1932

Abstract

Endogenous retroviruses (ERVs) serve as markers of ancient viral infections and provide invaluable insight into host and viral evolution. ERVs have been exapted to assist in performing basic biological functions, including placentation, immune modulation, and oncogenesis. A subset of ERVs share high nucleotide similarity to circulating horizontally transmitted exogenous retrovirus (XRV) progenitors. In these cases, ERV–XRV interactions have been documented and include () recombination to result in ERV–XRV chimeras, () ERV induction of immune self-tolerance to XRV antigens, () ERV antigen interference with XRV receptor binding, and () interactions resulting in both enhancement and restriction of XRV infections. Whereas the mechanisms governing recombination and immune self-tolerance have been partially determined, enhancement and restriction of XRV infection are virus specific and only partially understood. This review summarizes interactions between six unique ERV–XRV pairs, highlighting important ERV biological functions and potential evolutionary histories in vertebrate hosts.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-animal-050620-101416
2021-02-15
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/animal/9/1/annurev-animal-050620-101416.html?itemId=/content/journals/10.1146/annurev-animal-050620-101416&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Coffin JM. 1992. Genetic Diversity and Evolution of Retroviruses Berlin, Heidelberg, Ger: Springer
  2. 2. 
    Coffin JM. 2004. Evolution of retroviruses: fossils in our DNA. Proc. Am. Philos. Soc. 148:264–80
    [Google Scholar]
  3. 3. 
    Lober U, Hobbs M, Dayaram A, Tsangaras K, Jones K et al. 2018. Degradation and remobilization of endogenous retroviruses by recombination during the earliest stages of a germ-line invasion. PNAS 115:348609–14
    [Google Scholar]
  4. 4. 
    Boeke JD, Stoye JP. 1997. Retrotransposons, endogenous retroviruses, and the evolution of retroelements. Retroviruses JM Coffin, SH Hughes, HE Varmus 343–46 Cold Spring Harbor, NY: Cold Spring Harb. Lab. Press
    [Google Scholar]
  5. 5. 
    Vitte C, Panaud O. 2003. Formation of solo-LTRs through unequal homologous recombination counterbalances amplifications of LTR retrotransposons in rice Oryza sativa L. Mol. Biol. Evol. 20:528–40
    [Google Scholar]
  6. 6. 
    Britten RJ. 1997. Mobile elements inserted in the distant past have taken on important functions. Gene 205:177–82
    [Google Scholar]
  7. 7. 
    Aiewsakun P, Katzourakis A. 2017. Marine origin of retroviruses in the early Palaeozoic Era. Nat. Commun. 8:13954
    [Google Scholar]
  8. 8. 
    Garcia-Etxebarria K, Sistiaga-Poveda M, Begoña MJ 2014. Endogenous retroviruses in domestic animals. Curr. Genom. 15:256–65
    [Google Scholar]
  9. 9. 
    Rasmussen HB. 1997. Interactions between exogenous and endogenous retroviruses. J. Biomed. Sci. 4:1–8
    [Google Scholar]
  10. 10. 
    Johnson WE. 2019. Origins and evolutionary consequences of ancient endogenous retroviruses. Nat. Rev. Microbiol. 17:355–70
    [Google Scholar]
  11. 11. 
    Xu X, Zhao H, Gong Z, Han GZ 2018. Endogenous retroviruses of non-avian/mammalian vertebrates illuminate diversity and deep history of retroviruses. PLOS Pathog 14:e1007072
    [Google Scholar]
  12. 12. 
    Greenwood AD, Ishida Y, O'Brien SP, Roca AL, Eiden MV 2018. Transmission, evolution, and endogenization: lessons learned from recent retroviral invasions. Microbiol. Mol. Biol. Rev. 82:e00044
    [Google Scholar]
  13. 13. 
    Denner J. 2016. Expression and function of endogenous retroviruses in the placenta. APMIS 124:31–43
    [Google Scholar]
  14. 14. 
    Frank JA, Feschotte C. 2017. Co-option of endogenous viral sequences for host cell function. Curr. Opin. Virol. 25:81–89
    [Google Scholar]
  15. 15. 
    Grandi N, Tramontano E. 2018. Human endogenous retroviruses are ancient acquired elements still shaping innate immune responses. Front. Immunol. 9:2039
    [Google Scholar]
  16. 16. 
    Bannert N, Hofmann H, Block A, Hohn O 2018. HERVs new role in cancer: from accused perpetrators to cheerful protectors. Front. Microbiol. 9:178
    [Google Scholar]
  17. 17. 
    Luo GX, Taylor J. 1990. Template switching by reverse transcriptase during DNA synthesis. J. Virol. 64:4321–28
    [Google Scholar]
  18. 18. 
    Rous P. 1911. A sarcoma of the fowl transmissible by an agent separable from the tumor cells. J. Exp. Med. 13:397–411
    [Google Scholar]
  19. 19. 
    Rubin H. 2011. The early history of tumor virology: Rous, RIF, and RAV. PNAS 108:14389–96
    [Google Scholar]
  20. 20. 
    Rubin H. 1955. Quantitative relations between causative virus and cell in the Rous No. 1 chicken sarcoma. Virology 1:445–73
    [Google Scholar]
  21. 21. 
    Payne LN, Nair V. 2012. The long view: 40 years of avian leukosis research. Avian Pathol 41:11–19
    [Google Scholar]
  22. 22. 
    Venugopal K. 1999. Avian leukosis virus subgroup J: a rapidly evolving group of oncogenic retroviruses. Res. Vet. Sci. 67:113–19
    [Google Scholar]
  23. 23. 
    Swanstrom R, Wills JW. 1997. Synthesis, assembly, and processing of viral proteins. Retroviruses JM Coffin, SH Hughes, HE Varmus 263–334 Cold Spring Harbor, NY: Cold Spring Harb. Lab. Press
    [Google Scholar]
  24. 24. 
    Habel DE, Dohrer KL, Conklin KF 1993. Functional and defective components of avian endogenous virus long terminal repeat enhancer sequences. J. Virol. 67:1545–54
    [Google Scholar]
  25. 25. 
    Rutherford K, Benkel BF. 2013. Characterization of insertion sites and development of locus-specific assays for three broiler-derived subgroup E avian leukosis virus proviruses. Avian Pathol 42:373–78
    [Google Scholar]
  26. 26. 
    Benkel B, Rutherford K. 2014. Endogenous avian leukosis viral loci in the Red Jungle Fowl genome assembly. Poult. Sci. 93:2988–90
    [Google Scholar]
  27. 27. 
    Astrin SM, Crittenden LB, Buss EG 1980. ev 2, a genetic locus containing structural genes for endogenous virus, codes for Rous-associated virus type 0 produced by line 72 chickens. J. Virol. 33:250–55
    [Google Scholar]
  28. 28. 
    Hughes SH. 1982. Sequence of the long terminal repeat and adjacent segments of the endogenous avian virus Rous-associated virus 0. J. Virol. 43:191–200
    [Google Scholar]
  29. 29. 
    Vogt PK, Friis RR. 1971. An avian leukosis virus related to RSV(O): properties and evidence for helper activity. Virology 43:223–34
    [Google Scholar]
  30. 30. 
    Crittenden LB, Hayward WS, Hanafusa H, Fadly AM 1980. Induction of neoplasms by subgroup E recombinants of exogenous and endogenous avian retroviruses (Rous-associated virus type 60). J. Virol. 33:915–19
    [Google Scholar]
  31. 31. 
    Smith LM, Toye AA, Howes K, Bumstead N, Payne LN, Venugopal K 1999. Novel endogenous retroviral sequences in the chicken genome closely related to HPRS-103 (subgroup J) avian leukosis virus. J. Gen. Virol. 80:261–68
    [Google Scholar]
  32. 32. 
    Sacco MA, Howes K, Smith LP, Nair VK 2004. Assessing the roles of endogenous retrovirus EAV-HP in avian leukosis virus subgroup J emergence and tolerance. J. Virol. 78:10525–35
    [Google Scholar]
  33. 33. 
    Zhao Z, Rao M, Liao M, Cao W 2018. Phylogenetic analysis and pathogenicity assessment of the emerging recombinant subgroup K of avian leukosis virus in South China. Viruses 10:194
    [Google Scholar]
  34. 34. 
    Crittenden LB, McMahon S, Halpern MS, Fadly AM 1987. Embryonic infection with the endogenous avian leukosis virus Rous-associated virus-0 alters responses to exogenous avian leukosis virus infection. J. Virol. 61:722–25
    [Google Scholar]
  35. 35. 
    Smith EJ, Fadly AM, Crittenden LB 1990. Interactions between endogenous virus loci ev6 and ev21. 1. Immune response to exogenous avian leukosis virus infection. Poult. Sci. 69:1244–50
    [Google Scholar]
  36. 36. 
    Kuhnlein U, Fairfull RW, Gowe R, Kulenkamp A, Mou L, Zadworny D 1992. Synergism between the endogenous viral loci ev6 and ev9 in inducing immunological tolerance to avian leukosis virus. Br. Poult. Sci. 34:93–104
    [Google Scholar]
  37. 37. 
    Gavora JS, Spencer JL, Benkel B, Gagnon C, Emsley A, Kulenkamp A 1995. Endogenous viral genes influence infection with avian leukosis virus. Avian Pathol 24:653–64
    [Google Scholar]
  38. 38. 
    Fadly AM, Smith EJ. 1997. Role of contact and genetic transmission of endogenous virus-21 in the susceptibility of chickens to avian leukosis virus infection and tumors. Poult. Sci. 76:968–73
    [Google Scholar]
  39. 39. 
    Crittenden LB, Smith EJ, Fadly AM 1984. Influence of endogenous viral (ev) gene expression and strain of exogenous avial leukosis virus (ALV) on mortality and ALV infection and shedding in chickens. Avian Dis 28:1037–56
    [Google Scholar]
  40. 40. 
    Denesvre C, Soubieux D, Pin G, Hue D, Dambrine G 2003. Interference between avian endogenous ev/J 4.1 and exogenous ALV-J retroviral envelopes. J. Gen. Virol. 84:3233–38
    [Google Scholar]
  41. 41. 
    Hu X, Zhu W, Chen S, Liu Y, Sun Z et al. 2017. Expression patterns of endogenous avian retrovirus ALVE1 and its response to infection with exogenous avian tumour viruses. Arch. Virol. 162:89–101
    [Google Scholar]
  42. 42. 
    Hu X, Zhu W, Chen S, Liu Y, Sun Z et al. 2016. Expression of the env gene from the avian endogenous retrovirus ALVE and regulation by miR-155. Arch. Virol. 161:1623–32
    [Google Scholar]
  43. 43. 
    Palmarini M, Cousens C, Dalziel RG, Bai J, Stedman K et al. 1996. The exogenous form of Jaagsiekte retrovirus is specifically associated with a contagious lung cancer of sheep. J. Virol. 70:1618–23
    [Google Scholar]
  44. 44. 
    Sharp JM, De Martini JC 2003. Natural history of JSRV in sheep. Curr. Top. Microbiol. Immunol. 275:55–79
    [Google Scholar]
  45. 45. 
    Leroux C, Girard N, Cottin V, Greenland T, Mornex JF, Archer F 2007. Jaagsiekte sheep retrovirus (JSRV): from virus to lung cancer in sheep. Vet. Res. 38:211–28
    [Google Scholar]
  46. 46. 
    Carlson J, Lyon M, Bishop J, Vaiman A, Cribiu E et al. 2003. Chromosomal distribution of endogenous Jaagsiekte sheep retrovirus proviral sequences in the sheep genome. J. Virol. 77:9662–68
    [Google Scholar]
  47. 47. 
    Palmarini M, Hallwirth C, York D, Murgia C, de Oliveira T et al. 2000. Molecular cloning and functional analysis of three type D endogenous retroviruses of sheep reveal a different cell tropism from that of the highly related exogenous jaagsiekte sheep retrovirus. J. Virol. 74:8065–76
    [Google Scholar]
  48. 48. 
    Hecht SJ, Stedman KE, Carlson JO, DeMartini JC 1996. Distribution of endogenous type B and type D sheep retrovirus sequences in ungulates and other mammals. PNAS 93:3297–302
    [Google Scholar]
  49. 49. 
    Dunlap KA, Palmarini M, Varela M, Burghardt RC, Hayashi K et al. 2006. Endogenous retroviruses regulate periimplantation placental growth and differentiation. PNAS 103:14390–95
    [Google Scholar]
  50. 50. 
    Bai J, Zhu R-Y, Stedman K, Cousens C, Carlson J et al. 1996. Unique long terminal repeat U3 sequences distinguish exogenous jaagsiekte sheep retroviruses associated with ovine pulmonary carcinoma from endogenous loci in the sheep genome. J. Virol. 70:3159–68
    [Google Scholar]
  51. 51. 
    McGee-Estrada K, Fan H. 2007. Comparison of LTR enhancer elements in sheep betaretroviruses: insights into the basis for tissue-specific expression. Virus Genes 35:303–12
    [Google Scholar]
  52. 52. 
    DeMartini JC, Carlson JO, Leroux C, Spencer TE, Palmarini M 2003. Endogenous retrovirus related to jaagsiekte sheep retrovirus. Curr. Top. Microbiol. Immunol. 275:117–37
    [Google Scholar]
  53. 53. 
    Varela M, Spencer TE, Palmarini M, Arnaud F 2009. Friendly viruses: the special relationship between endogenous retroviruses and their host. Ann. N.Y. Acad. Sci. 1178:157–72
    [Google Scholar]
  54. 54. 
    Spencer TE, Mura M, Gray CA, Griebel PJ, Palmarini M 2003. Receptor usage and fetal expression of ovine endogenous betaretroviruses: implications for coevolution of endogenous and exogenous retroviruses. J. Virol. 77:749–53
    [Google Scholar]
  55. 55. 
    Murcia PR, Arnaud F, Palmarini M 2007. The transdominant endogenous retrovirus enJS56A1 associates with and blocks intracellular trafficking of Jaagsiekte sheep retrovirus Gag. J. Virol. 81:1762–72
    [Google Scholar]
  56. 56. 
    Arnaud F, Varela M, Spencer TE, Palmarini M 2008. Coevolution of endogenous betaretroviruses of sheep and their host. Cell. Mol. Life Sci. 65:3422–32
    [Google Scholar]
  57. 57. 
    Arnaud F, Caporale M, Varela M, Biek R, Chessa B et al. 2007. A paradigm for virus-host coevolution: sequential counter-adaptations between endogenous and exogenous retroviruses. PLOS Pathog 3:e170
    [Google Scholar]
  58. 58. 
    Viginier B, Dolmazon C, Lantier I, Lantier F, Archer F et al. 2012. Copy number variation and differential expression of a protective endogenous retrovirus in sheep. PLOS ONE 7:e41965
    [Google Scholar]
  59. 59. 
    Vandamme TF. 2014. Use of rodents as models of human diseases. J. Pharm. Bioallied Sci. 6:2–9
    [Google Scholar]
  60. 60. 
    Bittner JJ. 1936. Some possible effects of nursing on the mammary gland tumor incidence in mice. Science 84:162
    [Google Scholar]
  61. 61. 
    Morris VL, Medeiros E, Ringold GM, Bishop JM, Varmus HE 1977. Comparison of mouse mammary tumor virus-specific DNA in inbred, wild and Asian mice, and in tumors and normal organs from inbred mice. J. Mol. Biol. 114:73–91
    [Google Scholar]
  62. 62. 
    Holt MP, Shevach EM, Punkosdy GA 2013. Endogenous mouse mammary tumor viruses (Mtv): new roles for an old virus in cancer, infection, and immunity. Front. Oncol. 3:287
    [Google Scholar]
  63. 63. 
    Choi Y, Kappler JW, Marrack P 1991. A superantigen encoded in the open reading frame of the 3' long terminal repeat of mouse mammary tumour virus. Nature 350:203–7
    [Google Scholar]
  64. 64. 
    Marrack P, Kushnir E, Kappler J 1991. A maternally inherited superantigen encoded by a mammary tumour virus. Nature 349:524–26
    [Google Scholar]
  65. 65. 
    Herman A, Kappler JW, Marrack P, Pullen AM 1991. Superantigens: mechanism of T-cell stimulation and role in immune responses. Annu. Rev. Immunol. 9:745–72
    [Google Scholar]
  66. 66. 
    Golovkina TV, Chervonsky A, Dudley JP, Ross SR 1992. Transgenic mouse mammary tumor virus superantigen expression prevents viral infection. Cell 69:637–45
    [Google Scholar]
  67. 67. 
    Wrona T, Dudley JP. 1996. Major histocompatibility complex class II I-E-independent transmission of C3H mouse mammary tumor virus. J. Virol. 70:1246–49
    [Google Scholar]
  68. 68. 
    Held W, Shakhov AN, Izui S, Waanders GA, Scarpellino L et al. 1993. Superantigen-reactive CD4+ T cells are required to stimulate B cells after infection with mouse mammary tumor virus. J. Exp. Med. 177:359–66
    [Google Scholar]
  69. 69. 
    Passos GA, Speck-Hernandez CA, Assis AF, Mendes-da-Cruz DA 2018. Update on Aire and thymic negative selection. Immunology 153:10–20
    [Google Scholar]
  70. 70. 
    Lee KH, Lim D, Chiu S, Greenhalgh D, Cho K 2016. Genomic landscapes of endogenous retroviruses unveil intricate genetics of conventional and genetically-engineered laboratory mouse strains. Exp. Mol. Pathol. 100:248–56
    [Google Scholar]
  71. 71. 
    Ohkusu-Tsukada K, Tsukada T, Takahashi K 2017. Clonal deletion of T cell repertoires with specific T cell receptor Vβ chains by two endogenous superantigens in NC/Nga mice. Biosci. Biotechnol. Biochem. 81:2160–63
    [Google Scholar]
  72. 72. 
    Bolin SR. 1995. The pathogenesis of mucosal disease. Vet. Clin. N. Am. Food Anim. Pract. 11:489–500
    [Google Scholar]
  73. 73. 
    van Nie R, Vaerstraeten AA 1975. Studies of genetic transmission of mammary tumour virus by C3Hf mice. Int. J. Cancer 16:922–31
    [Google Scholar]
  74. 74. 
    Imai S, Tsubura Y, Hilgers J, Michalides R 1983. A new locus (Mtv-4) for endogenous mammary tumor virus expression and early mammary tumor development in the SHN mouse strain. J. Natl. Cancer Inst. 71:517–21
    [Google Scholar]
  75. 75. 
    Bruno RD, Rosenfield SM, Smith GH 2013. Late developing mammary tumors and hyperplasia induced by a low-oncogenic variant of mouse mammary tumor virus (MMTV) express genes identical to those induced by canonical MMTV. Mol. Cancer 12:1–6
    [Google Scholar]
  76. 76. 
    Sen N, Simmons WJ, Thomas RM, Erianne G, Zhang DJ et al. 2001. META-controlled env-initiated transcripts encoding superantigens of murine Mtv29 and Mtv7 and their possible role in B cell lymphomagenesis. J. Immunol. 166:5422–29
    [Google Scholar]
  77. 77. 
    Bhadra S, Lozano MM, Payne SM, Dudley JP 2006. Endogenous MMTV proviruses induce susceptibility to both viral and bacterial pathogens. PLOS Pathog 2:e128
    [Google Scholar]
  78. 78. 
    Kozak CA. 2014. Origins of the endogenous and infectious laboratory mouse gammaretroviruses. Viruses 7:1–26
    [Google Scholar]
  79. 79. 
    Frankel WN, Stoye JP, Taylor BA, Coffin JM 1990. A linkage map of endogenous murine leukemia proviruses. Genetics 124:221–36
    [Google Scholar]
  80. 80. 
    Rowe WP, Pincus T. 1971. Quantitative studies of naturally occurring murine leukemia virus infection of AKR mice. J. Exp. Med. 135:429–36
    [Google Scholar]
  81. 81. 
    Jern P, Stoye JP, Coffin J 2005. Role of APOBEC3 in genetic diversity among endogenous murine leukemia viruses. PLOS Genet 3:e183
    [Google Scholar]
  82. 82. 
    Lavignon M, Evans L. 1996. A multistep process of leukemogenesis in Moloney murine leukemia virus-infected mice that is modulated by retroviral pseudotyping and interference. J. Virol. 70:3852–62
    [Google Scholar]
  83. 83. 
    Evans LH, Alamgir AS, Owens N, Weber N, Virtaneva K et al. 2009. Mobilization of endogenous retroviruses in mice after infection with an exogenous retrovirus. J. Virol. 83:2429–35
    [Google Scholar]
  84. 84. 
    Stoye JP, Moroni CM, Coffin JM 1991. Virological events leading to spontaneous AKR thymomas. J. Virol. 65:1273–85
    [Google Scholar]
  85. 85. 
    Bamunusinghe D, Liu Q, Plishka R, Dolan MA, Skorski M et al. 2017. Recombinant origins of pathogenic and nonpathogenic mouse gammaretroviruses with polytropic host range. J. Virol. 91: https://doi.org/10.1128/JVI.00855-17
    [Crossref] [Google Scholar]
  86. 86. 
    Ruscetti S, Davis L, Oliff A 1981. Friend murine leukemia virus-induced leukemia is associated with the formation of mink cell focus-inducing viruses and is blocked in mice expressing endogenous mink cell focus-inducing xenotropic viral envelope genes. J. Exp. Med. 154:907–20
    [Google Scholar]
  87. 87. 
    Hartley JW, Yetter RA, Morse HC 3rd 1983. A mouse gene on chromosome 5 that restricts infectivity of mink cell focus-forming recombinant murine leukemia viruses. J. Exp. Med. 158:16–24
    [Google Scholar]
  88. 88. 
    Taylor GM, Gao Y, Sanders DA 2001. Fv-4: identification of the defect in Env and the mechanism of resistance to ecotropic murine leukemia virus. J. Virol. 75:11244–48
    [Google Scholar]
  89. 89. 
    Sanville B, Dolan MA, Wollenberg K, Yan Y, Martin C et al. 2010. Adaptive evolution of Mus Apobec3 includes retroviral insertion and positive selection at two clusters of residues flanking the substrate groove. PLOS Pathog 6:e1000974
    [Google Scholar]
  90. 90. 
    Harris RS, Dudley JP. 2015. APOBECs and virus restriction. Virology 479–80:131–45
    [Google Scholar]
  91. 91. 
    Young GR, Yap MW, Michaux JR, Steppan SJ, Stoye JP 2018. Evolutionary journey of the retroviral restriction gene Fv1. PNAS 115:10130–35
    [Google Scholar]
  92. 92. 
    Bénit L, de Pearseval N, Casella J-F, Callebaut I, Cordonnier A, Heidmann T 1997. Cloning of a new murine endogenous retrovirus, MuERV-L, with strong similarity to the human HERV-L element and with a gag coding sequence closely related to the Fv1 restriction gene. J. Virol. 71:5652–57
    [Google Scholar]
  93. 93. 
    Li W, Yap MW, Voss V, Stoye JP 2016. Expression levels of Fv1: effects on retroviral restriction specificities. Retrovirology 13:42
    [Google Scholar]
  94. 94. 
    Boi S, Rosenke K, Hansen E, Hendrick D, Malik F, Evans LH 2016. Endogenous retroviruses mobilized during friend murine leukemia virus infection. Virology 499:136–43
    [Google Scholar]
  95. 95. 
    Lee K-H, Lim D, Greenhalgh D, Cho K 2017. Highly variable genomic landscape of endogenous retroviruses in the C57BL/6J inbred strain, depending on individual mouse, gender, organ type, and organ location. Int. J. Genom. 2017:1–10
    [Google Scholar]
  96. 96. 
    Bamunusinghe D, Naghashfar Z, Buckler-White A, Plishka R, Baliji S et al. 2016. Sequence diversity, intersubgroup relationships, and origins of the mouse leukemia gammaretroviruses of laboratory and wild mice. J. Virol. 90:4186–98
    [Google Scholar]
  97. 97. 
    Hartmann S, Hasenkamp N, Mayer J, Michaux J, Morand S et al. 2015. Endogenous murine leukemia retroviral variation across wild European and inbred strains of house mouse. BMC Genom 16:613
    [Google Scholar]
  98. 98. 
    Steffen DL, Taylor BA, Weinberg RA 1982. Continuing germ line integration of AKV proviruses during the breeding of AKR mice and derivative recombinant inbred strains. J. Virol. 42:165–75
    [Google Scholar]
  99. 99. 
    Sleeman JM, Keane JM, Johnson JS, Brown RJ, VandeWoude S 2001. Feline leukemia virus in a captive bobcat. J. Wildl. Dis. 37:194–200
    [Google Scholar]
  100. 100. 
    Chiu ES, Kraberger S, Cunningham M, Cusack L, Roelke M, VandeWoude S 2019. Multiple introductions of domestic cat feline leukemia virus in endangered Florida panthers. Emerg. Infect. Dis. 25:92–101
    [Google Scholar]
  101. 101. 
    Schneinder R, Frye FL, Taylor DON, Dorn CR 1967. A household cluster of feline malignant lymphoma. Cancer Res 27:1316–22
    [Google Scholar]
  102. 102. 
    Willett BJ, Hosie MJ. 2013. Feline leukaemia virus: half a century since its discovery. Vet. J. 195:16–23
    [Google Scholar]
  103. 103. 
    Chiu ES, Hoover EA, VandeWoude S 2018. A retrospective examination of feline leukemia subgroup characterization: viral interference assays to deep sequencing. Viruses 10:E29
    [Google Scholar]
  104. 104. 
    Muirden A. 2002. Prevalence of feline leukaemia virus and antibodies to feline immunodeficiency virus and feline coronavirus in stray cats sent to an RSPCA hospital. Vet. Rec. 150:621–25
    [Google Scholar]
  105. 105. 
    Bandecchi P, Dell'Omodarme M, Magi M, Palamidessi A, Prati MC 2006. Feline leukaemia virus (FeLV) and feline immunodeficiency virus infections in cats in the Pisa district of Tuscany, and attempts to control FeLV infection in a colony of domestic cats by vaccination. Vet. Rec. 158:555–57
    [Google Scholar]
  106. 106. 
    Gleich SE, Krieger S, Hartmann K 2009. Prevalence of feline immunodeficiency virus and feline leukaemia virus among client-owned cats and risk factors for infection in Germany. J. Feline Med. Surg. 11:985–92
    [Google Scholar]
  107. 107. 
    Jarrett O, Russel PH. 1978. Differential growth and transmission in cats of feline leukaemia viruses of subgroups A and B. Int. J. Cancer 1978:466–72
    [Google Scholar]
  108. 108. 
    Jarrett O, Hardy WD Jr, Golder MC, Hay D 1978. The frequency of occurrence of feline leukaemia virus subgroups in cats. Int. J. Cancer 21:334–37
    [Google Scholar]
  109. 109. 
    Polani S, Roca AL, Rosensteel BB, Kolokotronis SO, Bar-Gal GK 2010. Evolutionary dynamics of endogenous feline leukemia virus proliferation among species of the domestic cat lineage. Virology 405:397–407
    [Google Scholar]
  110. 110. 
    Torres AN, Mathiason CK, Hoover EA 2005. Re-examination of feline leukemia virus: host relationships using real-time PCR. Virology 332:272–83
    [Google Scholar]
  111. 111. 
    Powers JA, Chiu ES, Kraberger SJ, Roelke-Parker M, Lowery I et al. 2018. Feline leukemia virus disease outcomes in a domestic cat breeding colony: relationship to endogenous FeLV and other chronic viral infections. J. Virol. 92:e00649–18
    [Google Scholar]
  112. 112. 
    Hoover EA, Olsen RG, Hardy WD Jr, Schaller JP, Mathes LE 1976. Feline leukemia virus infection: age-related variation in response of cats to experimental infection. J. Natl. Cancer Inst 57:365–69
    [Google Scholar]
  113. 113. 
    Anderson MM, Lauring AS, Robertson S, Dirks C, Overbaugh J 2001. Feline Pit2 functions as a receptor for subgroup B feline leukemia viruses. J. Virol. 75:10563–72
    [Google Scholar]
  114. 114. 
    Bechtel MK, Hayes KA, Mathes LE, Pandey R, Stromberg PC, Roy-Burman P 1999. Recombinant feline leukemia virus (FeLV) variants establish a limited infection with altered cell tropism in specific-pathogen-free cats in the absence of FeLV subgroup A helper virus. Vet. Pathol. 36:91–99
    [Google Scholar]
  115. 115. 
    Fujino Y, Ohno K, Tsujimoto H 2008. Molecular pathogenesis of feline leukemia virus-induced malignancies: insertional mutagenesis. Vet. Immunol. Immunopathol. 123:138–43
    [Google Scholar]
  116. 116. 
    Stewart H, Jarrett O, Hosie MJ, Willett BJ 2013. Complete genome sequences of two feline leukemia virus subgroup B isolates with novel recombination sites. Genome Announc 1:e00036–12
    [Google Scholar]
  117. 117. 
    Caudill G, Onorato DP, Cunningham MW, Caudill D, Leone EH et al. 2019. Temporal trends in Florida panther food habits. Hum.-Wildl. Interact. 13:87–97
    [Google Scholar]
  118. 118. 
    Tandon R, Cattori V, Pepin AC, Riond B, Meli ML et al. 2008. Association between endogenous feline leukemia virus loads and exogenous feline leukemia virus infection in domestic cats. Virus Res 135:136–43
    [Google Scholar]
  119. 119. 
    McDougall AS, Terry A, Tzavaras T, Cheney C, Rojko J, Neil JC 1994. Defective endogenous proviruses are expressed in feline lymphoid cells: evidence for a role in natural resistance to subgroup B feline leukemia viruses. J. Virol. 68:2151–60
    [Google Scholar]
  120. 120. 
    Sakaguchi S, Shojima T, Fukui D, Miyazawa T 2015. A soluble envelope protein of endogenous retrovirus (FeLIX) present in serum of domestic cats mediates infection of a pathogenic variant of feline leukemia virus. J. Gen. Virol. 96:681–87
    [Google Scholar]
  121. 121. 
    Anderson MM, Lauring AS, Burns CC, Overbaugh J 2000. Identification of a cellular cofactor required for infection by feline leukemia virus. Science 287:1828–30
    [Google Scholar]
  122. 122. 
    Charreyre C, Pedersen NC. 1991. Study of feline leukemia virus immunity. J. Am. Vet. Med. Assoc. 199:1316–24
    [Google Scholar]
  123. 123. 
    Ishida Y, Zhao K, Greenwood AD, Roca AL 2015. Proliferation of endogenous retroviruses in the early stages of a host germ line invasion. Mol. Biol. Evol. 32:109–20
    [Google Scholar]
  124. 124. 
    Canfield PJ, Sabine JM, Love DN 1988. Virus particles associate with leukaemia in a koala. Aust. Vet. J. 65:327–28
    [Google Scholar]
  125. 125. 
    Hanger JJ, Bromham LD, McKee JJ, O'Brien TM, Robinson WF 2000. The nucleotide sequence of koala (Phascolarctos cinereus) retrovirus: a novel type C endogenous virus related to gibbon ape leukemia virus. J. Virol. 74:4264–72
    [Google Scholar]
  126. 126. 
    Simmons GS, Young PR, Hanger JJ, Jones K, Clarke D et al. 2012. Prevalence of koala retrovirus in geographically diverse populations in Australia. Aust. Vet. J. 90:404–9
    [Google Scholar]
  127. 127. 
    Chappell KJ, Brealey JC, Amarilla AA, Watterson D, Hulse L et al. 2017. Phylogenetic diversity of koala retrovirus within a wild koala population. J. Virol. 91:e01820–16
    [Google Scholar]
  128. 128. 
    Shojima T, Yoshikawa R, Hoshino S, Shimode S, Nakagawa S et al. 2013. Identification of a novel subgroup of koala retrovirus from koalas in Japanese zoos. J. Virol. 87:9943–48
    [Google Scholar]
  129. 129. 
    Xu W, Stadler CK, Gorman K, Jensen N, Kim D et al. 2013. An exogenous retrovirus isolated from koalas with malignant neoplasias in a US zoo. PNAS 110:11547–52
    [Google Scholar]
  130. 130. 
    Hobbs M, King A, Salinas R, Chen Z, Tsangaras K et al. 2017. Long-read genome sequence assembly provides insight into ongoing retroviral invasion of the koala germline. Sci. Rep. 7:15838
    [Google Scholar]
  131. 131. 
    Tarlinton RE, Meers J, Young PR 2006. Retroviral invasion of the koala genome. Nature 442:79–81
    [Google Scholar]
  132. 132. 
    Denner J, Young PR. 2013. Koala retroviruses: characterization and impact on the life of koalas. Retrovirology 10:108
    [Google Scholar]
  133. 133. 
    Xu W, Eiden MV. 2015. Koala retroviruses: evolution and disease dynamics. Annu. Rev. Virol. 2:119–34
    [Google Scholar]
  134. 134. 
    Maher IE, Higgins DP. 2016. Altered immune cytokine expression associated with KoRV B infection and season in captive koalas. PLOS ONE 11:e0163780
    [Google Scholar]
  135. 135. 
    Waugh CA, Hanger J, Loader J, King A, Hobbs M et al. 2017. Infection with koala retrovirus subgroup B (KoRV-B), but not KoRV-A, is associated with chlamydial disease in free-ranging koalas (Phascolarctos cinereus). Sci. Rep. 7:134
    [Google Scholar]
  136. 136. 
    Fiebig U, Keller M, Moller A, Timms P, Denner J 2015. Lack of antiviral antibody response in koalas infected with koala retroviruses (KoRV). Virus Res 198:30–34
    [Google Scholar]
  137. 137. 
    Ozata DM, Gainetdinov I, Zoch A, O'Carroll D, Zamore PD 2019. PIWI-interacting RNAs: small RNAs with big functions. Nat. Rev. Genet. 20:89–108
    [Google Scholar]
  138. 138. 
    Yu T, Koppetsch BS, Pagliarani S, Johnston S, Silverstein NJ et al. 2019. The piRNA response to retroviral invasion of the koala genome. Cell 179:632–43.e12
    [Google Scholar]
  139. 139. 
    Bénit L, Lallemand J-B, Casella J-F, Philippe H, Heidmann T 1999. ERV-L elements: a family of endogenous retrovirus-like elements active throughout the evolution of mammals. J. Virol. 73:3301–8
    [Google Scholar]
  140. 140. 
    Karesh WB, Dobson A, Lloyd-Smith JO, Lubroth J, Dixon MA et al. 2012. Ecology of zoonoses: natural and unnatural histories. Lancet 380:1936–45
    [Google Scholar]
  141. 141. 
    Hemelaar J. 2012. The origin and diversity of the HIV-1 pandemic. Trends Mol. Med. 18:182–92
    [Google Scholar]
  142. 142. 
    Ahlers LRH, Goodman AG. 2018. The immune responses of the animal hosts of West Nile virus: a comparison of insects, birds, and mammals. Front. Cell. Infect. Microbiol. 8:96
    [Google Scholar]
  143. 143. 
    Lee J, Malmberg JL, Wood BA, Hladky S, Troyer R et al. 2017. Feline immunodeficiency virus cross-species transmission: implications for emergence of new lentiviral infections. J. Virol. 91:e02134–16
    [Google Scholar]
  144. 144. 
    Blancou J, Chomel BB, Belotto A, Meslin FX 2005. Emerging or re-emerging bacterial zoonoses: factors of emergence, surveillance and control. Vet. Res. 36:507–22
    [Google Scholar]
  145. 145. 
    Seifarth W, Frank O, Zeilfelder U, Spiess B, Greenwood AD et al. 2005. Comprehensive analysis of human endogenous retrovirus transcriptional activity in human tissues with a retrovirus-specific microarray. J. Virol. 79:341–52
    [Google Scholar]
  146. 146. 
    Perl A, Rosenblatt JD, Chen ISY, DiVincenzo JP, Bever R et al. 1989. Detection and cloning of new HTLV-related endogenous sequences in man. Nucleic Acids Res 17:6841–54
    [Google Scholar]
  147. 147. 
    Banki K, Maceda J, Hurley E, Ablonczy E, Mattson DH et al. 1992. Human T-cell lymphotropic virus (HTLV)-related endogenous sequence, HRES-1, encodes a 28-kDa protein: a possible autoantigen for HTLV-I gag-reactive autoantibodies. PNAS 89:1939–43
    [Google Scholar]
  148. 148. 
    Wildschutte JH, Williams ZH, Montesion M, Subramanian RP, Kidd JM, Coffin JM 2016. Discovery of unfixed endogenous retrovirus insertions in diverse human populations. PNAS 113:16E2326–34
    [Google Scholar]
  149. 149. 
    Garrison KE, Jones RB, Meiklejohn DA, Anwar N, Ndhlovu LC et al. 2007. T cell responses to human endogenous retroviruses in HIV-1 infection. PLOS Pathog 3:e165
    [Google Scholar]
  150. 150. 
    Bai J, Payne LN, Skinner MA 1995. HPRS-103 (exogenous avian leukosis virus, subgroup J) has an env gene related to those of endogenous elements EAV-0 and E51 and an E element found previously only in sarcoma viruses. J. Virol. 69:779–84
    [Google Scholar]
  151. 151. 
    Stocking C, Kozak CA. 2008. Murine endogenous retroviruses. Cell. Mol. Life Sci. 65:3383–98
    [Google Scholar]
/content/journals/10.1146/annurev-animal-050620-101416
Loading
/content/journals/10.1146/annurev-animal-050620-101416
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error