1932

Abstract

Dogs are second only to humans in medical surveillance and preventative health care, leading to a recent perception of increased cancer incidence. Scientific priorities in veterinary oncology have thus shifted, with a demand for cancer genetic screens, better diagnostics, and more effective therapies. Most dog breeds came into existence within the last 300 years, and many are derived from small numbers of founders. Each has undergone strong artificial selection, in which dog fanciers selected for many traits, including body size, fur type, color, skull shape, and behavior, to create novel breeds. The adoption of the breed barrier rule—no dog may become a registered member of a breed unless both its dam and its sire are registered members—ensures a relatively closed genetic pool within each breed. As a result, there is strong phenotypic homogeneity within breeds but extraordinary phenotypic variation between breeds. One consequence of this is the high level of breed-associated genetic disease. We and others have taken advantage of this to identify genes for a large number of canine maladies for which mouse models do not exist, particularly with regard to cancer.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-030117-014523
2019-02-15
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/animal/7/1/annurev-animal-030117-014523.html?itemId=/content/journals/10.1146/annurev-animal-030117-014523&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Clark LA, Wahl JM, Rees CA, Murphy KE 2006. Retrotransposon insertion in SILV is responsible for merle patterning of the domestic dog. PNAS 103:1376–81
    [Google Scholar]
  2. 2.  Kim J, Williams FJ, Dreger DL, Plassais J, Davis BW et al. 2018. Genetic selection of athletic success in sport-hunting dogs. PNAS 115:E7212–21
    [Google Scholar]
  3. 3.  Ostrander EA 2012. Franklin H. Epstein Lecture: both ends of the leash—the human links to good dogs with bad genes. N. Engl. J. Med. 367:636–46
    [Google Scholar]
  4. 4.  Karlsson EK, Baranowska I, Wade CM, Salmon Hillbertz NH, Zody MC et al. 2007. Efficient mapping of Mendelian traits in dogs through genome-wide association. Nat. Genet. 39:1321–28
    [Google Scholar]
  5. 5. Am. Vet. Med. Assoc. 2012. U.S. Pet Ownership and Demographics Sourcebook Schaumburg, IL: Am. Vet. Med. Assoc.
  6. 6.  Schiffman JD, Breen M 2015. Comparative oncology: what dogs and other species can teach us about humans with cancer. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370:201401231
    [Google Scholar]
  7. 7.  Knapp DW, Dhawan D, Ostrander E 2015. “Lassie,” “Toto,” and fellow pet dogs: poised to lead the way for advances in cancer prevention. Am. Soc. Clin. Oncol. Educ. Book 2015:e667–72
    [Google Scholar]
  8. 8.  Shearin AL, Ostrander EA 2010. Leading the way: canine models of genomics and disease. Dis. Models Mech. 3:27–34
    [Google Scholar]
  9. 9.  Alvarez CE 2014. Naturally occurring cancers in dogs: insights for translational genetics and medicine. ILAR J 55:16–45
    [Google Scholar]
  10. 10.  Merlo DF, Rossi L, Pellegrino C, Ceppi M, Cardellino U et al. 2008. Cancer incidence in pet dogs: findings of the Animal Tumor Registry of Genoa, Italy. J. Vet. Intern. Med. 22:976–84
    [Google Scholar]
  11. 11.  Khanna C, Lindblad-Toh K, Vail D, London C, Bergman P et al. 2006. The dog as a cancer model. Nat. Biotechnol. 24:1065–66
    [Google Scholar]
  12. 12.  Dorn CR 1976. Epidemiology of canine and feline tumors. Comp. Cont. Educ. Pract. Vet. 12:307–12
    [Google Scholar]
  13. 13.  Cadieu E, Ostrander EA 2007. Canine genetics offers new mechanisms for the study of human cancer. Cancer Epidemiol. Biomark. Prev. 16:2181–83
    [Google Scholar]
  14. 14.  Davis BW, Ostrander EA 2014. Domestic dogs and cancer research: a breed-based genomics approach. ILAR J 55:59–68
    [Google Scholar]
  15. 15.  Rowell JL, McCarthy DO, Alvarez CE 2011. Dog models of naturally occurring cancer. Trends Mol. Med. 17:380–88
    [Google Scholar]
  16. 16.  Pinho SS, Carvalho S, Cabral J, Reis CA, Gärtner F 2012. Canine tumors: a spontaneous animal model of human carcinogenesis. Transl. Res. 159:1165–72
    [Google Scholar]
  17. 17.  Dobson JM, Samuel S, Milstein H, Rogers K, Wood JL 2002. Canine neoplasia in the UK: estimates of incidence rates from a population of insured dogs. J. Small Anim. Pract. 43:240–46
    [Google Scholar]
  18. 18.  Clutton-Brock J 1995. Origins of the dog: domestication and early history. The Domestic Dog, Its Evolution, Behavior and Interactions with People J Serpell 7–20 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  19. 19.  Freedman AH, Wayne RK 2017. Deciphering the origin of dogs: from fossils to genomes. Annu. Rev. Anim. Biosci. 5:281–307
    [Google Scholar]
  20. 20.  Wayne RK, vonHoldt BM 2012. Evolutionary genomics of dog domestication. Mamm. Genome 23:3–18
    [Google Scholar]
  21. 21.  Fan Z, Silva P, Gronau I, Wang S, Armero AS et al. 2016. Worldwide patterns of genomic variation and admixture in gray wolves. Genome Res 26:163–73
    [Google Scholar]
  22. 22.  Vilà C, Savolainen P, Maldonado JE, Amorim IR, Rice JE et al. 1997. Multiple and ancient origins of the domestic dog. Science 276:1687–89
    [Google Scholar]
  23. 23.  Freedman AH, Gronau I, Schweizer RM, Ortega-Del Vecchyo D, Han E et al. 2014. Genome sequencing highlights the dynamic early history of dogs. PLOS Genet 10:e1004016
    [Google Scholar]
  24. 24.  Davis SJM, Valla FR 1978. Evidence for domestication of the dog 12,000 years ago in the Natufian of Israel. Nature 276:608–10
    [Google Scholar]
  25. 25.  Benecke N 1987. Studies on early dog remains from Northern Europe. J. Arch. Sci. 14:31–49
    [Google Scholar]
  26. 26.  Savolainen P, Zhang YP, Luo J, Lundeberg J, Leitner T 2002. Genetic evidence for an East Asian origin of domestic dogs. Science 298:1610–13
    [Google Scholar]
  27. 27.  Grimm D 2017. Siberia yields earliest evidence for dog breeding. Science 356:896
    [Google Scholar]
  28. 28.  Thalmann O, Shapiro B, Cui P, Schuenemann VJ, Sawyer SK et al. 2013. Complete mitochondrial genomes of ancient canids suggest a European origin of domestic dogs. Science 342:871–74
    [Google Scholar]
  29. 29.  Shannon LM, Boyko RH, Castelhano M, Corey E, Hayward JJ et al. 2015. Genetic structure in village dogs reveals a Central Asian domestication origin. PNAS 112:13639–44
    [Google Scholar]
  30. 30.  vonHoldt BM, Pollinger JP, Lohmueller KE, Han E, Parker HG et al. 2010. Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication. Nature 464:898–902
    [Google Scholar]
  31. 31.  Botigue LR, Song S, Scheu A, Gopalan S, Pendleton AL et al. 2017. Ancient European dog genomes reveal continuity since the Early Neolithic. Nat. Commun. 8:16082
    [Google Scholar]
  32. 32.  Grimm D 2016. Dogs may have been domesticated more than once. Science 352:1153–54
    [Google Scholar]
  33. 33.  Frantz LA, Mullin VE, Pionnier-Capitan M, Lebrasseur O, Ollivier M et al. 2016. Genomic and archaeological evidence suggest a dual origin of domestic dogs. Science 352:1228–31
    [Google Scholar]
  34. 34.  Parker HG, Dreger DL, Rimbault M, Davis BW, Mullen AB et al. 2017. Genomic analyses reveal the influence of geographic origin, migration, and hybridization on modern dog breed development. Cell Rep 19:697–708
    [Google Scholar]
  35. 35.  Boyko A, Quignon P, Li L, Schoenebeck J, Degenhardt J et al. 2010. A simple genetic architecture underlies morphological variation in dogs. PLOS Biol 8:e1000451
    [Google Scholar]
  36. 36.  Vaysse A, Ratnakumar A, Derrien T, Axelsson E, Rosengren Pielberg G et al. 2011. Identification of genomic regions associated with phenotypic variation between dog breeds using selection mapping. PLOS Genet 7:e1002316
    [Google Scholar]
  37. 37.  Hayward JJ, Castelhano MG, Oliveira KC, Corey E, Balkman C et al. 2016. Complex disease and phenotype mapping in the domestic dog. Nat. Commun. 7:10460
    [Google Scholar]
  38. 38.  Ostrander EA, Wayne RK, Freedman AH, Davis BW 2017. Demographic history, selection and functional diversity of the canine genome. Nat. Rev. Genet. 18:705–20
    [Google Scholar]
  39. 39.  Schoenebeck JJ, Ostrander EA 2014. Insights into morphology and disease from the dog genome project. Annu. Rev. Cell Dev. Biol. 30:535–60
    [Google Scholar]
  40. 40.  Akey JM, Ruhe AL, Akey DT, Wong AK, Connelly CF et al. 2010. Tracking footprints of artificial selection in the dog genome. PNAS 107:1160–65
    [Google Scholar]
  41. 41.  Dreger DL, Davis BW, Cocco R, Sechi S, Di Cerbo A et al. 2016. Commonalities in development of pure breeds and population isolates revealed in the genome of the Sardinian Fonni's Dog. Genetics 204:737–55
    [Google Scholar]
  42. 42.  Clark AR, Brace AH 1995. The International Encyclopedia of Dogs New York: Howell Book House
  43. 43. Am. Kennel Club 2006. The Complete Dog Book New York: Ballantine Books
  44. 44.  Jarvik GP, Stanford JL, Goode EL, McIndoe R, Kolb S et al. 1999. Confirmation of prostate cancer susceptibility genes using high-risk families. J. Natl. Cancer Inst. Monogr. 1999:2681–87
    [Google Scholar]
  45. 45.  Karlsson EK, Lindblad-Toh K 2008. Leader of the pack: gene mapping in dogs and other model organisms. Nat. Rev. Genet. 9:713–24
    [Google Scholar]
  46. 46.  Boyko AR 2011. The domestic dog: man's best friend in the genomic era. Genome Biol 12:216
    [Google Scholar]
  47. 47.  Parker HG, Ostrander EA 2005. Canine genomics and genetics: running with the pack. PLOS Genet 1:e58
    [Google Scholar]
  48. 48.  Sutter NB, Eberle MA, Parker HG, Pullar BJ, Kirkness EF et al. 2004. Extensive and breed-specific linkage disequilibrium in Canisfamiliaris. . Genome Res 14:2388–96
    [Google Scholar]
  49. 49.  Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB et al. 2005. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438:803–19
    [Google Scholar]
  50. 50.  Evans JM, Noorai RE, Tsai KL, Starr-Moss AN, Hill CM et al. 2017. Beyond the MHC: A canine model of dermatomyositis shows a complex pattern of genetic risk involving novel loci. PLOS Genet 13:e1006604
    [Google Scholar]
  51. 51.  Rinz CJ, Levine J, Minor KM, Humphries HD, Lara R et al. 2014. A COLQ missense mutation in Labrador Retrievers having congenital myasthenic syndrome. PLOS ONE 9:e106425
    [Google Scholar]
  52. 52.  Ahram DF, Grozdanic SD, Kecova H, Henkes A, Collin RW, Kuehn MH 2015. Variants in nebulin (NEB) are linked to the development of familial primary angle closure glaucoma in Basset Hounds. PLOS ONE 10:e0126660
    [Google Scholar]
  53. 53.  Forman OP, Hitti RJ, Pettitt L, Jenkins CA, O'Brien DP et al. 2016. An inversion disrupting FAM134B is associated with sensory neuropathy in the Border Collie dog breed. G3 6:2687–92
    [Google Scholar]
  54. 54.  Parker HG, Harris A, Dreger DL, Davis BW, Ostrander EA 2017. The bald and the beautiful: hairlessness in domestic dog breeds. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372:20150488
    [Google Scholar]
  55. 55.  Karyadi DM, Karlins E, Decker B, vonHoldt BM, Carpintero-Ramirez G et al. 2013. A copy number variant at the KITLG locus likely confers risk for canine squamous cell carcinoma of the digit. PLOS Genet 9:e1003409
    [Google Scholar]
  56. 56.  Karlsson E, Sigurdsson S, Ivansson E, Thomas R, Elvers I et al. 2013. Genome-wide analyses implicate 33 loci in heritable dog osteosarcoma, including regulatory variants near CDKN2A/B. . Genome Biol 14:R132
    [Google Scholar]
  57. 57.  Hernandez B, Adissu HA, Wei BR, Michael HT, Merlino G, Simpson RM 2018. Naturally occurring canine melanoma as a predictive comparative oncology model for human mucosal and other triple wild-type melanomas. Int. J. Mol. Sci. 19:E394
    [Google Scholar]
  58. 58.  Dreger DL, Rimbault M, Davis BW, Bhatnagar A, Parker HG, Ostrander EA 2016. Whole-genome sequence, SNP chips and pedigree structure: building demographic profiles in domestic dog breeds to optimize genetic-trait mapping. Dis. Models Mech. 9:1445–60
    [Google Scholar]
  59. 59.  Forman OP, Pettitt L, Komáromy AM, Bedford P, Mellersh C 2015. A novel genome-wide association study approach using genotyping by exome sequencing leads to the identification of a primary open angle glaucoma associated inversion disrupting ADAMTS17. . PLOS ONE 10:e1043546
    [Google Scholar]
  60. 60.  Broeckx BJG, Derrien T, Mottier S, Wucher V, Cadieu E et al. 2017. An exome sequencing based approach for genome-wide association studies in the dog. Sci. Rep. 7:15680
    [Google Scholar]
  61. 61.  Koskinen MT 2003. Individual assignment using microsatellite DNA reveals unambiguous breed identification in the domestic dog. Anim. Genet. 34:297–301
    [Google Scholar]
  62. 62.  Irion DN, Schaffer AL, Famula TR, Eggleston ML, Hughes SS, Pedersen NC 2003. Analysis of genetic variation in 28 dog breed populations with 100 microsatellite markers. J. Hered. 94:81–87
    [Google Scholar]
  63. 63.  Parker HG, Kim LV, Sutter NB, Carlson S, Lorentzen TD et al. 2004. Genetic structure of the purebred domestic dog. Science 304:1160–64
    [Google Scholar]
  64. 64.  Parker H, Kukekova AV, Akey DT, Goldstein O, Kirkness EF et al. 2007. Breed relationships facilitate fine-mapping studies: A 7.8-kb deletion cosegregates with Collie eye anomaly across multiple dog breeds. Genome Res 17:1562–71
    [Google Scholar]
  65. 65.  Dobson JM 2014. Breed-predispositions to cancer in pedigree dogs. ISRN Vet. Sci. 2013:941275
    [Google Scholar]
  66. 66.  Vail DM, MacEwen EG 2000. Spontaneously occurring tumors of companion animals as models for human cancer. Cancer Investig 18:781–92
    [Google Scholar]
  67. 67.  Adams VJ, Evans KM, Sampson J, Wood JLN 2010. Methods and mortality results of a health survey of purebred dogs in the UK. J. Small Anim. Pract. 51:512–24
    [Google Scholar]
  68. 68.  Ranieri G, Gadaleta CD, Patruno R, Zizzo N, Daidone MG et al. 2013. A model of study for human cancer: spontaneous occurring tumors in dogs. Biological features and translation for new anticancer therapies. Crit. Rev. Oncol. Hematol. 88:187–97
    [Google Scholar]
  69. 69.  Dhawan D, Paoloni M, Shukradas S, Choudhury DR, Craig BA et al. 2015. Comparative gene expression analyses identify luminal and nasal subtypes of canine invasive urothelial carcinoma that mimic patterns in human invasive bladder cancer. PLOS ONE 10:e0136688
    [Google Scholar]
  70. 70.  Parker HG, Shearin AL, Ostrander EA 2010. Man's best friend becomes biology's best in show: genome analyses in the domestic dog. Annu. Rev. Genet. 44:309–36
    [Google Scholar]
  71. 71.  Mutsaers AJ, Widmer WR, Knapp DW 2003. Canine transitional cell carcinoma. J. Vet. Intern. Med. 17:136–44
    [Google Scholar]
  72. 72.  Bonnett BN, Egenvall A, Olson P, Hedhammar A 1997. Mortality in insured Swedish dogs: rates and causes of death in various breeds. Vet. Rec. 141:S40–S44
    [Google Scholar]
  73. 73.  Deleted in proof
  74. 74.  Goldstein O, Zangerl B, Pearce-Kelling S, Sidjanin D, Kijas J et al. 2006. Linkage disequilibrium mapping in domestic dog breeds narrows the progressive rod-cone degeneration interval and identifies ancestral disease-transmitting chromosome. Genomics 88:541–50
    [Google Scholar]
  75. 75.  Song RB, Vite CH, Bradley CW, Cross JR 2013. Postmortem evaluation of 435 cases of intracranial neoplasia in dogs and relationship of neoplasm with breed, age, and body weight. J. Vet. Intern. Med. 27:1143–52
    [Google Scholar]
  76. 76.  Urfer SR, Gaillard C, Steiger A 2007. Lifespan and disease predispositions in the Irish Wolfhound: a review. Vet. Q. 29:102–11
    [Google Scholar]
  77. 77.  Phillips JC, Stephenson B, Hauck M, Dillberger J 2007. Heritability and segregation analysis of osteosarcoma in the Scottish deerhound. Genomics 90:354–63
    [Google Scholar]
  78. 78.  Phillips JC, Lembcke L, Chamberlin T 2010. A novel locus for canine osteosarcoma (OSA1) maps to CFA34, the canine orthologue of human 3q26. Genomics 96:220–27
    [Google Scholar]
  79. 79.  Abadie J, Hedan B, Cadieu E, De Brito C, Devauchelle P et al. 2009. Epidemiology, pathology, and genetics of histiocytic sarcoma in the Bernese mountain dog breed. J. Hered. 100:Suppl. 1S19–27
    [Google Scholar]
  80. 80.  Moore PF, Affolter VK, Vernau W 2006. Canine hemophagocytic histiocytic sarcoma: a proliferative disorder of CD11d+ macrophages. Vet. Pathol. 43:632–45
    [Google Scholar]
  81. 81.  Affolter VK, Moore PF 2002. Localized and disseminated histiocytic sarcoma of dendritic cell origin in dogs. Vet. Pathol. 39:74–83
    [Google Scholar]
  82. 82.  Thomas R, Bridge W, Benke K, Breen M 2003. Isolation and chromosomal assignment of canine genomic BAC clones representing 25 cancer-related genes. Cytogenet. Genome Res. 102:249–53
    [Google Scholar]
  83. 83.  Thomas R, Fiegler H, Ostrander EA, Galibert F, Carter NP, Breen M 2003. A canine cancer-gene microarray for CGH analysis of tumors. Cytogenet. Genome Res. 102:254–60
    [Google Scholar]
  84. 84.  Thomas R, Duke SE, Karlsson EK, Evans A, Ellis P et al. 2008. A genome assembly-integrated dog 1 Mb BAC microarray: a cytogenetic resource for canine cancer studies and comparative genomic analysis. Cytogenet. Genome Res. 122:110–21
    [Google Scholar]
  85. 85.  Breen M, Modiano JF 2008. Evolutionarily conserved cytogenetic changes in hematological malignancies of dogs and humans—man and his best friend share more than companionship. Chromosome Res 16:145–54
    [Google Scholar]
  86. 86.  Boria PA, Glickman NW, Schmidt BR, Widmer WR, Mutsaers AJ et al. 2005. Carboplatin and piroxicam in 31 dogs with transitional cell carcinoma of the urinary bladder. Vet. Comp. Oncol. 3:73–80
    [Google Scholar]
  87. 87.  Mohammed SI, Craig BA, Mutsaers AJ, Glickman NW, Snyder PW et al. 2003. Effects of the cyclooxygenase inhibitor, piroxicam, in combination with chemotherapy on tumor response, apoptosis, and angiogenesis in a canine model of human invasive urinary bladder cancer. Mol. Cancer Ther. 2:183–88
    [Google Scholar]
  88. 88.  Knapp DW 2001. Tumors of the urinary system. Small Animal Clinical Oncology SJ Withrow, EG MacEwen 490–99 Philadelphia, PA: WB Saunders. , 3rd ed..
    [Google Scholar]
  89. 89.  Siegel RL, Miller KD, Jemal A 2016. Cancer statistics, 2016. CA Cancer J. Clin. 66:7–30
    [Google Scholar]
  90. 90.  Svatek RS, Siefker-Radtke A, Dinney CP 2009. Management of metastatic urothelial cancer: the role of surgery as an adjunct to chemotherapy. Can. Urol. Assoc. J. 3:S228–31
    [Google Scholar]
  91. 91.  Witjes JA, Comperat E, Cowan NC, De Santis M, Gakis G et al. 2014. EAU guidelines on muscle-invasive and metastatic bladder cancer: summary of the 2013 guidelines. Eur. Urol. 65:778–92
    [Google Scholar]
  92. 92.  Yafi FA, Aprikian AG, Chin JL, Fradet Y, Izawa J et al. 2011. Contemporary outcomes of 2287 patients with bladder cancer who were treated with radical cystectomy: a Canadian multicentre experience. BJU Int 108:539–45
    [Google Scholar]
  93. 93.  Balar AV, Milowsky MI 2015. Cytotoxic and DNA-targeted therapy in urothelial cancer: Have we squeezed the lemon enough?. Cancer 121:179–87
    [Google Scholar]
  94. 94.  Figueroa JD, Middlebrooks CD, Banday AR, Ye Y, Garcia-Closas M et al. 2016. Identification of a novel susceptibility locus at 13q34 and refinement of the 20p12.2 region as a multi-signal locus associated with bladder cancer risk in individuals of European ancestry. Hum. Mol. Genet. 25:1203–14
    [Google Scholar]
  95. 95.  Figueroa JD, Han SS, Garcia-Closas M, Baris D, Jacobs EJ et al. 2014. Genome-wide interaction study of smoking and bladder cancer risk. Carcinogenesis 35:1737–44
    [Google Scholar]
  96. 96.  Matsuda K, Takahashi A, Middlebrooks CD, Obara W, Nasu Y et al. 2015. Genome-wide association study identified SNP on 15q24 associated with bladder cancer risk in Japanese population. Hum. Mol. Genet. 24:1177–84
    [Google Scholar]
  97. 97.  Rafnar T, Sulem P, Thorleifsson G, Vermeulen SH, Helgason H et al. 2014. Genome-wide association study yields variants at 20p12.2 that associate with urinary bladder cancer. Hum. Mol. Genet. 23:5545–57
    [Google Scholar]
  98. 98.  Wu X, Hildebrandt MA, Chang DW 2009. Genome-wide association studies of bladder cancer risk: a field synopsis of progress and potential applications. Cancer Metastasis Rev 28:269–80
    [Google Scholar]
  99. 99.  Rothman N, Garcia-Closas M, Chatterjee N, Malats N, Wu X et al. 2010. A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci. Nat. Genet. 42:978–84
    [Google Scholar]
  100. 100.  Wu S, Yang Z, Ye R, An D, Li C et al. 2016. Novel variants in MLL confer to bladder cancer recurrence identified by whole-exome sequencing. Oncotarget 7:2629–45
    [Google Scholar]
  101. 101.  Kiemeney LA, Thorlacius S, Sulem P, Geller F, Aben KK et al. 2008. Sequence variant on 8q24 confers susceptibility to urinary bladder cancer. Nat. Genet. 40:1307–12
    [Google Scholar]
  102. 102.  Forbes SA, Beare D, Boutselakis H, Bamford S, Bindal N et al. 2017. COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids Res 45:D777–D83
    [Google Scholar]
  103. 103.  Goebell PJ, Knowles MA 2010. Bladder cancer or bladder cancers? Genetically distinct malignant conditions of the urothelium. Urol. Oncol. 28:409–28
    [Google Scholar]
  104. 104. Cancer Genome Atlas Res. Netw. 2014. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 507:315–22
    [Google Scholar]
  105. 105.  Knapp DW 2006. Animal models: naturally occurring canine urinary bladder cancer. Textbook of Bladder Cancer SP Lerner, MP Schoenberg, CN Sternberg 171–75 Abingdon, UK: Taylor & Francis
    [Google Scholar]
  106. 106.  Sommer BC, Dhawan D, Ratliff TL, Knapp DW 2018. Naturally-occurring canine invasive urothelial carcinoma: a model for emerging therapies. Bladder Cancer 4:149–59
    [Google Scholar]
  107. 107.  Knapp DW, Ramos-Vara JA, Moore GE, Dhawan D, Bonney PL, Young KE 2014. Urinary bladder cancer in dogs, a naturally occurring model for cancer biology and drug development. ILAR J 55:100–18
    [Google Scholar]
  108. 108.  Charney VA, Miller MA, Heng HG, Weng HY, Knapp DW 2017. Skeletal metastasis of canine urothelial carcinoma: pathologic and computed tomographic features. Vet. Pathol. 54:380–86
    [Google Scholar]
  109. 109.  Raghavan M, Knapp DW, Dawson MH, Bonney PL, Glickman LT 2004. Topical flea and tick pesticides and the risk of transitional cell carcinoma of the urinary bladder in Scottish Terriers. J. Am. Vet. Med. Assoc. 225:389–94
    [Google Scholar]
  110. 110.  Glickman LT, Raghavan M, Knapp DW, Bonney PL, Dawson MH 2004. Herbicide exposure and the risk of transitional cell carcinoma of the urinary bladder in Scottish Terriers. J. Am. Vet. Med. Assoc. 224:1290–97
    [Google Scholar]
  111. 111.  Decker B, Parker HG, Dhawan D, Kwon EM, Karlins E et al. 2015. Homologous mutation to human BRAF V600E is common in naturally occurring canine bladder cancer—evidence for a relevant model system and urine-based diagnostic test. Mol. Cancer Res. 13:993–1002
    [Google Scholar]
  112. 112.  Mochizuki H, Shapiro SG, Breen M 2015. Detection of BRAF mutation in urine DNA as a molecular diagnostic for canine urothelial and prostatic carcinoma. PLOS ONE 10:e0144170
    [Google Scholar]
  113. 113.  Maeda S, Tomiyasu H, Tsuboi M, Inoue A, Ishihara G et al. 2018. Comprehensive gene expression analysis of canine invasive urothelial bladder carcinoma by RNA-Seq. BMC Cancer 18:472
    [Google Scholar]
  114. 114.  Knapp DW 2007.Tumors of the urinary system. In Small Animal Clinical Oncology, ed. SJ Winthrow, DM Vail, pp. 649–58. St. Louis, MO: Saunders. 4th ed.
  115. 115.  Padgett GA, Madewell BR, Keller ET, Jodar L, Packard M 1995. Inheritance of histiocytosis in Bernese mountain dogs. J. Small Anim. Pract. 36:93–98
    [Google Scholar]
  116. 116.  Erich SA, Constantino-Casas F, Dobson JM, Teske E 2018. Morphological distinction of histiocytic sarcoma from other tumor types in Bernese Mountain Dogs and Flatcoated Retrievers. In Vivo 32:7–17
    [Google Scholar]
  117. 117.  Erich SA, Rutteman GR, Teske E 2013. Causes of death and the impact of histiocytic sarcoma on the life expectancy of the Dutch population of Bernese mountain dogs and Flat-coated retrievers. Vet. J. 198:678–83
    [Google Scholar]
  118. 118.  Asada H, Tsuboi M, Chambers JK, Uchida K, Tomiyasu H et al. 2017. A 2-base insertion in exon 5 is a common mutation of the TP53 gene in dogs with histiocytic sarcoma. J. Vet. Med. Sci. 79:1721–26
    [Google Scholar]
  119. 119.  Favara BE, Feller AC, Pauli M, Jaffe ES, Weiss LM et al. 1997. Contemporary classification of histiocytic disorders. The WHO Committee On Histiocytic/Reticulum Cell Proliferations. Reclassification Working Group of the Histiocyte Society. Med. Pediatr. Oncol. 29:157–66
    [Google Scholar]
  120. 120.  Pileri SA, Grogan TM, Harris NL, Banks P, Campo E et al. 2002. Tumours of histiocytes and accessory dendritic cells: an immunohistochemical approach to classification from the International Lymphoma Study Group based on 61 cases. Histopathology 41:1–29
    [Google Scholar]
  121. 121.  Krooks J, Minkov M, Weatherall AG 2018. Langerhans cell histiocytosis in children: history, classification, pathobiology, clinical manifestations, and prognosis. J. Am. Acad. Dermatol. 78:1035–44
    [Google Scholar]
  122. 122.  Haroche J, Cohen-Aubart F, Emile JF, Arnaud L, Maksud P et al. 2013. Dramatic efficacy of vemurafenib in both multisystemic and refractory Erdheim-Chester disease and Langerhans cell histiocytosis harboring the BRAF V600E mutation. Blood 121:1495–500
    [Google Scholar]
  123. 123.  Utikal J, Ugurel S, Kurzen H, Erben P, Reiter A et al. 2007. Imatinib as a treatment option for systemic non-Langerhans cell histiocytoses. Arch. Dermatol. 143:736–40
    [Google Scholar]
  124. 124.  Hedan B, Thomas R, Motsinger-Reif A, Abadie J, Andre C et al. 2011. Molecular cytogenetic characterization of canine histiocytic sarcoma: A spontaneous model for human histiocytic cancer identifies deletion of tumor suppressor genes and highlights influence of genetic background on tumor behavior. BMC Cancer 11:201
    [Google Scholar]
  125. 125.  Shearin A, Hedan B, Cadieu E, Erich SA, Schmidt EV et al. 2012. The MTAP-CDKN2A locus confers susceptibility to a naturally occurring canine cancer. Cancer Epidemiol. Biomark. Prev. 21:1019–27
    [Google Scholar]
  126. 126.  MacArthur J, Bowler E, Cerezo M, Gil L, Hall P et al. 2017. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res 45:D896–D901
    [Google Scholar]
  127. 127.  Jeck WR, Siebold AP, Sharpless NE 2012. Review: a meta-analysis of GWAS and age-associated diseases. Aging Cell 11:727–31
    [Google Scholar]
  128. 128.  Mitelman F, Johansson B, Mertens F 2007. The impact of translocations and gene fusions on cancer causation. Nat. Rev. Cancer 7:233–45
    [Google Scholar]
  129. 129.  Sander B, Middel P, Gunawan B, Schulten HJ, Baum F et al. 2007. Follicular dendritic cell sarcoma of the spleen. Hum. Pathol. 38:668–72
    [Google Scholar]
  130. 130.  Sterenczak KA, Kleinschmidt S, Wefstaedt P, Eberle N, Hewicker-Trautwein M et al. 2011. Quantitative PCR and immunohistochemical analyses of HMGB1 and RAGE expression in canine disseminated histiocytic sarcoma (malignant histiocytosis). Anticancer Res 31:1541–48
    [Google Scholar]
  131. 131.  Thaiwong T, Sirivisoot S, Takada M, Yuzbasiyan-Gurkan V, Kiupel M 2018. Gain-of-function mutation in PTPN11 in histiocytic sarcomas of Bernese Mountain Dogs. Vet. Comp. Oncol. 16:220–28
    [Google Scholar]
  132. 132.  Kirpensteijn J, Kik M, Teske E, Rutteman GR 2008. TP53 gene mutations in canine osteosarcoma. Vet. Surg. 37:454–60
    [Google Scholar]
  133. 133.  York D, Higgins RJ, LeCouteur RA, Wolfe AN, Grahn R et al. 2012. TP53 mutations in canine brain tumors. Vet. Pathol. 49:796–801
    [Google Scholar]
  134. 134.  Koshino A, Goto-Koshino Y, Setoguchi A, Ohno K, Tsujimoto H 2016. Mutation of p53 gene and its correlation with the clinical outcome in dogs with lymphoma. J. Vet. Intern. Med. 30:223–29
    [Google Scholar]
  135. 135.  Moore PF 1984. Systemic histiocytosis of Bernese mountain dogs. Vet. Pathol. 21:554–63
    [Google Scholar]
  136. 136.  Marino D, Mattiesen DT, Stefanacci JD, Moroff SD 1995. Evaluation of dogs with digit masses: 117 cases (1981–1991). J. Am. Vet. Med. Assoc. 207:726–28
    [Google Scholar]
  137. 137.  Henry CJ, Brewer WG Jr, Whitley EM, Tyler JW, Ogilvie GK et al. 2005. Canine digital tumors: a veterinary cooperative oncology group retrospective study of 64 dogs. J. Vet. Intern. Med. 19:720–24
    [Google Scholar]
  138. 138.  O'Brien MG, Berg J, Engler SJ 1992. Treatment by digital amputation of subungual squamous cell carcinoma in dogs: 21 cases (1987–1988). J. Am. Vet. Med. Assoc. 201:759–61
    [Google Scholar]
  139. 139.  Sulem P, Gudbjartsson DF, Stacey SN, Helgason A, Rafnar T et al. 2007. Genetic determinants of hair, eye and skin pigmentation in Europeans. Nat. Genet. 39:1443–52
    [Google Scholar]
  140. 140.  Miller CT, Beleza S, Pollen AA, Schluter D, Kittles RA et al. 2007. cis-Regulatory changes in Kit ligand expression and parallel evolution of pigmentation in sticklebacks and humans. Cell 131:1179–89
    [Google Scholar]
  141. 141.  Nowinsky M 1876. Zur Frage ueber die Impfung der krebsigen Geschwuelste. Zentralbl. Med. Wissensch. 14:790–91
    [Google Scholar]
  142. 142.  Sticker A 1906. Transplantables Rundzellensarkom des Hundes. Z. Krebsforsch. 4:227–314
    [Google Scholar]
  143. 143.  Yang TJ 1988. Immunobiology of a spontaneously regressive tumor, the canine transmissible venereal sarcoma (review). Anticancer Res 8:93–95
    [Google Scholar]
  144. 144.  Cohen D 1985. The canine transmissible venereal tumor: a unique result of tumor progression. Adv. Cancer Res. 43:75–112
    [Google Scholar]
  145. 145.  Das U, Das AK 2000. Review of canine transmissible venereal sarcoma. Vet. Res. Commun. 24:545–56
    [Google Scholar]
  146. 146.  Strakova A, Murchison EP 2014. The changing global distribution and prevalence of canine transmissible venereal tumour. BMC Vet. Res. 10:168
    [Google Scholar]
  147. 147.  Ostrander EA, Davis BW, Ostrander GK 2016. Transmissible tumors: breaking the cancer paradigm. Trends Genet 32:1–15
    [Google Scholar]
  148. 148.  Bellingham Smith G, Washbourn JW 1898. Infective venereal tumours in dog. J. Pathol. Bateriol. 5:99–111
    [Google Scholar]
  149. 149.  Murchison EP 2008. Clonally transmissible cancers in dogs and Tasmanian devils. Oncogene 27:Suppl. 2S19–30
    [Google Scholar]
  150. 150.  Rebbeck CA, Thomas R, Breen M, Leroi AM, Burt A 2009. Origins and evolution of a transmissible cancer. Evolution 63:2340–49
    [Google Scholar]
  151. 151.  Murgia C, Pritchard JK, Kim SY, Fassati A, Weiss RA 2006. Clonal origin and evolution of a transmissible cancer. Cell 126:477–87
    [Google Scholar]
  152. 152.  Decker B, Davis BW, Rimbault M, Long AH, Karlins E et al. 2015. Comparison against 186 canid whole-genome sequences reveals survival strategies of an ancient clonally transmissible canine tumor. Genome Res 25:1646–55
    [Google Scholar]
  153. 153.  Katzir N, Arman E, Cohen D, Givol D, Rechavi G 1987. Common origin of transmissible venereal tumors (TVT) in dogs. Oncogene 1:445–48
    [Google Scholar]
  154. 154.  Strakova A, Murchison EP 2015. The cancer which survived: insights from the genome of an 11,000-year-old cancer. Curr. Opin. Genet. Dev. 30:49–55
    [Google Scholar]
  155. 155.  Murchison EP, Wedge DC, Alexandrov LB, Fu B, Martincorena I et al. 2014. Transmissible [corrected] dog cancer genome reveals the origin and history of an ancient cell lineage. Science 343:437–40
    [Google Scholar]
  156. 156.  Thomas R, Rebbeck C, Leroi AM, Burt A, Breen M 2009. Extensive conservation of genomic imbalances in canine transmissible venereal tumors (CTVT) detected by microarray-based CGH analysis. Chromosome Res 17:927–34
    [Google Scholar]
  157. 157.  Karlson AG, Mann FC 1952. The transmissible venereal tumor of dogs: observations on forty generations of experimental transfers. Ann. N.Y. Acad. Sci. 54:1197–213
    [Google Scholar]
  158. 158.  Ganguly B, Das U, Das AK 2013. Canine transmissible venereal tumour: a review. Vet. Comp. Oncol. 14:1–12
    [Google Scholar]
  159. 159.  Wade H 1908. An experimental investigation of infective sarcoma of the dog, with a consideration of its relationship to cancer. J. Pathol. Bacteriol. 12:384–425
    [Google Scholar]
  160. 160.  Chu R, Lin CY, Liu CC, Yang SY, Hsiao YW et al. 2001. Proliferation characteristics of canine transmissible venereal tumor. Anticancer Res 21:4017–24
    [Google Scholar]
  161. 161.  Powers RD 1968. Immunologic properties of canine transmissible venereal sarcoma. Am. J. Vet. Res. 29:1637–45
    [Google Scholar]
  162. 162.  Yang TJ, Jones JB 1973. Canine transmissible venereal sarcoma: transplantation studies in neonatal and adult dogs. J. Natl. Cancer Inst. 51:1915–18
    [Google Scholar]
  163. 163.  Yang TJ, Chandler JP, Dunne-Anway S 1987. Growth stage dependent expression of MHC antigens on the canine transmissible venereal sarcoma. Br. J. Cancer 55:131–34
    [Google Scholar]
  164. 164.  Murchison EP, Schulz-Trieglaff OB, Ning Z, Alexandrov LB, Bauer MJ et al. 2012. Genome sequencing and analysis of the Tasmanian devil and its transmissible cancer. Cell 148:780–91
    [Google Scholar]
  165. 165.  Browning BL, Browning SR 2016. Genotype imputation with millions of reference samples. Am. J. Hum. Genet. 98:116–26
    [Google Scholar]
/content/journals/10.1146/annurev-animal-030117-014523
Loading
/content/journals/10.1146/annurev-animal-030117-014523
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error