, Blauwkamp TA, Kelley JL, Kertesz M et al. 2014. Illumina TruSeq synthetic long-reads empower de novo assembly and resolve complex, highly-repetitive transposable elements. PLOS ONE 9:e106689
    [Google Scholar]
  100. 100. 
    Eisenstein M 2015. Startups use short-read data to expand long-read sequencing market. Nat. Biotechnol. 33:433–35
    [Google Scholar]
  101. 101. 
    Goodwin S, McPherson JD, McCombie WR 2016. Coming of age: ten years of next-generation sequencing technologies. Nat. Rev. Genet. 17:333
    [Google Scholar]
  102. 102. 
    Jones SJ, Haulena M, Taylor GA, Chan S, Bilobram S et al. 2017. The genome of the northern sea otter (Enhydra lutris kenyoni). Genes 8:379
    [Google Scholar]
  103. 103. 
    Jain M, Koren S, Miga KH, Quick J, Rand AC, Sasani TA 2018. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat. Biotechnol. 36:338–45
    [Google Scholar]
  104. 104. 
    Imakaev M, Fudenberg G, McCord RP, Naumova N, Goloborodko A et al. 2012. Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nat. Methods 9:999
    [Google Scholar]
  105. 105. 
    Selvaraj S, Dixon JR, Bansal V, Ren B 2013. Whole-genome haplotype reconstruction using proximity-ligation and shotgun sequencing. Nat. Biotechnol. 31:1111
    [Google Scholar]
  106. 106. 
    Putnam NH, O'Connell BL, Stites JC, Rice BJ, Blanchette M et al. 2016. Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. Genome Res 26:342–50
    [Google Scholar]
  107. 107. 
    Staats M, Erkens RH, van de Vossenberg B, Wieringa JJ, Kraaijeveld K et al. 2013. Genomic treasure troves: complete genome sequencing of herbarium and insect museum specimens. PLOS ONE 8:e69189
    [Google Scholar]
  108. 108. 
    Tin MM-Y, Economo EP, Mikheyev AS 2014. Sequencing degraded DNA from non-destructively sampled museum specimens for RAD-tagging and low-coverage shotgun phylogenetics. PLOS ONE 9:e96793
    [Google Scholar]
  109. 109. 
    Bagnall RD, Ingles J, Yeates L, Berkovic SF, Semsarian C 2017. Exome sequencing–based molecular autopsy of formalin-fixed paraffin-embedded tissue after sudden death. Genet. Med. 19:1127
    [Google Scholar]
  110. 110. 
    Chin S-F, Santoja A, Grzelak M, Ahn S, Sammut S-J et al. 2017. Shallow whole genome sequencing for robust copy number profiling of formalin-fixed paraffin-embedded breast cancers. Exp. Mol. Pathol. 104:161–69
    [Google Scholar]
  111. 111. 
    Prüfer K, de Filippo C, Grote S, Mafessoni F, Korlević P et al. 2017. A high-coverage Neandertal genome from Vindija Cave in Croatia. Science 358:655–58
    [Google Scholar]
  112. 112. 
    Bhattacharya S, Li J, Sockell A, Kan MJ, Bava FA et al. 2018. Whole-genome sequencing of Atacama skeleton shows novel mutations linked with dysplasia. Genome Res 28:423–31
    [Google Scholar]
  113. 113. 
    Frampton GM, Fichtenholtz A, Otto GA, Wang K, Downing SR et al. 2013. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat. Biotechnol. 31:1023
    [Google Scholar]
  114. 114. 
    Geniez S, Foster JM, Kumar S, Moumen B, LeProust E et al. 2012. Targeted genome enrichment for efficient purification of endosymbiont DNA from host DNA. Symbiosis 58:201–7
    [Google Scholar]
  115. 115. 
    Habib N, Avraham-Davidi I, Basu A, Burks T, Shekhar K et al. 2017. Massively parallel single-nucleus RNA-seq with DroNc-seq. Nat. Methods 14:955
    [Google Scholar]
  116. 116. 
    Groot TV, Breeuwer JA 2006. Cardinium symbionts induce haploid thelytoky in most clones of three closely related Brevipalpus species. Exp. Appl. Acarol. 39:257–71
    [Google Scholar]
  117. 117. 
    Lin K, Limpens E, Zhang Z, Ivanov S, Saunders DG et al. 2014. Single nucleus genome sequencing reveals high similarity among nuclei of an endomycorrhizal fungus. PLOS Genet 10:e1004078
    [Google Scholar]
  118. 118. 
    Guérin F, Arnaiz O, Boggetto N, Wilkes CD, Meyer E et al. 2017. Flow cytometry sorting of nuclei enables the first global characterization of Paramecium germline DNA and transposable elements. BMC Genom 18:327
    [Google Scholar]
  119. 119. 
    Jones MR, Good JM 2016. Targeted capture in evolutionary and ecological genomics. Mol. Ecol. 25:185–202
    [Google Scholar]
  120. 120. 
    Saha S, Sparks AB, Rago C, Akmaev V, Wang CJ et al. 2002. Using the transcriptome to annotate the genome. Nat. Biotechnol. 20:508
    [Google Scholar]
  121. 121. 
    Cahais V, Gayral P, Tsagkogeorga G, Melo‐Ferreira J, Ballenghien M et al. 2012. Reference‐free transcriptome assembly in non‐model animals from next‐generation sequencing data. Mol. Ecol. Resour. 12:834–45
    [Google Scholar]
  122. 122. 
    Zhang G, Fang X, Guo X, Li L, Luo R et al. 2012. The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490:49
    [Google Scholar]
  123. 123. 
    Abugessaisa I, Kasukawa T, Kawaji H 2017. Genome annotation. Bioinformatics, Vol. 1: Data, Sequence Analysis, and Evolution JM Keith 107–21 New York: Springer
    [Google Scholar]
  124. 124. 
    Markelz RC, Covington MF, Brock MT, Devisetty UK, Kliebenstein DJ et al. 2017. Using RNA-seq for genomic scaffold placement, correcting assemblies, and genetic map creation in a common Brassica rapa mapping population. G3 7:2259–70
    [Google Scholar]
  125. 125. 
    Celniker SE, Wheeler DA, Kronmiller B, Carlson JW, Halpern A et al. 2002. Finishing a whole-genome shotgun: release 3 of the Drosophila melanogaster euchromatic genome sequence. Genome Biol 3:research0079.1–14
    [Google Scholar]
  126. 126. 
    O'Neill K, Hills M, Gottlieb M, Borkowski M, Karsan A, Lansdorp PM 2017. Assembling draft genomes using contiBAIT. Bioinformatics 33:2737–39
    [Google Scholar]
  127. 127. 
    Anselmetti Y, Berry V, Chauve C, Chateau A, Tannier E, Bérard S 2015. Ancestral gene synteny reconstruction improves extant species scaffolding. BMC Genom 16:S11
    [Google Scholar]
  128. 128. 
    Assour L, Emrich S 2015. Multi-genome synteny for assembly improvement Paper presented at the 7th International Conference on Bioinformatics and Computational Biology Honolulu, HI: March 9–11
  129. 129. 
    Tang H, Zhang X, Miao C, Zhang J, Ming R et al. 2015. ALLMAPS: robust scaffold ordering based on multiple maps. Genome Biol 16:3
    [Google Scholar]
  130. 130. 
    Eggertsson HP, Jonsson H, Kristmundsdottir S, Hjartarson E, Kehr B et al. 2017. Graphtyper enables population-scale genotyping using pangenome graphs. Nat. Genet. 49:1654
    [Google Scholar]
  131. 131. 
    Galardini M, Pini F, Bazzicalupo M, Biondi EG, Mengoni A 2015. Pangenome evolution in the symbiotic nitrogen fixer Sinorhizobium meliloti. Biological Nitrogen Fixation FJ de Bruijn 265–70 New York: John Wiley & Sons
    [Google Scholar]
  132. 132. 
    Doron S, Melamed S, Ofir G, Leavitt A, Lopatina A et al. 2018. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359:eaar4120
    [Google Scholar]
  133. 133. 
    Golicz AA, Bayer PE, Barker GC, Edger PP, Kim H et al. 2016. The pangenome of an agronomically important crop plant Brassica oleracea. Nat. Commun 7:13390
    [Google Scholar]
  134. 134. 
    Amores A, Catchen J, Ferrara A, Fontenot Q, Postlethwait JH 2011. Genome evolution and meiotic maps by massively parallel DNA sequencing: spotted gar, an outgroup for the Teleost genome duplication. Genetics 188:799–808
    [Google Scholar]
  135. 135. 
    Kalderimis A, Lyne R, Butano D, Contrino S, Lyne M et al. 2014. InterMine: extensive web services for modern biology. Nucleic Acids Res 42:W468–W72
    [Google Scholar]
  136. 136. 
    Donlin MJ 2009. Using the generic genome browser (GBrowse). Curr. Protoc. Bioinform. 17:9.9.1–24
    [Google Scholar]
  137. 137. 
    Buels R, Yao E, Diesh CM, Hayes RD, Munoz-Torres M et al. 2016. JBrowse: a dynamic web platform for genome visualization and analysis. Genome Biol 17:66
    [Google Scholar]
  138. 138. 
    Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L et al. 2005. Galaxy: a platform for interactive large-scale genome analysis. Genome Res 15:1451–55
    [Google Scholar]
  139. 139. 
    Smith RN, Aleksic J, Butano D, Carr A, Contrino S et al. 2012. InterMine: a flexible data warehouse system for the integration and analysis of heterogeneous biological data. Bioinformatics 28:3163–65
    [Google Scholar]
  140. 140. 
    Liew YJ, Aranda M, Voolstra CR 2016. Reefgenomics.org: a repository for marine genomics data. Database 2016:baw152
    [Google Scholar]
  141. 141. 
    Carrere S, Gouzy J 2017. myGenomeBrowser: building and sharing your own genome browser. Bioinformatics 33:1255–57
    [Google Scholar]
  142. 142. 
    Challis RJ, Kumar S, Stevens L, Blaxter M 2017. GenomeHubs: simple containerized setup of a custom Ensembl database and web server for any species. Database 2017:bax039
    [Google Scholar]
  143. 143. 
    Fischer J, Tuecke S, Foster I, Stewart CA 2015. Jetstream: a distributed cloud infrastructure for underresourced higher education communities. Proceedings of the 1st Workshop on the Science of Cyberinfrastructure: Research, Experience, Applications and Models S Jha 53–61 New York: Assoc. Comput. Mach.
    [Google Scholar]
  144. 144. 
    Stewart CA, Cockerill TM, Foster I, Hancock D, Merchant N et al. 2015. Jetstream: a self-provisioned, scalable science and engineering cloud environment. Proceedings of the 2015 XSEDE Conference: Scientific Advancements Enabled by Enhanced Cyberinfrastructure GD Peterson 291–29.8 New York: Assoc. Comput. Mach.
    [Google Scholar]
  145. 145. 
    Dudgeon SR, Aronson RB, Bruno JF, Precht WF 2010. Phase shifts and stable states on coral reefs. Mar. Ecol. Prog. Ser. 413:201–16
    [Google Scholar]
  146. 146. 
    Bruckner AW 2002. Proceedings of the Caribbean Acropora Workshop: potential application of the U.S. Endangered Species Act as a conservation strategy. Tech. Memo., NMFS-OPR-24, Natl. Ocean. Atmos. Adm. Silver Spring, MD:184 pp.
  147. 147. 
    Toro MA, Caballero A 2005. Characterization and conservation of genetic diversity in subdivided populations. Philos. Trans. R. Soc. B 360:1367–78
    [Google Scholar]
  148. 148. 
    Arnaud-Haond S, Duarte CM, Alberto F, Serrao EA 2007. Standardizing methods to address clonality in population studies. Mol. Ecol. 16:5115–39
    [Google Scholar]
  149. 149. 
    Highsmith RC 1982. Reproduction by fragmentation in corals. Mar. Ecol. Prog. Ser. 7:207–26
    [Google Scholar]
  150. 150. 
    Fischer MC, Rellstab C, Leuzinger M, Roumet M, Gugerli F et al. 2017. Estimating genomic diversity and population differentiation—an empirical comparison of microsatellite and SNP variation in Arabidopsis halleri. BMC Genom 18:69
    [Google Scholar]
  151. 151. 
    Hess JE, Matala AP, Narum SR 2011. Comparison of SNPs and microsatellites for fine-scale application of genetic stock identification of Chinook salmon in the Columbia River Basin. Mol. Ecol. Resour. 11:137–49
    [Google Scholar]
  152. 152. 
    Hauser L, Baird M, Hilborn RAY, Seeb LW, Seeb JE 2011. An empirical comparison of SNPs and microsatellites for parentage and kinship assignment in a wild sockeye salmon (Oncorhynchus nerka) population. Mol. Ecol. Resour. 11:150–61
    [Google Scholar]
  153. 153. 
    Altshuler D, Pollara VJ, Cowles CR, Van Etten WJ, Baldwin J et al. 2000. An SNP map of the human genome generated by reduced representation shotgun sequencing. Nature 407:513–16
    [Google Scholar]
  154. 154. 
    Rasheed A, Hao Y, Xia X, Khan A, Xu Y et al. 2017. Crop breeding chips and genotyping platforms: progress, challenges, and perspectives. Mol. Plant 10:1047–64
    [Google Scholar]
  155. 155. 
    Cui F, Zhang N, Fan X-L, Zhang W, Zhao C-H et al. 2017. Utilization of a Wheat660K SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number. Sci. Rep. 7:3788
    [Google Scholar]
  156. 156. 
    Kitchen S, Ratan A, Bedoya-Reina O, Burhans R, Fogarty N et al. 2018. Genomic variants among threatened Acropora corals. bioRxiv:349910
  157. 157. 
    Devlin-Durante MK, Baums IB 2017. Genome-wide survey of single-nucleotide polymorphisms reveals fine-scale population structure and signs of selection in the threatened Caribbean elkhorn coral, Acropora palmata. PeerJ 5:e4077
    [Google Scholar]
  158. 158. 
    Baums IB, Miller MW, Hellberg ME 2005. Regionally isolated populations of an imperiled Caribbean coral, Acropora palmata. Mol. Ecol. 14:1377–90
    [Google Scholar]
  159. 159. 
    Budd AF, Klaus JS 2001. The origin and early evolution of the Montastraea “annularis” species complex (Anthozoa: Scleractinia). J. Paleontol. 75:527–45
    [Google Scholar]
  160. 160. 
    Knowlton N, Weil E, Weigt LA, Guzmán HM 1992. Sibling species in Montastraea annularis, coral bleaching, and the coral climate record. Science 255:330–33
    [Google Scholar]
  161. 161. 
    Weil E, Knowton N 1994. A multi-character analysis of the Caribbean coral Montastraea annularis (Ellis and Solander, 1786) and its two sibling species, M. faveolata (Ellis and Solander, 1786) and M. franksi (Gregory, 1895). Bull. Mar. Sci. 55:151–75
    [Google Scholar]
  162. 162. 
    Pandolfi JM, Lovelock CE, Budd AF 2002. Character release following extinction in a Caribbean reef coral species complex. Evolution 56:479–501
    [Google Scholar]
  163. 163. 
    Pandolfi JM, Budd AF 2008. Morphology and ecological zonation of Caribbean reef corals: the Montastraea “annularis” species complex. Mar. Ecol. Prog. Ser. 369:89–102
    [Google Scholar]
  164. 164. 
    Prada C, Hanna B, Budd AF, Woodley CM, Schmutz J et al. 2016. Empty niches after extinctions increase population sizes of modern corals. Curr. Biol. 26:3190–94
    [Google Scholar]
  165. 165. 
    Deleted in proof
  166. 166. 
    Fogarty ND 2012. Caribbean acroporid coral hybrids are viable across life history stages. Mar. Ecol. Prog. Ser. 446:145–59
    [Google Scholar]
  167. 167. 
    Tang K, Thornton KR, Stoneking M 2007. A new approach for using genome scans to detect recent positive selection in the human genome. PLOS Biol 5:1587–602
    [Google Scholar]
  168. 168. 
    Price AL, Tandon A, Patterson N, Barnes KC, Rafaels N et al. 2009. Sensitive detection of chromosomal segments of distinct ancestry in admixed populations. PLOS Genet 5:6e1000519
    [Google Scholar]
  169. 169. 
    Bedoya-Reina O, Ratan A, Burhans R, Kim H, Giardine B et al. 2013. Galaxy tools to study genome diversity. GigaScience 2:17
    [Google Scholar]
  170. 170. 
    Verdu P, Rosenberg NA 2011. A general mechanistic model for admixture histories of hybrid populations. Genetics 189:1413–26
    [Google Scholar]
  171. 171. 
    Willis BL, van Oppen MJH, Miller DJ, Vollmer SV, Ayre DJ 2006. The role of hybridization in the evolution of reef corals. Annu. Rev. Ecol. Evol. Syst. 37:489–517
    [Google Scholar]
  172. 172. 
    Van Oppen MJH, Gates RD, Blackall LL, Cantin N, Chakravarti LJ et al. 2017. Shifting paradigms in restoration of the world's coral reefs. Glob. Change Biol. 23:3437–48
    [Google Scholar]
  173. 173. 
    Matz MV, Treml EA, Aglyamova GV, Bay LK 2018. Potential and limits for rapid genetic adaptation to warming in a Great Barrier Reef coral. PLOS Genet 14:e1007220
    [Google Scholar]
  174. 174. 
    Cleves PA, Strader ME, Bay LK, Pringle JR, Matz MV 2018. CRISPR/Cas9-mediated genome editing in a reef-building coral. PNAS 115:5235–40
    [Google Scholar]
  175. 175. 
    Cowie RH, Thiengo SC 2003. The apple snails of the Americas (Mollusca: Gastropoda: Ampullariidae: Asolene, Felipponea, Marisa, Pomacea, Pomella): a nomenclatural and type catalog. Malacologia 45:41–100
    [Google Scholar]
  176. 176. 
    Int. Union Conserv. Nat. 2018. 100 of the world's worst invasive alien species Glob. Invasive Species Database, Int. Union Conserv. Nat. Gland, Switz: http://www.iucngisd.org/gisd/100_worst.php
  177. 177. 
    Ip JCH, Mu HW, Chen Q, Sun J, Ituarte S et al. 2018. AmpuBase: a transcriptome database for eight species of apple snails (Gastropoda: Ampullariidae). BMC Genom 19:9
    [Google Scholar]
  178. 178. 
    Gruenthal KM, Witting DA, Ford T, Neuman MJ, Williams JP et al. 2014. Development and application of genomic tools to the restoration of green abalone in southern California. Conserv. Genet. 15:109–21
    [Google Scholar]
  179. 179. 
    Sandoval‐Castillo J, Robinson NA, Hart AM, Strain LW, Beheregaray LB 2018. Seascape genomics reveals adaptive divergence in a connected and commercially important mollusc, the greenlip abalone (Haliotis laevigata), along a longitudinal environmental gradient. Mol. Ecol. 27:1603–20
    [Google Scholar]
  180. 180. 
    Lampert KP 2018. Oxygen concentration drives local adaptation in the greenlip abalone (Haliotis laevigata). Mol. Ecol. 27:1521–23
    [Google Scholar]
  181. 181. 
    Nam BH, Kwak W, Kim YO, Kim DG, Kong HJ et al. 2017. Genome sequence of Pacific abalone (Haliotis discus hannai): the first draft genome in family Haliotidae. GigaScience 6:1–8
    [Google Scholar]
  182. 182. 
    Renard E, Leys SP, Wörheide G, Borchiellini C 2018. Understanding animal evolution: the added value of sponge transcriptomics and genomics: the disconnect between gene content and body plan evolution. BioEssays 40:91700237
    [Google Scholar]
  183. 183. 
    De'ath G, Fabricius KE, Sweatman H, Puotinen M 2012. The 27-year decline of coral cover on the Great Barrier Reef and its causes. PNAS 109:17995–99
    [Google Scholar]
  184. 184. 
    Hall MR, Kocot KM, Baughman KW, Fernandez-Valverde SL, Gauthier ME et al. 2017. The crown-of-thorns starfish genome as a guide for biocontrol of this coral reef pest. Nature 544:231
    [Google Scholar]
  185. 185. 
    Vogler C, Benzie J, Barber PH, Erdmann MV, Ambariyanto et al. 2012. Phylogeography of the crown-of-thorns starfish in the Indian Ocean. PLOS ONE 7:8e43499
    [Google Scholar]
/content/journals/10.1146/annurev-animal-020518-115034
Loading
/content/journals/10.1146/annurev-animal-020518-115034
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error