1932

Abstract

In mammalian species, endometrial receptivity is driven by maternal factors independently of embryo signals. When pregnancy initiates, paracrine secretions of the preattachment embryo are essential both for maternal recognition and endometrium preparation for implantation and for coordinating development of embryonic and extraembryonic tissues of the conceptus. This review mainly focuses on domestic large animal species. We first illustrate the major steps of preattachment embryo development, including elongation in bovine, ovine, porcine, and equine species. We next highlight conceptus secretions that are involved in the communication between extraembryonic and embryonic tissues, as well as between the conceptus and the endometrium. Finally, we introduce experimental data demonstrating the intimate connection between conceptus secretions and endometrial activity and how adverse events perturbing this interplay may affect the progression of implantation that will subsequently impact pregnancy outcome, postnatal health, and expression of production traits in livestock offspring.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-022516-022900
2017-02-08
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/animal/5/1/annurev-animal-022516-022900.html?itemId=/content/journals/10.1146/annurev-animal-022516-022900&mimeType=html&fmt=ahah

Literature Cited

  1. Diskin MG, Morris DG. 1.  2008. Embryonic and early foetal losses in cattle and other ruminants. Reprod. Domest. Anim. 43:Suppl. 2260–67 [Google Scholar]
  2. Wiltbank MC, Baez GM, Garcia-Guerra A, Toledo MZ, Monteiro PL. 2.  et al. 2016. Pivotal periods for pregnancy loss during the first trimester of gestation in lactating dairy cows. Theriogenology 86:239–53 [Google Scholar]
  3. Fleming TP, Kwong WY, Porter R, Ursell E, Fesenko I. 3.  et al. 2004. The embryo and its future. Biol. Reprod. 71:1046–54 [Google Scholar]
  4. Sinclair KD, Watkins AJ. 4.  2013. Parental diet, pregnancy outcomes and offspring health: metabolic determinants in developing oocytes and embryos. Reprod. Fertil. Dev. 26:99–114 [Google Scholar]
  5. Sinclair KD. 5.  2008. Assisted reproductive technologies and pregnancy outcomes: mechanistic insights from animal studies. Semin. Reprod. Med. 26:153–61 [Google Scholar]
  6. Lee KY, DeMayo FJ. 6.  2004. Animal models of implantation. Reproduction 128:679–95 [Google Scholar]
  7. Bauersachs S, Wolf E. 7.  2015. Uterine responses to the preattachment embryo in domestic ungulates: recognition of pregnancy and preparation for implantation. Annu. Rev. Anim. Biosci. 3:489–511 [Google Scholar]
  8. Geisert RD, Lucy MC, Whyte JJ, Ross JW, Mathew DJ. 8.  2014. Cytokines from the pig conceptus: roles in conceptus development in pigs. J. Anim. Sci. Biotechnol. 5:51 [Google Scholar]
  9. Lonergan P, Forde N, Spencer T. 9.  2015. Role of progesterone in embryo development in cattle. Reprod. Fertil. Dev. 28:66–74 [Google Scholar]
  10. Hue I. 10.  2015. Determinant molecular markers for peri-gastrulating bovine embryo development. Reprod. Fertil. Dev. 28:51–65 [Google Scholar]
  11. Kwon GS, Viotti M, Hadjantonakis AK. 11.  2008. The endoderm of the mouse embryo arises by dynamic widespread intercalation of embryonic and extraembryonic lineages. Dev. Cell 15:509–20 [Google Scholar]
  12. Arnold SJ, Robertson EJ. 12.  2009. Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo. Nat. Rev. Mol. Cell Biol. 10:91–103 [Google Scholar]
  13. Sheng G. 13.  2015. Epiblast morphogenesis before gastrulation. Dev. Biol. 401:17–24 [Google Scholar]
  14. Takaoka K, Hamada H. 14.  2012. Cell fate decisions and axis determination in the early mouse embryo. Development 139:3–14 [Google Scholar]
  15. Chazaud C, Yamanaka Y. 15.  2016. Lineage specification in the mouse preimplantation embryo. Development 143:1063–74 [Google Scholar]
  16. Eakin GS, Behringer RR. 16.  2004. Diversity of germ layer and axis formation among mammals. Semin. Cell Dev. Biol. 15:619–29 [Google Scholar]
  17. Bedzhov I, Graham SJ, Leung CY, Zernicka-Goetz M. 17.  2014. Developmental plasticity, cell fate specification and morphogenesis in the early mouse embryo. Philos. Trans. R. Soc. Lond. B Biol. Sci.369
  18. Deglincerti A, Croft GF, Pietila LN, Zernicka-Goetz M, Siggia ED, Brivanlou AH. 18.  2016. Self-organization of the in vitro attached human embryo. Nature 533:251–54 [Google Scholar]
  19. Shahbazi MN, Jedrusik A, Vuoristo S, Recher G, Hupalowska A. 19.  et al. 2016. Self-organization of the human embryo in the absence of maternal tissues. Nat. Cell Biol. 18:700–8 [Google Scholar]
  20. Ott TL, Gifford CA. 20.  2010. Effects of early conceptus signals on circulating immune cells: lessons from domestic ruminants. Am. J. Reprod. Immunol. 64:245–54 [Google Scholar]
  21. Nitta A, Shirasuna K, Haneda S, Matsui M, Shimizu T. 21.  et al. 2011. Possible involvement of IFNT in lymphangiogenesis in the corpus luteum during the maternal recognition period in the cow. Reproduction 142:879–92 [Google Scholar]
  22. Romero JJ, Antoniazzi AQ, Nett TM, Ashley RL, Webb BT. 22.  et al. 2015. Temporal release, paracrine and endocrine actions of ovine conceptus-derived interferon-tau during early pregnancy. Biol. Reprod. 93:146 [Google Scholar]
  23. Meyerholz MM, Mense K, Knaack H, Sandra O, Schmicke M. 23.  2016. Pregnancy-induced ISG-15 and MX-1 gene expression is detected in the liver of Holstein-Friesian heifers during late peri-implantation period. Reprod. Domest. Anim. 51:175–77 [Google Scholar]
  24. Coolen M, Menuet A, Mazan S. 24.  2009. Towards a synthetic view of axis specification mechanisms in vertebrates: insights from the dogfish. C. R. Biol. 332:210–18 [Google Scholar]
  25. Stern CD, Downs KM. 25.  2012. The hypoblast (visceral endoderm): an evo-devo perspective. Development 139:1059–69 [Google Scholar]
  26. Bertocchini F, Alev C, Nakaya Y, Sheng G. 26.  2013. A little winning streak: the reptilian-eye view of gastrulation in birds. Dev. Growth Differ. 55:52–59 [Google Scholar]
  27. Saiz N, Plusa B, Hadjantonakis AK. 27.  2015. Single cells get together: high-resolution approaches to study the dynamics of early mouse development. Semin. Cell Dev. Biol.47–4892–100
  28. Rossant J, Cross JC. 28.  2001. Placental development: lessons from mouse mutants. Nat. Rev. Genet. 2:538–48 [Google Scholar]
  29. Blomberg L, Hashizume K, Viebahn C. 29.  2008. Blastocyst elongation, trophoblastic differentiation, and embryonic pattern formation. Reproduction 135:181–95 [Google Scholar]
  30. Roberts RM, Fisher SJ. 30.  2011. Trophoblast stem cells. Biol. Reprod. 84:412–21 [Google Scholar]
  31. Pfeffer PL, Pearton DJ. 31.  2012. Trophoblast development. Reproduction 143:231–46 [Google Scholar]
  32. Gaivao MM, Rambags BP, Stout TA. 32.  2014. Gastrulation and the establishment of the three germ layers in the early horse conceptus. Theriogenology 82:354–65 [Google Scholar]
  33. van Leeuwen J, Berg DK, Pfeffer PL. 33.  2015. Morphological and gene expression changes in cattle embryos from hatched blastocyst to early gastrulation stages after transfer of in vitro produced embryos. PLOS ONE 10:e0129787 [Google Scholar]
  34. Frankenberg S, Shaw G, Freyer C, Pask AJ, Renfree MB. 34.  2013. Early cell lineage specification in a marsupial: a case for diverse mechanisms among mammals. Development 140:965–75 [Google Scholar]
  35. Tam PP, Loebel DA. 35.  2007. Gene function in mouse embryogenesis: Get set for gastrulation. Nat. Rev. Genet. 8:368–81 [Google Scholar]
  36. Tam PP, Loebel DA, Tanaka SS. 36.  2006. Building the mouse gastrula: signals, asymmetry and lineages. Curr. Opin. Genet. Dev. 16:419–25 [Google Scholar]
  37. Perea-Gomez A, Meilhac SM, Piotrowska-Nitsche K, Gray D, Collignon J, Zernicka-Goetz M. 37.  2007. Regionalization of the mouse visceral endoderm as the blastocyst transforms into the egg cylinder. BMC Dev. Biol. 7:96 [Google Scholar]
  38. Rivera-Perez JA. 38.  2007. Axial specification in mice: ten years of advances and controversies. J. Cell. Physiol. 213:654–60 [Google Scholar]
  39. Guzman-Ayala M, Ben-Haim N, Beck S, Constam DB. 39.  2004. Nodal protein processing and fibroblast growth factor 4 synergize to maintain a trophoblast stem cell microenvironment. PNAS 101:15656–60 [Google Scholar]
  40. Latos PA, Hemberger M. 40.  2014. Review: the transcriptional and signalling networks of mouse trophoblast stem cells. Placenta 35:S81–85 [Google Scholar]
  41. Genbacev O, Donne M, Kapidzic M, Gormley M, Lamb J. 41.  et al. 2011. Establishment of human trophoblast progenitor cell lines from the chorion. Stem Cells 29:1427–36 [Google Scholar]
  42. Murray A, Sienerth AR, Hemberger M. 42.  2016. Plet1 is an epigenetically regulated cell surface protein that provides essential cues to direct trophoblast stem cell differentiation. Sci. Rep. 6:25112 [Google Scholar]
  43. Motomura K, Oikawa M, Hirose M, Honda A, Togayachi S. 43.  et al. 2016. Cellular dynamics of mouse trophoblast stem cells: identification of a persistent stem cell type. Biol. Reprod. 94:122 [Google Scholar]
  44. Murohashi M, Nakamura T, Tanaka S, Ichise T, Yoshida N. 44.  et al. 2010. An FGF4-FRS2α-Cdx2 axis in trophoblast stem cells induces Bmp4 to regulate proper growth of early mouse embryos. Stem Cells 28:113–21 [Google Scholar]
  45. Berg DK, Smith CS, Pearton DJ, Wells DN, Broadhurst R. 45.  et al. 2011. Trophectoderm lineage determination in cattle. Dev. Cell 20:244–55 [Google Scholar]
  46. Degrelle SA, Campion E, Cabau C, Piumi F, Reinaud P. 46.  et al. 2005. Molecular evidence for a critical period in mural trophoblast development in bovine blastocysts. Dev. Biol. 288:448–60 [Google Scholar]
  47. Valdez Magaña G, Rodríguez A, Zhang H, Webb R, Alberio R. 47.  2014. Paracrine effects of embryo-derived FGF4 and BMP4 during pig trophoblast elongation. Dev. Biol. 387:15–27 [Google Scholar]
  48. Yang QE, Giassetti MI, Ealy AD. 48.  2011. Fibroblast growth factors activate mitogen-activated protein kinase pathways to promote migration in ovine trophoblast cells. Reproduction 141:707–14 [Google Scholar]
  49. Kuijk EW, van Tol LT, Van de Velde H, Wubbolts R, Welling M. 49.  et al. 2012. The roles of FGF and MAP kinase signaling in the segregation of the epiblast and hypoblast cell lineages in bovine and human embryos. Development 139:871–82 [Google Scholar]
  50. Ozawa M, Yang QE, Ealy AD. 50.  2013. The expression of fibroblast growth factor receptors during early bovine conceptus development and pharmacological analysis of their actions on trophoblast growth in vitro. Reproduction 145:191–201 [Google Scholar]
  51. Cooke FN, Pennington KA, Yang Q, Ealy AD. 51.  2009. Several fibroblast growth factors are expressed during pre-attachment bovine conceptus development and regulate interferon-tau expression from trophectoderm. Reproduction 137:259–69 [Google Scholar]
  52. Degrelle SA, Le Cao KA, Heyman Y, Everts RE, Campion E. 52.  et al. 2011. A small set of extra-embryonic genes defines a new landmark for bovine embryo staging. Reproduction 141:79–89 [Google Scholar]
  53. Okumu LA, Forde N, Mamo S, McGettigan P, Mehta JP. 53.  et al. 2014. Temporal regulation of fibroblast growth factors and their receptors in the endometrium and conceptus during the pre-implantation period of pregnancy in cattle. Reproduction 147:825–34 [Google Scholar]
  54. Ka H, Al-Ramadan S, Erikson DW, Johnson GA, Burghardt RC. 54.  et al. 2007. Regulation of expression of fibroblast growth factor 7 in the pig uterus by progesterone and estradiol. Biol. Reprod. 77:172–80 [Google Scholar]
  55. Ostrup E, Bauersachs S, Blum H, Wolf E, Hyttel P. 55.  2010. Differential endometrial gene expression in pregnant and nonpregnant sows. Biol. Reprod. 83:277–85 [Google Scholar]
  56. Jeong W, Lee J, Bazer FW, Song G, Kim J. 56.  2016. Fibroblast growth factor 4-induced migration of porcine trophectoderm cells is mediated via the AKT cell signaling pathway. Mol. Cell. Endocrinol. 419:208–16 [Google Scholar]
  57. Blomberg L, Garrett WM, Guillomot M, Miles JR, Sonstegard TS. 57.  et al. 2006. Transcriptome profiling of the tubular porcine conceptus identifies the differential regulation of growth and developmentally associated genes. Mol. Reprod. Dev. 73:1491–502 [Google Scholar]
  58. Guillomot M, Turbe A, Hue I, Renard JP. 58.  2004. Staging of ovine embryos and expression of the T-box genes Brachyury and Eomesodermin around gastrulation. Reproduction 127:491–501 [Google Scholar]
  59. Yoon Y, Huang T, Tortelote GG, Wakamiya M, Hadjantonakis AK. 59.  et al. 2015. Extra- embryonic Wnt3 regulates the establishment of the primitive streak in mice. Dev. Biol. 403:80–88 [Google Scholar]
  60. Hoshino H, Shioi G, Aizawa S. 60.  2015. AVE protein expression and visceral endoderm cell behavior during anterior-posterior axis formation in mouse embryos: asymmetry in OTX2 and DKK1 expression. Dev. Biol. 402:175–91 [Google Scholar]
  61. Stower MJ, Srinivas S. 61.  2014. Heading forwards: anterior visceral endoderm migration in patterning the mouse embryo. Philos. Trans. R. Soc. Lond. B Biol. Sci.369
  62. Loh KM, Lim B, Ang LT. 62.  2015. Ex uno plures: molecular designs for embryonic pluripotency. Physiol. Rev. 95:245–95 [Google Scholar]
  63. Degrelle SA, Jaffrezic F, Campion E, Le Cao KA, Le Bourhis D. 63.  et al. 2012. Uncoupled embryonic and extra-embryonic tissues compromise blastocyst development after somatic cell nuclear transfer. PLOS ONE 7:e38309 [Google Scholar]
  64. Idkowiak J, Weisheit G, Plitzner J, Viebahn C. 64.  2004. Hypoblast controls mesoderm generation and axial patterning in the gastrulating rabbit embryo. Dev. Genes Evol. 214:591–605 [Google Scholar]
  65. Kim SH, Turnbull J, Guimond S. 65.  2011. Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J. Endocrinol. 209:139–51 [Google Scholar]
  66. Costello I, Biondi CA, Taylor JM, Bikoff EK, Robertson EJ. 66.  2009. Smad4-dependent pathways control basement membrane deposition and endodermal cell migration at early stages of mouse development. BMC Dev. Biol. 9:54 [Google Scholar]
  67. Flechon JE, Flechon B, Degrouard J, Guillomot M. 67.  2007. Cellular features of the extra-embryonic endoderm during elongation in the ovine conceptus. Genesis 45:709–15 [Google Scholar]
  68. Zuniga A. 68.  2015. Next generation limb development and evolution: old questions, new perspectives. Development 142:3810–20 [Google Scholar]
  69. Roberts RM, Xie S, Mathialagan N. 69.  1996. Maternal recognition of pregnancy. Biol. Reprod. 54:294–302 [Google Scholar]
  70. Guillomot M. 70.  1995. Cellular interactions during implantation in domestic ruminants. J. Reprod. Fertil. Suppl. 49:39–51 [Google Scholar]
  71. Bazer FW, Spencer TE, Johnson GA. 71.  2009. Interferons and uterine receptivity. Semin. Reprod. Med. 27:90–102 [Google Scholar]
  72. Martal J, Lacroix MC, Loudes C, Saunier M, Wintenberger-Torres S. 72.  1979. Trophoblastin, an antiluteolytic protein present in early pregnancy in sheep. J. Reprod. Fertil. 56:63–73 [Google Scholar]
  73. Godkin JD, Bazer FW, Moffatt J, Sessions F, Roberts RM. 73.  1982. Purification and properties of a major, low molecular weight protein released by the trophoblast of sheep blastocysts at day 13–21. J. Reprod. Fertil. 65:141–50 [Google Scholar]
  74. Imakawa K, Anthony RV, Kazemi M, Marotti KR, Polites HG, Roberts RM. 74.  1987. Interferon-like sequence of ovine trophoblast protein secreted by embryonic trophectoderm. Nature 330:377–79 [Google Scholar]
  75. Stewart HJ, McCann SH, Barker PJ, Lee KE, Lamming GE, Flint AP. 75.  1987. Interferon sequence homology and receptor binding activity of ovine trophoblast antiluteolytic protein. J. Endocrinol. 115:R13–15 [Google Scholar]
  76. Charpigny G, Reinaud P, Huet JC, Guillomot M, Charlier M. 76.  et al. 1988. High homology between a trophoblastic protein (trophoblastin) isolated from ovine embryo and α-interferons. FEBS Lett 228:12–16 [Google Scholar]
  77. Roberts RM, Chen Y, Ezashi T, Walker AM. 77.  2008. Interferons and the maternal-conceptus dialog in mammals. Semin. Cell Dev. Biol. 19:170–77 [Google Scholar]
  78. Martal JL, Chene NM, Huynh LP, L'Haridon RM, Reinaud PB. 78.  et al. 1998. IFN-tau: a novel subtype I IFN1. Structural characteristics, non-ubiquitous expression, structure-function relationships, a pregnancy hormonal embryonic signal and cross-species therapeutic potentialities. Biochimie 80:755–77 [Google Scholar]
  79. Guillomot M, Michel C, Gaye P, Charlier N, Trojan J, Martal J. 79.  1990. Cellular localization of an embryonic interferon, ovine trophoblastin and its mRNA in sheep embryos during early pregnancy. Biol. Cell 68:205–11 [Google Scholar]
  80. Li J, Roberts RM. 80.  1994. Interferon-τ and interferon-α interact with the same receptors in bovine endometrium: use of a readily iodinatable form of recombinant interferon-τ for binding studies. J. Biol. Chem. 269:13544–50 [Google Scholar]
  81. Spencer TE, Bazer FW. 81.  2002. Biology of progesterone action during pregnancy recognition and maintenance of pregnancy. Front. Biosci. 7:d1879–98 [Google Scholar]
  82. Spencer TE, Sandra O, Wolf E. 82.  2008. Genes involved in conceptus-endometrial interactions in ruminants: insights from reductionism and thoughts on holistic approaches. Reproduction 135:165–79 [Google Scholar]
  83. Brooks K, Spencer TE. 83.  2015. Biological roles of interferon tau (IFNT) and type I IFN receptors in elongation of the ovine conceptus. Biol. Reprod. 92:47 [Google Scholar]
  84. Davis DL, Pakrasi PL, Dey SK. 84.  1983. Prostaglandins in swine blastocysts. Biol. Reprod. 28:1114–18 [Google Scholar]
  85. Waclawik A, Ziecik AJ. 85.  2007. Differential expression of prostaglandin (PG) synthesis enzymes in conceptus during peri-implantation period and endometrial expression of carbonyl reductase/PG 9-ketoreductase in the pig. J. Endocrinol. 194:499–510 [Google Scholar]
  86. Ashworth MD, Ross JW, Hu J, White FJ, Stein DR. 86.  et al. 2006. Expression of porcine endometrial prostaglandin synthase during the estrous cycle and early pregnancy, and following endocrine disruption of pregnancy. Biol. Reprod. 74:1007–15 [Google Scholar]
  87. Waclawik A, Kaczynski P, Jabbour HN. 87.  2013. Autocrine and paracrine mechanisms of prostaglandin E2 action on trophoblast/conceptus cells through the prostaglandin E2 receptor (PTGER2) during implantation. Endocrinology 154:3864–76 [Google Scholar]
  88. Lewis GS. 88.  1989. Prostaglandin secretion by the blastocyst. J. Reprod. Fertil. Suppl. 37:261–67 [Google Scholar]
  89. Watson ED, Sertich PL. 89.  1989. Prostaglandin production by horse embryos and the effect of co-culture of embryos with endometrium from pregnant mares. J. Reprod. Fertil. 87:331–36 [Google Scholar]
  90. Weber JA, Woods GL, Freeman DA, Vanderwall DK. 90.  1992. Prostaglandin E2 secretion by day-6 to day-9 equine embryos. Prostaglandins 43:55–59 [Google Scholar]
  91. Stout TA, Allen WR. 91.  2002. Prostaglandin E2 and F production by equine conceptuses and concentrations in conceptus fluids and uterine flushings recovered from early pregnant and dioestrous mares. Reproduction 123:261–68 [Google Scholar]
  92. Klein C, Troedsson MH. 92.  2011. Maternal recognition of pregnancy in the horse: a mystery still to be solved. Reprod. Fertil. Dev. 23:952–63 [Google Scholar]
  93. Vanderwall DK, Woods GL, Weber JA, Lichtenwalner AB. 93.  1994. Corpus luteal function in nonpregnant mares following intrauterine administration of prostaglandin E2 or estradiol-17β. Theriogenology 42:1069–83 [Google Scholar]
  94. Stout TA, Allen WR. 94.  2001. Role of prostaglandins in intrauterine migration of the equine conceptus. Reproduction 121:771–75 [Google Scholar]
  95. McDowell KJ, Sharp DC, Grubaugh W, Thatcher WW, Wilcox CJ. 95.  1988. Restricted conceptus mobility results in failure of pregnancy maintenance in mares. Biol. Reprod. 39:340–48 [Google Scholar]
  96. Berglund LA, Sharp DC, Vernon MW, Thatcher WW. 96.  1982. Effect of pregnancy and collection technique on prostaglandin F in the uterine lumen of Pony mares. J. Reprod. Fertil. Suppl. 32:335–41 [Google Scholar]
  97. Ealy AD, Eroh ML, Sharp DC 3rd. 97.  2010. Prostaglandin H synthase Type 2 is differentially expressed in endometrium based on pregnancy status in pony mares and responds to oxytocin and conceptus secretions in explant culture. Anim. Reprod. Sci. 117:99–105 [Google Scholar]
  98. Boerboom D, Brown KA, Vaillancourt D, Poitras P, Goff AK. 98.  et al. 2004. Expression of key prostaglandin synthases in equine endometrium during late diestrus and early pregnancy. Biol. Reprod. 70:391–99 [Google Scholar]
  99. Woodley SL, Burns PJ, Douglas RH, Oxender WD. 99.  1979. Prolonged interovulatory interval after oestradiol treatment in mares. J. Reprod. Fertil. Suppl. 1979:27205–9 [Google Scholar]
  100. Charpigny G, Reinaud P, Tamby JP, Creminon C, Martal J. 100.  et al. 1997. Expression of cyclooxygenase-1 and -2 in ovine endometrium during the estrous cycle and early pregnancy. Endocrinology 138:2163–71 [Google Scholar]
  101. Charpigny G, Reinaud P, Tamby JP, Creminon C, Guillomot M. 101.  1997. Cyclooxygenase-2 unlike cyclooxygenase-1 is highly expressed in ovine embryos during the implantation period. Biol. Reprod. 57:1032–40 [Google Scholar]
  102. Arosh JA, Parent J, Chapdelaine P, Sirois J, Fortier MA. 102.  2002. Expression of cyclooxygenases 1 and 2 and prostaglandin E synthase in bovine endometrial tissue during the estrous cycle. Biol. Reprod. 67:161–69 [Google Scholar]
  103. Dorniak P, Bazer FW, Spencer TE. 103.  2011. Prostaglandins regulate conceptus elongation and mediate effects of interferon tau on the ovine uterine endometrium. Biol. Reprod. 84:1119–27 [Google Scholar]
  104. Dorniak P, Welsh TH Jr., Bazer FW, Spencer TE. 104.  2011. Endometrial HSD11B1 and cortisol regeneration in the ovine uterus: effects of pregnancy, interferon tau, and prostaglandins. Biol. Reprod. 86:124 [Google Scholar]
  105. Dorniak P, Bazer FW, Wu G, Spencer TE. 105.  2012. Conceptus-derived prostaglandins regulate endometrial function in sheep. Biol. Reprod. 87:9 [Google Scholar]
  106. Spencer TE, Forde N, Dorniak P, Hansen TR, Romero JJ, Lonergan P. 106.  2013. Conceptus-derived prostaglandins regulate gene expression in the endometrium prior to pregnancy recognition in ruminants. Reproduction 146:377–87 [Google Scholar]
  107. Spencer TE, Forde N, Lonergan P. 107.  2016. The role of progesterone and conceptus-derived factors in uterine biology during early pregnancy in ruminants. J. Dairy Sci. 99:5941–50 [Google Scholar]
  108. Cammas L, Reinaud P, Bordas N, Dubois O, Germain G, Charpigny G. 108.  2006. Developmental regulation of prostacyclin synthase and prostacyclin receptors in the ovine uterus and conceptus during the peri-implantation period. Reproduction 131:917–27 [Google Scholar]
  109. Arosh JA, Banu SK, Chapdelaine P, Fortier MA. 109.  2004. Temporal and tissue-specific expression of prostaglandin receptors EP2, EP3, EP4, FP, and cyclooxygenases 1 and 2 in uterus and fetal membranes during bovine pregnancy. Endocrinology 145:407–17 [Google Scholar]
  110. Ulbrich SE, Schulke K, Groebner AE, Reichenbach HD, Angioni C. 110.  et al. 2009. Quantitative characterization of prostaglandins in the uterus of early pregnant cattle. Reproduction 138:371–82 [Google Scholar]
  111. Arosh JA, Banu SK, Chapdelaine P, Emond V, Kim JJ. 111.  et al. 2003. Molecular cloning and characterization of bovine prostaglandin E2 receptors EP2 and EP4: expression and regulation in endometrium and myometrium during the estrous cycle and early pregnancy. Endocrinology 144:3076–91 [Google Scholar]
  112. Banu SK, Arosh JA, Chapdelaine P, Fortier MA. 112.  2003. Molecular cloning and spatio- temporal expression of the prostaglandin transporter: a basis for the action of prostaglandins in the bovine reproductive system. PNAS 100:11747–52 [Google Scholar]
  113. Madore E, Harvey N, Parent J, Chapdelaine P, Arosh JA, Fortier MA. 113.  2003. An aldose reductase with 20α-hydroxysteroid dehydrogenase activity is most likely the enzyme responsible for the production of prostaglandin f2α in the bovine endometrium. J. Biol. Chem. 278:11205–12 [Google Scholar]
  114. Parent M, Madore E, MacLaren LA, Fortier MA. 114.  2006. 15-Hydroxyprostaglandin dehydrogenase in the bovine endometrium during the oestrous cycle and early pregnancy. Reproduction 131:573–82 [Google Scholar]
  115. Ellinwood WE, Nett TM, Niswender GD. 115.  1979. Maintenance of the corpus luteum of early pregnancy in the ewe. II. Prostaglandin secretion by the endometrium in vitro and in vivo. Biol. Reprod. 21:845–56 [Google Scholar]
  116. Bartol FF, Thatcher WW, Lewis GS, Bliss EL, Drost M, Bazer FW. 116.  1981. Effect of estradiol-17β on PGF and total protein content in bovine uterine flushings and peripheral plasma concentration of 13, 14-dihydro-15-keto-PGF. Theriogenology 15:345–58 [Google Scholar]
  117. Shemesh M, Milaguir F, Ayalon N, Hansel W. 117.  1979. Steroidogenesis and prostaglandin synthesis by cultured bovine blastocysts. J. Reprod. Fertil. 56:181–85 [Google Scholar]
  118. Lewis G, Thatcher W, Bazer F, Curl J. 118.  1982. Metabolism of arachidonic acid in vitro by bovine blastocysts and endometrium. Biol. Reprod. 27:431–39 [Google Scholar]
  119. Hwang DH, Pool SH, Rorie RW, Boudreau M, Godke RA. 119.  1988. Transitional changes in arachidonic acid metabolism by bovine embryos at different developmental stages. Prostaglandins 35:387–402 [Google Scholar]
  120. Wilson JM, Zalesky DD, Looney CR, Bondioli KR, Magness RR. 120.  1992. Hormone secretion by preimplantation embryos in a dynamic in vitro culture system. Biol. Reprod. 46:295–300 [Google Scholar]
  121. Lewis GS. 121.  1989. Prostaglandin secretion by the blastocyst. J. Reprod. Fertil. Suppl. 37:261–67 [Google Scholar]
  122. Marcus GJ. 122.  1981. Prostaglandin formation by the sheep embryo and endometrium as an indication of maternal recognition of pregnancy. Biol. Reprod. 25:56–64 [Google Scholar]
  123. Marjani SL, Le Bourhis D, Vignon X, Heyman Y, Everts RE. 123.  et al. 2009. Embryonic gene expression profiling using microarray analysis. Reprod. Fertil. Dev. 21:22–30 [Google Scholar]
  124. Clemente M, de La Fuente J, Fair T, Al Naib A, Gutierrez-Adan A. 124.  et al. 2009. Progesterone and conceptus elongation in cattle: A direct effect on the embryo or an indirect effect via the endometrium?. Reproduction 138:507–17 [Google Scholar]
  125. Niemann H, Tian XC, King WA, Lee RS. 125.  2008. Epigenetic reprogramming in embryonic and foetal development upon somatic cell nuclear transfer cloning. Reproduction 135:151–63 [Google Scholar]
  126. Rodriguez-Alvarez L, Sharbati J, Sharbati S, Cox JF, Einspanier R, Castro FO. 126.  2010. Differential gene expression in bovine elongated (Day 17) embryos produced by somatic cell nucleus transfer and in vitro fertilization. Theriogenology 74:45–59 [Google Scholar]
  127. Heyman Y. 127.  2005. Nuclear transfer: a new tool for reproductive biotechnology in cattle. Reprod. Nutr. Dev. 45:353–61 [Google Scholar]
  128. Biase FH, Rabel C, Guillomot M, Sandra O, Andropolis K. 128.  et al. 2013. Changes in WNT signaling-related gene expression associated with development and cloning in bovine extra-embryonic and endometrial tissues during the peri-implantation period. Mol. Reprod. Dev. 80:977–87 [Google Scholar]
  129. Bauersachs S, Ulbrich SE, Zakhartchenko V, Minten M, Reichenbach M. 129.  et al. 2009. The endometrium responds differently to cloned versus fertilized embryos. PNAS 106:5681–86 [Google Scholar]
  130. Mansouri-Attia N, Sandra O, Aubert J, Degrelle S, Everts RE. 130.  et al. 2009. Endometrium as an early sensor of in vitro embryo manipulation technologies. PNAS 106:5687–92 [Google Scholar]
  131. Guillomot M, Campion E, Prezelin A, Sandra O, Hue I. 131.  et al. 2014. Spatial and temporal changes of decorin, type I collagen and fibronectin expression in normal and clone bovine placenta. Placenta 35:737–47 [Google Scholar]
  132. Carvalho AV, Reinaud P, Forde N, Healey GD, Eozenou C. 132.  et al. 2014. SOCS genes expression during physiological and perturbed implantation in bovine endometrium. Reproduction 148:545–57 [Google Scholar]
  133. Sandra O, Constant F, Vitorino Carvalho A, Eozenou C, Valour D. 133.  et al. 2015. Maternal organism and embryo biosensoring: insights from ruminants. J. Reprod. Immunol. 108:105–13 [Google Scholar]
  134. Macklon NS, Brosens JJ. 134.  2014. The human endometrium as a sensor of embryo quality. Biol. Reprod. 91:98 [Google Scholar]
  135. Groebner AE, Zakhartchenko V, Bauersachs S, Rubio-Aliaga I, Daniel H. 135.  et al. 2011. Reduced amino acids in the bovine uterine lumen of cloned versus in vitro fertilized pregnancies prior to implantation. Cell. Reprogr. 13:403–10 [Google Scholar]
  136. Ulbrich SE, Wolf E, Bauersachs S. 136.  2012. Hosting the preimplantation embryo: potentials and limitations of different approaches for analysing embryo-endometrium interactions in cattle. Reprod. Fertil. Dev. 25:62–70 [Google Scholar]
  137. Constant F, Guillomot M, Heyman Y, Vignon X, Laigre P. 137.  et al. 2006. Large offspring or large placenta syndrome? Morphometric analysis of late gestation bovine placentomes from somatic nuclear transfer pregnancies complicated by hydrallantois. Biol. Reprod. 75:122–30 [Google Scholar]
  138. Gray CA, Burghardt RC, Johnson GA, Bazer FW, Spencer TE. 138.  2002. Evidence that absence of endometrial gland secretions in uterine gland knockout ewes compromises conceptus survival and elongation. Reproduction 124:289–300 [Google Scholar]
  139. Sandra O, Mansouri-Attia N, Lea RG. 139.  2011. Novel aspects of endometrial function: a biological sensor of embryo quality and driver of pregnancy success. Reprod. Fertil. Dev. 24:68–79 [Google Scholar]
  140. Barker DJ. 140.  1995. Intrauterine programming of adult disease. Mol. Med. Today 1:418–23 [Google Scholar]
  141. González-Recio O, Ugarte E, Bach A. 141.  2012. Trans-generational effect of maternal lactation during pregnancy: a Holstein cow model. PLOS ONE 7:e51816 [Google Scholar]
  142. Chavatte-Palmer P, Tarrade A, Kiefer H, Duranthon V, Jammes H. 142.  2015. Breeding animals for quality products: not only genetics. Reprod. Fertil. Dev. 28:94–111 [Google Scholar]
  143. Fleming TP, Lucas ES, Watkins AJ, Eckert JJ. 143.  2011. Adaptive responses of the embryo to maternal diet and consequences for post-implantation development. Reprod. Fertil. Dev. 24:35–44 [Google Scholar]
  144. Lucas ES, Dyer NP, Murakami K, Lee YH, Chan YW. 144.  et al. 2016. Loss of endometrial plasticity in recurrent pregnancy loss. Stem Cells 34:346–56 [Google Scholar]
  145. Quenby S, Vince G, Farquharson R, Aplin J. 145.  2002. Recurrent miscarriage: A defect in nature's quality control?. Hum. Reprod. 17:1959–63 [Google Scholar]
  146. Hue I, Evain-Brion D, Fournier T, Degrelle SA. 146.  2015. Primary bovine extra-embryonic cultured cells: a new resource for the study of in vivo peri-implanting phenotypes and mesoderm formation. PLOS ONE 10:e0127330 [Google Scholar]
  147. Gonzalez-Bulnes A, Pallares P, Vázquez MI. 147.  2010. Ultrasonographic imaging in small ruminant reproduction. Reprod. Domest. Anim. 45:Suppl. 29–20 [Google Scholar]
  148. Sousa NM, Beckers JF, Gajewski Z. 148.  2008. Current trends in follow-up of trophoblastic function in ruminant species. J. Physiol. Pharmacol. 59:Suppl. 965–74 [Google Scholar]
  149. Mauffré V, Grimard B, Eozenou C, Inghels S, Silva L. 149.  et al. 2016. Interferon stimulated genes as peripheral diagnostic markers of early pregnancy in sheep: a critical assessment. Animal 11:1856–63 [Google Scholar]
  150. Chard T. 150.  1992. Pregnancy tests: a review. Hum. Reprod. 7:701–10 [Google Scholar]
  151. Ramu S, Stamatkin C, Timms L, Ruble M, Roussev RG, Barnea ER. 151.  2013. Preimplantation factor (PIF) detection in maternal circulation in early pregnancy correlates with live birth (bovine model). Reprod. Biol. Endocrinol. 11:105 [Google Scholar]
  152. Forde N, Bazer FW, Spencer TE, Lonergan P. 152.  2015. “Conceptualizing” the endometrium: identification of conceptus-derived proteins during early pregnancy in cattle. Biol. Reprod. 92:156 [Google Scholar]
  153. Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH. 153.  et al. 2010. The microRNA spectrum in 12 body fluids. Clin. Chem. 56:1733–41 [Google Scholar]
  154. Ng YH, Rome S, Jalabert A, Forterre A, Singh H. 154.  et al. 2013. Endometrial exosomes/microvesicles in the uterine microenvironment: a new paradigm for embryo-endometrial cross talk at implantation. PLOS ONE 8:e58502 [Google Scholar]
  155. Burns G, Brooks K, Wildung M, Navakanitworakul R, Christenson LK, Spencer TE. 155.  2014. Extracellular vesicles in luminal fluid of the ovine uterus. PLOS ONE 9:e90913 [Google Scholar]
  156. Burns GW, Brooks KE, Spencer TE. 156.  2016. Extracellular vesicles originate from the conceptus and uterus during early pregnancy in sheep. Biol. Reprod. 94:56 [Google Scholar]
  157. Ruiz-González I, Xu J, Wang X, Burghardt RC, Dunlap KA, Bazer FW. 157.  2015. Exosomes, endogenous retroviruses and toll-like receptors: pregnancy recognition in ewes. Reproduction 149:281–91 [Google Scholar]
  158. Greening DW, Nguyen HP, Elgass K, Simpson RJ, Salamonsen LA. 158.  2016. Human endometrial exosomes contain hormone-specific cargo modulating trophoblast adhesive capacity: insights into endometrial-embryo interactions. Biol. Reprod. 94:38 [Google Scholar]
  159. Brooks K, Spencer TE. 159.  2015. Biological roles of interferon tau (IFNT) and type I IFN receptors in elongation of the ovine conceptus. Biol. Reprod. 92:47 [Google Scholar]
  160. Cammas L, Reinaud P, Dubois O, Bordas N, Germain G, Charpigny G. 160.  2005. Identification of differentially regulated genes during elongation and early implantation in the ovine trophoblast using complementary DNA array screening. Biol. Reprod. 72:960–67 [Google Scholar]
  161. Doré JJ, Roberts MP, Godkin JD. 161.  1994. Early gestational expression of retinol-binding protein mRNA by the ovine conceptus and endometrium. Mol. Reprod. Dev. 38:24–29 [Google Scholar]
  162. Doré JJ Jr., Wilkinson JE, Godkin JD. 162.  1995. Early gestational expression of transforming growth factor beta isoforms by the ovine placenta. Biol. Reprod. 53:143–52 [Google Scholar]
  163. Rowson LE, Moor RM. 163.  1966. Development of the sheep conceptus during the first fourteen days. J. Anat. 100:777–85 [Google Scholar]
  164. Satterfield MC, Bazer FW, Spencer TE. 164.  2006. Progesterone regulation of preimplantation conceptus growth and galectin 15 (LGALS15) in the ovine uterus. Biol. Reprod. 75:289–96 [Google Scholar]
  165. Wang J, Guillomot M, Hue I. 165.  2009. Cellular organization of the trophoblastic epithelium in elongating conceptuses of ruminants. C. R. Biol. 332:986–97 [Google Scholar]
  166. Bazer FW, Roberts RM, Basha SM, Zavy MT, Caton D, Barron DH. 166.  1979. Method for obtaining ovine uterine secretions from unilaterally pregnant ewes. J. Anim. Sci. 49:1522–27 [Google Scholar]
  167. Bazer FW, Vallet JL, Roberts RM, Sharp DC, Thatcher WW. 167.  1986. Role of conceptus secretory products in establishment of pregnancy. J. Reprod. Fertil. 76:841–50 [Google Scholar]
  168. Blomberg LA, Long EL, Sonstegard TS. Tassell CP, Dobrinsky JR, Zuelke KA. 168. , Van 2005. Serial analysis of gene expression during elongation of the peri-implantation porcine trophectoderm (conceptus). Physiol. Genom. 20:188–94 [Google Scholar]
  169. Blomberg LA, Schreier L, Li RW. 169.  2010. Characteristics of peri-implantation porcine concepti population and maternal milieu influence the transcriptome profile. Mol. Reprod. Dev. 77:978–89 [Google Scholar]
  170. Geisert RD, Brookbank JW, Roberts RM, Bazer FW. 170.  1982. Establishment of pregnancy in the pig: II. Cellular remodeling of the porcine blastocyst during elongation on day 12 of pregnancy. Biol. Reprod. 27:941–55 [Google Scholar]
  171. Godkin JD, Bazer FW, Lewis GS, Geisert RD, Roberts RM. 171.  1982. Synthesis and release of polypeptides by pig conceptuses during the period of blastocyst elongation and attachment. Biol. Reprod. 27:977–87 [Google Scholar]
  172. Lee SH, Zhao SH, Recknor JC, Nettleton D, Orley S. 172.  et al. 2005. Transcriptional profiling using a novel cDNA array identifies differential gene expression during porcine embryo elongation. Mol. Reprod. Dev. 71:129–39 [Google Scholar]
  173. Mathew DJ, Lucy MC, Geisert RD. 173.  2016. Interleukins, interferons, and establishment of pregnancy in pigs. Reproduction 151:R111–22 [Google Scholar]
  174. Pomp D, Good BA, Geisert RD, Corbin CJ, Conley AJ. 174.  1995. Sex identification in mammals with polymerase chain reaction and its use to examine sex effects on diameter of day-10 or -11 pig embryos. J. Anim. Sci. 73:1408–15 [Google Scholar]
  175. Ross JW, Ashworth MD, Stein DR, Couture OP, Tuggle CK, Geisert RD. 175.  2009. Identification of differential gene expression during porcine conceptus rapid trophoblastic elongation and attachment to uterine luminal epithelium. Physiol. Genom. 36:140–48 [Google Scholar]
  176. Yelich JV, Pomp D, Geisert RD. 176.  1997. Ontogeny of elongation and gene expression in the early developing porcine conceptus. Biol. Reprod. 57:1256–65 [Google Scholar]
  177. Allen WE, Goddard PJ. 177.  1984. Serial investigations of early pregnancy in pony mares using real time ultrasound scanning. Equine Vet. J. 16:509–14 [Google Scholar]
  178. Paolucci M, Palombi C, Sylla L, Stradaioli G, Monaci M. 178.  2012. Ultrasonographic features of the mule embryo, fetus and fetal-placental unit. Theriogenology 77:240–52 [Google Scholar]
  179. Willmann C, Schuler G, Hoffmann B, Parvizi N, Aurich C. 179.  2011. Effects of age and altrenogest treatment on conceptus development and secretion of LH, progesterone and eCG in early-pregnant mares. Theriogenology 75:421–28 [Google Scholar]
  180. Richard C, Hue I, Gelin V, Neveux A, Campion E. 180.  et al. 2015. Transcervical collection of bovine embryos up to day 21: an 8-year overview. Theriogenology 83:101–9 [Google Scholar]
  181. Curran S, Pierson RA, Ginther OJ. 181.  1986. Ultrasonographic appearance of the bovine conceptus from days 10 through 20. J. Am. Vet. Med. Assoc. 189:1289–94 [Google Scholar]
  182. Matsuyama S, Kojima T, Kato S, Kimura K. 182.  2012. Relationship between quantity of IFNT estimated by IFN-stimulated gene expression in peripheral blood mononuclear cells and bovine embryonic mortality after AI or ET. Reprod. Biol. Endocrinol. 10:21 [Google Scholar]
  183. Keller ML, Roberts AJ, Seidel GE Jr. 183.  1998. Characterization of insulin-like growth factor-binding proteins in the uterus and conceptus during early conceptus elongation in cattle. Biol. Reprod. 59:632–42 [Google Scholar]
  184. Betteridge KJ, Eaglesome MD, Randall GC, Mitchell D. 184.  1980. Collection, description and transfer of embryos from cattle 10–16 days after oestrus. J. Reprod. Fertil. 59:205–16 [Google Scholar]
  185. Forde N, Beltman ME, Duffy GB, Duffy P, Mehta JP. 185.  et al. 2011. Changes in the endometrial transcriptome during the bovine estrous cycle: effect of low circulating progesterone and consequences for conceptus elongation. Biol. Reprod. 84:266–78 [Google Scholar]
  186. Santos GM, Silva-Santos KC, Barreiros TR, Morotti F, Sanches BV. 186.  et al. 2016. High numbers of antral follicles are positively associated with in vitro embryo production but not the conception rate for FTAI in Nelore cattle. Anim. Reprod. Sci. 165:17–21 [Google Scholar]
  187. Ribeiro ES, Greco LF, Bisinotto RS, Lima FS, Thatcher WW, Santos JE. 187.  2016. Biology of preimplantation conceptus at the onset of elongation in dairy cows. Biol. Reprod. 94:97 [Google Scholar]
  188. Barnwell CV, Farin PW, Ashwell CM, Farmer WT, Galphin SP Jr., Farin CE. 188.  2016. Differences in mRNA populations of short and long bovine conceptuses on Day 15 of gestation. Mol. Reprod. Dev. 83:424–41 [Google Scholar]
  189. Loureiro B, Block J, Favoreto MG, Carambula S, Pennington KA. 189.  et al. 2011. Consequences of conceptus exposure to colony-stimulating factor 2 on survival, elongation, interferon-tau secretion, and gene expression. Reproduction 141:617–24 [Google Scholar]
  190. Greenstein JS, Murray RW, Foley RC. 190.  1958. Observations on the morphogenesis and histochemistry of the bovine preattachment placenta between 16 and 33 days of gestation. Anat. Rec. 132:321–41 [Google Scholar]
  191. Betsha S, Hoelker M, Salilew-Wondim D, Held E, Rings F. 191.  et al. 2013. Transcriptome profile of bovine elongated conceptus obtained from SCNT and IVP pregnancies. Mol. Reprod. Dev. 80:315–33 [Google Scholar]
  192. Valour D, Degrelle SA, Ponter AA, Giraud-Delville C, Campion E. 192.  et al. 2014. Energy and lipid metabolism gene expression of D18 embryos in dairy cows is related to dam physiological status. Physiol. Genom. 46:39–56 [Google Scholar]
  193. Thompson IM, Cerri RL, Kim IH, Ealy AD, Hansen PJ. 193.  et al. 2012. Effects of lactation and pregnancy on metabolic and hormonal responses and expression of selected conceptus and endometrial genes of Holstein dairy cattle. J. Dairy Sci. 95:5645–56 [Google Scholar]
/content/journals/10.1146/annurev-animal-022516-022900
Loading
/content/journals/10.1146/annurev-animal-022516-022900
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error