1932

Abstract

Genetically encoded biosensors that directly interact with a molecule of interest were first introduced more than 20 years ago with fusion proteins that served as fluorescent indicators for calcium ions. Since then, the technology has matured into a diverse array of biosensors that have been deployed to improve our spatiotemporal understanding of molecules whose dynamics have profound influence on plant physiology and development. In this review, we address several types of biosensors with a focus on genetically encoded calcium indicators, which are now the most diverse and advanced group of biosensors. We then consider the discoveries in plant biology made by using biosensors for calcium, pH, reactive oxygen species, redox conditions, primary metabolites, phytohormones, and nutrients. These discoveries were dependent on the engineering, characterization, and optimization required to develop a successful biosensor; they were also dependent on the methodological developments required to express, detect, and analyze the readout of such biosensors.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-042817-040104
2018-04-29
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/arplant/69/1/annurev-arplant-042817-040104.html?itemId=/content/journals/10.1146/annurev-arplant-042817-040104&mimeType=html&fmt=ahah

Literature Cited

  1. Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H. 1.  et al. 2006. Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91–94 [Google Scholar]
  2. Achard P, Liao L, Jiang C, Desnos T, Bartlett J. 2.  et al. 2007. DELLAs contribute to plant photomorphogenesis. Plant Physiol 143:1163–72 [Google Scholar]
  3. Akerboom J, Carreras Calderon N, Tian L, Wabnig S, Prigge M. 3.  et al. 2013. Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front. Mol. Neurosci. 6:2 [Google Scholar]
  4. Akerboom J, Chen TW, Wardill TJ, Tian L, Marvin JS. 4.  et al. 2012. Optimization of a GCaMP calcium indicator for neural activity imaging. J. Neurosci. 32:13819–40 [Google Scholar]
  5. Alford SC, Abdelfattah AS, Ding Y, Campbell RE. 5.  2012. A fluorogenic red fluorescent protein heterodimer. Chem. Biol. 19:353–60 [Google Scholar]
  6. Alford SC, Wu J, Zhao Y, Campbell RE, Knopfel T. 6.  2013. Optogenetic reporters. Biol. Cell 105:14–29 [Google Scholar]
  7. Allen GJ, Chu SP, Harrington CL, Schumacher K, Hoffmann T. 7.  et al. 2001. A defined range of guard cell calcium oscillation parameters encodes stomatal movements. Nature 411:1053–57 [Google Scholar]
  8. Allen GJ, Chu SP, Schumacher K, Shimazaki CT, Vafeados D. 8.  et al. 2000. Alteration of stimulus-specific guard cell calcium oscillations and stomatal closing in Arabidopsis det3 mutant. Science 289:2338–42 [Google Scholar]
  9. Allen GJ, Kwak JM, Chu SP, Llopis J, Tsien RY. 9.  et al. 1999. Cameleon calcium indicator reports cytoplasmic calcium dynamics in Arabidopsis guard cells. Plant J 19:735–47 [Google Scholar]
  10. Andrade SL, Einsle O. 10.  2007. The Amt/Mep/Rh family of ammonium transport proteins. Mol. Membr. Biol. 24:357–65 [Google Scholar]
  11. Arosio D, Ricci F, Marchetti L, Gualdani R, Albertazzi L, Beltram F. 11.  2010. Simultaneous intracellular chloride and pH measurements using a GFP-based sensor. Nat. Methods 7:516–18Describes the design of a dual-excitation and triple-emission biosensor that can monitor chloride and pH changes at the same time. [Google Scholar]
  12. Ast C, De Michele R, Kumke MU, Frommer WB. 12.  2015. Single-fluorophore membrane transport activity sensors with dual-emission read-out. eLife 4:e07113 [Google Scholar]
  13. Ast C, Foret J, Oltrogge LM, De Michele R, Kleist TJ. 13.  et al. 2017. Ratiometric Matryoshka biosensors from a nested cassette of green- and orange-emitting fluorescent proteins. Nat. Commun. 8:431 [Google Scholar]
  14. Baird GS, Zacharias DA, Tsien RY. 14.  1999. Circular permutation and receptor insertion within green fluorescent proteins. PNAS 96:11241–46 [Google Scholar]
  15. Band LR, Wells DM, Fozard JA, Ghetiu T, French AP. 15.  et al. 2014. Systems analysis of auxin transport in the Arabidopsis root apex. Plant Cell 26:862–75 [Google Scholar]
  16. Band LR, Wells DM, Larrieu A, Sun J, Middleton AM. 16.  et al. 2012. Root gravitropism is regulated by a transient lateral auxin gradient controlled by a tipping-point mechanism. PNAS 109:4668–73 [Google Scholar]
  17. Barbez E, Dunser K, Gaidora A, Lendl T, Busch W. 17.  2017. Auxin steers root cell expansion via apoplastic pH regulation in Arabidopsis thaliana. PNAS 114:E4884–93 [Google Scholar]
  18. Bassil E, Blumwald E. 18.  2014. The ins and outs of intracellular ion homeostasis: NHX-type cation/H+ transporters. Curr. Opin. Plant Biol. 22:1–6 [Google Scholar]
  19. Behera S, Long Y, Schmitz-Thom I, Wang XP, Zhang C. 19.  et al. 2017. Two spatially and temporally distinct Ca2+ signals convey Arabidopsis thaliana responses to K+ deficiency. New Phytol 213:739–50 [Google Scholar]
  20. Behera S, Wang N, Zhang C, Schmitz-Thom I, Strohkamp S. 20.  et al. 2015. Analyses of Ca2+ dynamics using a ubiquitin-10 promoter-driven Yellow Cameleon 3.6 indicator reveal reliable transgene expression and differences in cytoplasmic Ca2+ responses in Arabidopsis and rice (Oryza sativa) roots. New Phytol 206:751–60 [Google Scholar]
  21. Belousov VV, Fradkov AF, Lukyanov KA, Staroverov DB, Shakhbazov KS. 21.  et al. 2006. Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat. Methods 3:281–86 [Google Scholar]
  22. Bencina M.22.  2013. Illumination of the spatial order of intracellular pH by genetically encoded pH-sensitive sensors. Sensors 13:16736–58 [Google Scholar]
  23. Bencivenga S, Simonini S, Benkova E, Colombo L. 23.  2012. The transcription factors BEL1 and SPL are required for cytokinin and auxin signaling during ovule development in Arabidopsis. Plant Cell 24:2886–97 [Google Scholar]
  24. Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D. 24.  et al. 2003. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602 [Google Scholar]
  25. Berlin S, Carroll EC, Newman ZL, Okada HO, Quinn CM. 25.  et al. 2015. Photoactivatable genetically encoded calcium indicators for targeted neuronal imaging. Nat. Methods 12:852–58 [Google Scholar]
  26. Besnard J, Pratelli R, Zhao C, Sonawala U, Collakova E. 26.  et al. 2016. UMAMIT14 is an amino acid exporter involved in phloem unloading in Arabidopsis roots. J. Exp. Bot. 67:6385–97 [Google Scholar]
  27. Bilan DS, Belousov VV. 27.  2017. New tools for redox biology: from imaging to manipulation. Free Radic. Biol. Med. 109:167–88 [Google Scholar]
  28. Bonza MC, Loro G, Behera S, Wong A, Kudla J, Costa A. 28.  2013. Analyses of Ca2+ accumulation and dynamics in the endoplasmic reticulum of Arabidopsis root cells using a genetically encoded Cameleon sensor. Plant Physiol 163:1230–41 [Google Scholar]
  29. Bratt A, Rosenwasser S, Meyer A, Fluhr R. 29.  2016. Organelle redox autonomy during environmental stress. Plant Cell Environ 39:1909–19 [Google Scholar]
  30. Brunoud G, Wells DM, Oliva M, Larrieu A, Mirabet V. 30.  et al. 2012. A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature 482:103–6 [Google Scholar]
  31. Capoen W, Sun J, Wysham D, Otegui MS, Venkateshwaran M. 31.  et al. 2011. Nuclear membranes control symbiotic calcium signaling of legumes. PNAS 108:14348–53 [Google Scholar]
  32. Certal AC, Almeida RB, Carvalho LM, Wong E, Moreno N. 32.  et al. 2008. Exclusion of a proton ATPase from the apical membrane is associated with cell polarity and tip growth in Nicotiana tabacum pollen tubes. Plant Cell 20:614–34 [Google Scholar]
  33. Chaiwanon J, Wang ZY. 33.  2015. Spatiotemporal brassinosteroid signaling and antagonism with auxin pattern stem cell dynamics in Arabidopsis roots. Curr. Biol. 25:1031–42 [Google Scholar]
  34. Chapleau RR, Blomberg R, Ford PC, Sagermann M. 34.  2008. Design of a highly specific and noninvasive biosensor suitable for real-time in vivo imaging of mercury (II) uptake. Protein Sci 17:614–22 [Google Scholar]
  35. Charpentier M, Sun J, Vaz Martins T, Radhakrishnan GV, Findlay K. 35.  et al. 2016. Nuclear-localized cyclic nucleotide-gated channels mediate symbiotic calcium oscillations. Science 352:1102–5 [Google Scholar]
  36. Chaudhuri B, Hormann F, Frommer WB. 36.  2011. Dynamic imaging of glucose flux impedance using FRET sensors in wild-type Arabidopsis plants. J. Exp. Bot. 62:2411–17 [Google Scholar]
  37. Chaudhuri B, Hormann F, Lalonde S, Brady SM, Orlando DA. 37.  et al. 2008. Protonophore- and pH-insensitive glucose and sucrose accumulation detected by FRET nanosensors in Arabidopsis root tips. Plant J 56:948–62 [Google Scholar]
  38. Chebli Y, Pujol L, Shojaeifard A, Brouwer I, van Loon JJ, Geitmann A. 38.  2013. Cell wall assembly and intracellular trafficking in plant cells are directly affected by changes in the magnitude of gravitational acceleration. PLOS ONE 8:e58246 [Google Scholar]
  39. Chen LQ, Hou BH, Lalonde S, Takanaga H, Hartung ML. 39.  et al. 2010. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468:527–32 [Google Scholar]
  40. Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL. 40.  et al. 2013. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499:295–300 [Google Scholar]
  41. Cho J-H, Swanson CJ, Chen J, Li A, Lippert LG. 41.  et al. 2017. The GCaMP-R family of genetically encoded ratiometric calcium indicators. ACS Chem. Biol. 12:1066–74 [Google Scholar]
  42. Choi WG, Hilleary R, Swanson SJ, Kim SH, Gilroy S. 42.  2016. Rapid, long-distance electrical and calcium signaling in plants. Annu. Rev. Plant Biol. 67:287–307 [Google Scholar]
  43. Choi WG, Swanson SJ, Gilroy S. 43.  2012. High-resolution imaging of Ca2+, redox status, ROS and pH using GFP biosensors. Plant J 70:118–28 [Google Scholar]
  44. Choi WG, Toyota M, Kim SH, Hilleary R, Gilroy S. 44.  2014. Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants. PNAS 111:6497–502 [Google Scholar]
  45. Costa A, Drago I, Behera S, Zottini M, Pizzo P. 45.  et al. 2010. H2O2 in plant peroxisomes: an in vivo analysis uncovers a Ca2+-dependent scavenging system. Plant J 62:760–72 [Google Scholar]
  46. Costa A, Kudla J. 46.  2015. Colorful insights: advances in imaging drive novel breakthroughs in Ca2+ signaling. Mol. Plant 8:352–55 [Google Scholar]
  47. De Col V, Fuchs P, Nietzel T, Elsasser M, Voon CP. 47.  et al. 2017. ATP sensing in living plant cells reveals tissue gradients and stress dynamics of energy physiology. eLife 6:e26670 [Google Scholar]
  48. De Michele R, Ast C, Loque D, Ho CH, Andrade S. 48.  et al. 2013. Fluorescent sensors reporting the activity of ammonium transceptors in live cells. eLife 2:e00800 [Google Scholar]
  49. Denninger P, Bleckmann A, Lausser A, Vogler F, Ott T. 49.  et al. 2014. Male-female communication triggers calcium signatures during fertilization in Arabidopsis. Nat. Commun 5:4645 [Google Scholar]
  50. Deuschle K, Chaudhuri B, Okumoto S, Lager I, Lalonde S, Frommer WB. 50.  2006. Rapid metabolism of glucose detected with FRET glucose nanosensors in epidermal cells and intact roots of Arabidopsis RNA-silencing mutants. Plant Cell 18:2314–25Seminal work demonstrating glucose measurements in multiple tissues as well as the utility of optimization and diversification of biosensor properties. [Google Scholar]
  51. Dill A, Jung HS, Sun TP. 51.  2001. The DELLA motif is essential for gibberellin-induced degradation of RGA. PNAS 98:14162–67 [Google Scholar]
  52. Ding Y, Li J, Enterina JR, Shen Y, Zhang I. 52.  et al. 2015. Ratiometric biosensors based on dimerization-dependent fluorescent protein exchange. Nat. Methods 12:195–98Introduces a new concept for biosensor design using dimerization-dependent fluorescent proteins. [Google Scholar]
  53. Dodd AN, Kudla J, Sanders D. 53.  2010. The language of calcium signaling. Annu. Rev. Plant Biol. 61:593–620 [Google Scholar]
  54. Dohmann EM, Nill C, Schwechheimer C. 54.  2010. DELLA proteins restrain germination and elongation growth in Arabidopsis thaliana COP9 signalosome mutants. Eur. J. Cell Biol. 89:163–68 [Google Scholar]
  55. Dong TX, Othy S, Jairaman A, Skupsky J, Zavala A. 55.  et al. 2017. T cell calcium dynamics visualized in a ratiometric tdTomato-GCaMP6f transgenic reporter mouse. eLife 6:e32417 [Google Scholar]
  56. Duan L, Dietrich D, Ng CH, Chan PM, Bhalerao R. 56.  et al. 2013. Endodermal ABA signaling promotes lateral root quiescence during salt stress in Arabidopsis seedlings. Plant Cell 25:324–41 [Google Scholar]
  57. Evans MJ, Choi WG, Gilroy S, Morris RJ. 57.  2016. A ROS-assisted calcium wave dependent on the AtRBOHD and TPC1 cation channel propagates the systemic response to salt stress. Plant Physiol 171:1771–84 [Google Scholar]
  58. Fendrych M, Leung J, Friml J. 58.  2016. TIR1/AFB-Aux/IAA auxin perception mediates rapid cell wall acidification and growth of Arabidopsis hypocotyls. eLife 5:e19048 [Google Scholar]
  59. Figueiredo DD, Batista RA, Roszak PJ, Hennig L, Kohler C. 59.  2016. Auxin production in the endosperm drives seed coat development in Arabidopsis. eLife 5:e20542 [Google Scholar]
  60. Fosque BF, Sun Y, Dana H, Yang CT, Ohyama T. 60.  et al. 2015. Labeling of active neural circuits in vivo with designed calcium integrators. Science 347:755–60 [Google Scholar]
  61. Galietta LJ, Haggie PM, Verkman AS. 61.  2001. Green fluorescent protein-based halide indicators with improved chloride and iodide affinities. FEBS Lett 499:220–24 [Google Scholar]
  62. Gao D, Knight MR, Trewavas AJ, Sattelmacher B, Plieth C. 62.  2004. Self-reporting Arabidopsis expressing pH and [Ca2+] indicators unveil ion dynamics in the cytoplasm and in the apoplast under abiotic stress. Plant Physiol 134:898–908 [Google Scholar]
  63. Gao QF, Gu LL, Wang HQ, Fei CF, Fang X. 63.  et al. 2016. Cyclic nucleotide-gated channel 18 is an essential Ca2+ channel in pollen tube tips for pollen tube guidance to ovules in Arabidopsis. PNAS 113:3096–101 [Google Scholar]
  64. Garcia-Plazaola JI, Fernandez-Marin B, Duke SO, Hernandez A, Lopez-Arbeloa F, Becerril JM. 64.  2015. Autofluorescence: biological functions and technical applications. Plant Sci 236:136–45 [Google Scholar]
  65. Gjetting KS, Ytting CK, Schulz A, Fuglsang AT. 65.  2012. Live imaging of intra- and extracellular pH in plants using pHusion, a novel genetically encoded biosensor. J. Exp. Bot. 63:3207–18 [Google Scholar]
  66. Gjetting SK, Schulz A, Fuglsang AT. 66.  2013. Perspectives for using genetically encoded fluorescent biosensors in plants. Front. Plant Sci. 4:234 [Google Scholar]
  67. Gordon SP, Chickarmane VS, Ohno C, Meyerowitz EM. 67.  2009. Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem. PNAS 106:16529–34 [Google Scholar]
  68. Gould SJ, Subramani S. 68.  1988. Firefly luciferase as a tool in molecular and cell biology. Anal. Biochem. 175:5–13 [Google Scholar]
  69. Griesbeck O, Baird GS, Campbell RE, Zacharias DA, Tsien RY. 69.  2001. Reducing the environmental sensitivity of yellow fluorescent protein: mechanism and applications. J. Biol. Chem. 276:29188–94 [Google Scholar]
  70. Grossmann G, Guo WJ, Ehrhardt DW, Frommer WB, Sit RV. 70.  et al. 2011. The RootChip: an integrated microfluidic chip for plant science. Plant Cell 23:4234–40 [Google Scholar]
  71. Gutermuth T, Lassig R, Portes MT, Maierhofer T, Romeis T. 71.  et al. 2013. Pollen tube growth regulation by free anions depends on the interaction between the anion channel SLAH3 and calcium-dependent protein kinases CPK2 and CPK20. Plant Cell 25:4525–43 [Google Scholar]
  72. Hamamura Y, Nishimaki M, Takeuchi H, Geitmann A, Kurihara D, Higashiyama T. 72.  2014. Live imaging of calcium spikes during double fertilization in Arabidopsis. Nat. Commun 5:4722 [Google Scholar]
  73. Hamilton DW, Hills A, Kohler B, Blatt MR. 73.  2000. Ca2+ channels at the plasma membrane of stomatal guard cells are activated by hyperpolarization and abscisic acid. PNAS 97:4967–72 [Google Scholar]
  74. Han S, Tang R, Anderson LK, Woerner TE, Pei ZM. 74.  2003. A cell surface receptor mediates extracellular Ca2+ sensing in guard cells. Nature 425:196–200 [Google Scholar]
  75. Hanson GT, Aggeler R, Oglesbee D, Cannon M, Capaldi RA. 75.  et al. 2004. Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. J. Biol. Chem. 279:13044–53 [Google Scholar]
  76. Hanson GT, McAnaney TB, Park ES, Rendell ME, Yarbrough DK. 76.  et al. 2002. Green fluorescent protein variants as ratiometric dual emission pH sensors. 1. Structural characterization and preliminary application. Biochemistry 41:15477–88 [Google Scholar]
  77. Haruta M, Monshausen G, Gilroy S, Sussman MR. 77.  2008. A cytoplasmic Ca2+ functional assay for identifying and purifying endogenous cell signaling peptides in Arabidopsis seedlings: identification of AtRALF1 peptide. Biochemistry 47:6311–21 [Google Scholar]
  78. Heim N, Griesbeck O. 78.  2004. Genetically encoded indicators of cellular calcium dynamics based on troponin C and green fluorescent protein. J. Biol. Chem. 279:14280–86 [Google Scholar]
  79. Heisler MG, Ohno C, Das P, Sieber P, Reddy GV. 79.  et al. 2005. Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr. Biol. 15:1899–911 [Google Scholar]
  80. Hernandez-Barrera A, Velarde-Buendia A, Zepeda I, Sanchez F, Quinto C. 80.  et al. 2015. Hyper, a hydrogen peroxide sensor, indicates the sensitivity of the Arabidopsis root elongation zone to aluminum treatment. Sensors 15:855–67 [Google Scholar]
  81. Ho CH, Frommer WB. 81.  2014. Fluorescent sensors for activity and regulation of the nitrate transceptor CHL1/NRT1.1 and oligopeptide transporters. eLife 3:e01917 [Google Scholar]
  82. Hoi H, Matsuda T, Nagai T, Campbell RE. 82.  2013. Highlightable Ca2+ indicators for live cell imaging. J. Am. Chem. Soc. 135:46–49 [Google Scholar]
  83. Horikawa K, Yamada Y, Matsuda T, Kobayashi K, Hashimoto M. 83.  et al. 2010. Spontaneous network activity visualized by ultrasensitive Ca2+ indicators, yellow Cameleon-Nano. Nat. Methods 7:729–32 [Google Scholar]
  84. Hossain MA, Munemasa S, Uraji M, Nakamura Y, Mori IC, Murata Y. 84.  2011. Involvement of endogenous abscisic acid in methyl jasmonate-induced stomatal closure in Arabidopsis. Plant Physiol 156:430–38 [Google Scholar]
  85. Islam MM, Hossain MA, Jannat R, Munemasa S, Nakamura Y. 85.  et al. 2010. Cytosolic alkalization and cytosolic calcium oscillation in Arabidopsis guard cells response to ABA and MeJA. Plant Cell Physiol 51:1721–30 [Google Scholar]
  86. Iwano M, Entani T, Shiba H, Kakita M, Nagai T. 86.  et al. 2009. Fine-tuning of the cytoplasmic Ca2+ concentration is essential for pollen tube growth. Plant Physiol 150:1322–34 [Google Scholar]
  87. Iwano M, Ito K, Fujii S, Kakita M, Asano-Shimosato H. 87.  et al. 2015. Calcium signalling mediates self-incompatibility response in the Brassicaceae. Nat. Plants 1:15128 [Google Scholar]
  88. Iwano M, Ngo QA, Entani T, Shiba H, Nagai T. 88.  et al. 2012. Cytoplasmic Ca2+ changes dynamically during the interaction of the pollen tube with synergid cells. Development 139:4202–9 [Google Scholar]
  89. Iwano M, Shiba H, Miwa T, Che FS, Takayama S. 89.  et al. 2004. Ca2+ dynamics in a pollen grain and papilla cell during pollination of Arabidopsis. Plant Physiol 136:3562–71 [Google Scholar]
  90. Jayaraman S, Haggie P, Wachter RM, Remington SJ, Verkman AS. 90.  2000. Mechanism and cellular applications of a green fluorescent protein-based halide sensor. J. Biol. Chem. 275:6047–50 [Google Scholar]
  91. Jiang K, Schwarzer C, Lally E, Zhang S, Ruzin S. 91.  et al. 2006. Expression and characterization of a redox-sensing green fluorescent protein (reduction-oxidation-sensitive green fluorescent protein) in Arabidopsis. Plant Physiol 141:397–403 [Google Scholar]
  92. Jones AM, Danielson JA, Manojkumar SN, Lanquar V, Grossmann G, Frommer WB. 92.  2014. Abscisic acid dynamics in roots detected with genetically encoded FRET sensors. eLife 3:e01741Describes a genetically encoded FRET biosensor (ABACUS1) for the stress hormone abscisic acid. [Google Scholar]
  93. Keinath NF, Waadt R, Brugman R, Schroeder JI, Grossmann G. 93.  et al. 2015. Live cell imaging with R-GECO1 sheds light on flg22- and chitin-induced transient [Ca2+]cyt patterns in Arabidopsis. Mol. Plant 8:1188–200 [Google Scholar]
  94. Khokon MA, Jahan MS, Rahman T, Hossain MA, Muroyama D. 94.  et al. 2011. Allyl isothiocyanate (AITC) induces stomatal closure in Arabidopsis. Plant Cell Environ 34:1900–6 [Google Scholar]
  95. Klusener B, Young JJ, Murata Y, Allen GJ, Mori IC. 95.  et al. 2002. Convergence of calcium signaling pathways of pathogenic elicitors and abscisic acid in Arabidopsis guard cells. Plant Physiol 130:2152–63 [Google Scholar]
  96. Kocsy G, Tari I, Vankova R, Zechmann B, Gulyas Z. 96.  et al. 2013. Redox control of plant growth and development. Plant Sci 211:77–91 [Google Scholar]
  97. Konrad KR, Wudick MM, Feijo JA. 97.  2011. Calcium regulation of tip growth: new genes for old mechanisms. Curr. Opin. Plant Biol. 14:721–30 [Google Scholar]
  98. Kosuta S, Hazledine S, Sun J, Miwa H, Morris RJ. 98.  et al. 2008. Differential and chaotic calcium signatures in the symbiosis signaling pathway of legumes. PNAS 105:9823–28 [Google Scholar]
  99. Kotera I, Iwasaki T, Imamura H, Noji H, Nagai T. 99.  2010. Reversible dimerization of Aequorea victoria fluorescent proteins increases the dynamic range of FRET-based indicators. ACS Chem. Biol. 5:215–22 [Google Scholar]
  100. Kotur Z, Mackenzie N, Ramesh S, Tyerman SD, Kaiser BN, Glass AD. 100.  2012. Nitrate transport capacity of the Arabidopsis thaliana NRT2 family members and their interactions with AtNAR2.1. New Phytol 194:724–31 [Google Scholar]
  101. Krebs M, Held K, Binder A, Hashimoto K, Den Herder G. 101.  et al. 2012. FRET-based genetically encoded sensors allow high-resolution live cell imaging of Ca2+ dynamics. Plant J 69:181–92 [Google Scholar]
  102. Krebs M, Schumacher K. 102.  2013. Live cell imaging of cytoplasmic and nuclear Ca2+ dynamics in Arabidopsis roots. Cold Spring Harb. Protoc. 2013:776–80 [Google Scholar]
  103. Kudla J, Batistic O, Hashimoto K. 103.  2010. Calcium signals: the lead currency of plant information processing. Plant Cell 22:541–63 [Google Scholar]
  104. Kuner T, Augustine GJ. 104.  2000. A genetically encoded ratiometric indicator for chloride: capturing chloride transients in cultured hippocampal neurons. Neuron 27:447–59 [Google Scholar]
  105. Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA. 105.  et al. 2003. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22:2623–33 [Google Scholar]
  106. Ladwig F, Stahl M, Ludewig U, Hirner AA, Hammes UZ. 106.  et al. 2012. Siliques are Red1 from Arabidopsis acts as a bidirectional amino acid transporter that is crucial for the amino acid homeostasis of siliques. Plant Physiol 158:1643–55 [Google Scholar]
  107. Lanquar V, Grossmann G, Vinkenborg JL, Merkx M, Thomine S, Frommer WB. 107.  2014. Dynamic imaging of cytosolic zinc in Arabidopsis roots combining FRET sensors and RootChip technology. New Phytol 202:198–208 [Google Scholar]
  108. Larrieu A, Champion A, Legrand J, Lavenus J, Mast D. 108.  et al. 2015. A fluorescent hormone biosensor reveals the dynamics of jasmonate signalling in plants. Nat. Commun. 6:6043 [Google Scholar]
  109. Lassig R, Gutermuth T, Bey TD, Konrad KR, Romeis T. 109.  2014. Pollen tube NAD(P)H oxidases act as a speed control to dampen growth rate oscillations during polarized cell growth. Plant J 78:94–106 [Google Scholar]
  110. Le J, Liu XG, Yang KZ, Chen XL, Zou JJ. 110.  et al. 2014. Auxin transport and activity regulate stomatal patterning and development. Nat. Commun. 5:3090 [Google Scholar]
  111. Lemke EA, Schultz C. 111.  2011. Principles for designing fluorescent sensors and reporters. Nat. Chem. Biol. 7:480–83 [Google Scholar]
  112. Leran S, Varala K, Boyer JC, Chiurazzi M, Crawford N. 112.  et al. 2014. A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants. Trends Plant Sci 19:5–9 [Google Scholar]
  113. Liao CY, Smet W, Brunoud G, Yoshida S, Vernoux T, Weijers D. 113.  2015. Reporters for sensitive and quantitative measurement of auxin response. Nat. Methods 12:207–10 [Google Scholar]
  114. Litzlbauer J, Schifferer M, Ng D, Fabritius A, Thestrup T, Griesbeck O. 114.  2015. Large scale bacterial colony screening of diversified FRET biosensors. PLOS ONE 10:e0119860 [Google Scholar]
  115. Loro G, Drago I, Pozzan T, Schiavo FL, Zottini M, Costa A. 115.  2012. Targeting of Cameleons to various subcellular compartments reveals a strict cytoplasmic/mitochondrial Ca2+ handling relationship in plant cells. Plant J 71:1–13 [Google Scholar]
  116. Loro G, Wagner S, Doccula FG, Behera S, Weinl S. 116.  et al. 2016. Chloroplast-specific in vivo Ca2+ imaging using Yellow Cameleon fluorescent protein sensors reveals organelle-autonomous Ca2+ signatures in the stroma. Plant Physiol 171:2317–30 [Google Scholar]
  117. Luo Y, Scholl S, Doering A, Zhang Y, Irani NG. 117.  et al. 2015. V-ATPase activity in the TGN/EE is required for exocytosis and recycling in Arabidopsis. Nat. Plants 1:15094 [Google Scholar]
  118. Mank M, Santos AF, Direnberger S, Mrsic-Flogel TD, Hofer SB. 118.  et al. 2008. A genetically encoded calcium indicator for chronic in vivo two-photon imaging. Nat. Methods 5:805–11 [Google Scholar]
  119. Marchive C, Roudier F, Castaings L, Brehaut V, Blondet E. 119.  et al. 2013. Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants. Nat. Commun. 4:1713 [Google Scholar]
  120. Martiniere A, Bassil E, Jublanc E, Alcon C, Reguera M. 120.  et al. 2013. In vivo intracellular pH measurements in tobacco and Arabidopsis reveal an unexpected pH gradient in the endomembrane system. Plant Cell 25:4028–43 [Google Scholar]
  121. Marty L, Siala W, Schwarzlander M, Fricker MD, Wirtz M. 121.  et al. 2009. The NADPH-dependent thioredoxin system constitutes a functional backup for cytosolic glutathione reductase in Arabidopsis. PNAS 106:9109–14 [Google Scholar]
  122. Meyer AJ, Brach T, Marty L, Kreye S, Rouhier N. 122.  et al. 2007. Redox-sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer. Plant J 52:973–86 [Google Scholar]
  123. Michard E, Lima PT, Borges F, Silva AC, Portes MT. 123.  et al. 2011. Glutamate receptor-like genes form Ca2+ channels in pollen tubes and are regulated by pistil d-serine. Science 332:434–37 [Google Scholar]
  124. Miesenbock G, De Angelis DA, Rothman JE. 124.  1998. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394:192–95 [Google Scholar]
  125. Mittler R.125.  2017. ROS are good. Trends Plant Sci 22:11–19 [Google Scholar]
  126. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F. 126.  2004. Reactive oxygen gene network of plants. Trends Plant Sci 9:490–98 [Google Scholar]
  127. Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA. 127.  et al. 1997. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–87 [Google Scholar]
  128. Monshausen GB, Bibikova TN, Messerli MA, Shi C, Gilroy S. 128.  2007. Oscillations in extracellular pH and reactive oxygen species modulate tip growth of Arabidopsis root hairs. PNAS 104:20996–1001 [Google Scholar]
  129. Monshausen GB, Bibikova TN, Weisenseel MH, Gilroy S. 129.  2009. Ca2+ regulates reactive oxygen species production and pH during mechanosensing in Arabidopsis roots. Plant Cell 21:2341–56 [Google Scholar]
  130. Monshausen GB, Messerli MA, Gilroy S. 130.  2008. Imaging of the Yellow Cameleon 3.6 indicator reveals that elevations in cytosolic Ca2+ follow oscillating increases in growth in root hairs of Arabidopsis. Plant Physiol 147:1690–98 [Google Scholar]
  131. Monshausen GB, Miller ND, Murphy AS, Gilroy S. 131.  2011. Dynamics of auxin-dependent Ca2+ and pH signaling in root growth revealed by integrating high-resolution imaging with automated computer vision-based analysis. Plant J 65:309–18 [Google Scholar]
  132. Mori IC, Murata Y, Yang Y, Munemasa S, Wang YF. 132.  et al. 2006. CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca2+-permeable channels and stomatal closure. PLOS Biol 4:e327 [Google Scholar]
  133. Moseyko N, Feldman LJ. 133.  2001. Expression of pH-sensitive green fluorescent protein in Arabidopsis thaliana. Plant Cell Environ 24:557–63 [Google Scholar]
  134. Mukherjee P, Banerjee S, Wheeler A, Ratliff LA, Irigoyen S. 134.  et al. 2015. Live imaging of inorganic phosphate in plants with cellular and subcellular resolution. Plant Physiol 167:628–38 [Google Scholar]
  135. Muller B, Fastner A, Karmann J, Mansch V, Hoffmann T. 135.  et al. 2015. Amino acid export in developing Arabidopsis seeds depends on UmamiT facilitators. Curr. Biol. 25:3126–31 [Google Scholar]
  136. Muller B, Sheen J. 136.  2008. Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature 453:1094–97 [Google Scholar]
  137. Munemasa S, Oda K, Watanabe-Sugimoto M, Nakamura Y, Shimoishi Y, Murata Y. 137.  2007. The coronatine-insensitive 1 mutation reveals the hormonal signaling interaction between abscisic acid and methyl jasmonate in Arabidopsis guard cells. Specific impairment of ion channel activation and second messenger production. Plant Physiol 143:1398–407 [Google Scholar]
  138. Munnik T, Testerink C. 138.  2009. Plant phospholipid signaling: “in a nutshell.”. J. Lipid Res. 50:Suppl.S260–65 [Google Scholar]
  139. Murase K, Hirano Y, Sun TP, Hakoshima T. 139.  2008. Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature 456:459–63 [Google Scholar]
  140. Nadler DC, Morgan SA, Flamholz A, Kortright KE, Savage DF. 140.  2016. Rapid construction of metabolite biosensors using domain-insertion profiling. Nat. Commun. 7:12266Describes a novel strategy for the screening of cpGFP insertion sites into ligand-binding domains using a combination of transposon-based cloning, fluorescence-activated cell sorting, and next-generation sequencing. [Google Scholar]
  141. Nagai T, Sawano A, Park ES, Miyawaki A. 141.  2001. Circularly permuted green fluorescent proteins engineered to sense Ca2+. PNAS 98:3197–202 [Google Scholar]
  142. Nagai T, Yamada S, Tominaga T, Ichikawa M, Miyawaki A. 142.  2004. Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins. PNAS 101:10554–59 [Google Scholar]
  143. Nakai J, Ohkura M, Imoto K. 143.  2001. A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. Nat. Biotechnol. 19:137–41 [Google Scholar]
  144. Ngo QA, Vogler H, Lituiev DS, Nestorova A, Grossniklaus U. 144.  2014. A calcium dialog mediated by the FERONIA signal transduction pathway controls plant sperm delivery. Dev. Cell 29:491–500Describes the first multicolor calcium imaging approach to simultaneously visualize calcium signals in pollen tubes and synergids during double fertilization in Arabidopsis. [Google Scholar]
  145. Novak O, Napier R, Ljung K. 145.  2017. Zooming in on plant hormone analysis: tissue- and cell-specific approaches. Annu. Rev. Plant Biol. 68:323–48 [Google Scholar]
  146. O'Connor N, Silver RB. 146.  2007. Ratio imaging: practical considerations for measuring intracellular Ca2+ and pH in living cells. Methods Cell Biol 81:415–33 [Google Scholar]
  147. Okumoto S, Jones A, Frommer WB. 147.  2012. Quantitative imaging with fluorescent biosensors. Annu. Rev. Plant Biol. 63:663–706 [Google Scholar]
  148. Oldroyd GE.148.  2013. Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat. Rev. Microbiol. 11:252–63 [Google Scholar]
  149. Ostergaard H, Henriksen A, Hansen FG, Winther JR. 149.  2001. Shedding light on disulfide bond formation: engineering a redox switch in green fluorescent protein. EMBO J 20:5853–62 [Google Scholar]
  150. Ottenschlager I, Wolff P, Wolverton C, Bhalerao RP, Sandberg G. 150.  et al. 2003. Gravity-regulated differential auxin transport from columella to lateral root cap cells. PNAS 100:2987–91 [Google Scholar]
  151. Palmer AE, Giacomello M, Kortemme T, Hires SA, Lev-Ram V. 151.  et al. 2006. Ca2+ indicators based on computationally redesigned calmodulin-peptide pairs. Chem. Biol. 13:521–30 [Google Scholar]
  152. Parton RM, Fischer-Parton S, Trewavas AJ, Watahiki MK. 152.  2003. Pollen tubes exhibit regular periodic membrane trafficking events in the absence of apical extension. J. Cell Sci. 116:2707–19 [Google Scholar]
  153. Pei ZM, Murata Y, Benning G, Thomine S, Klusener B. 153.  et al. 2000. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406:731–34 [Google Scholar]
  154. Perez Koldenkova V, Nagai T. 154.  2013. Genetically encoded Ca2+ indicators: properties and evaluation. Biochim. Biophys. Acta 1833:1787–97 [Google Scholar]
  155. Peroza EA, Boumezbeur AH, Zamboni N. 155.  2015. Rapid, randomized development of genetically encoded FRET sensors for small molecules. Analyst 140:4540–48 [Google Scholar]
  156. Persechini A, Lynch JA, Romoser VA. 156.  1997. Novel fluorescent indicator proteins for monitoring free intracellular Ca2+. Cell Calcium 22:209–16 [Google Scholar]
  157. Procko C, Burko Y, Jaillais Y, Ljung K, Long JA, Chory J. 157.  2016. The epidermis coordinates auxin-induced stem growth in response to shade. Genes Dev 30:1529–41 [Google Scholar]
  158. Richmond TA, Takahashi TT, Shimkhada R, Bernsdorf J. 158.  2000. Engineered metal binding sites on green fluorescence protein. Biochem. Biophys. Res. Commun. 268:462–65 [Google Scholar]
  159. Rincon-Zachary M, Teaster ND, Sparks JA, Valster AH, Motes CM, Blancaflor EB. 159.  2010. Fluorescence resonance energy transfer-sensitized emission of yellow cameleon 3.60 reveals root zone-specific calcium signatures in Arabidopsis in response to aluminum and other trivalent cations. Plant Physiol 152:1442–58 [Google Scholar]
  160. Rizza A, Walia A, Lanquar V, Frommer WB, Jones AM. 160.  2017. In vivo gibberellin gradients visualized in rapidly elongating tissues. Nat Plants 3:803–13Describes a high-affinity FRET biosensor used to report on the levels of gibberellin in plant tissues. [Google Scholar]
  161. Rosa S, De Lucia F, Mylne JS, Zhu D, Ohmido N. 161.  et al. 2013. Physical clustering of FLC alleles during Polycomb-mediated epigenetic silencing in vernalization. Genes Dev 27:1845–50 [Google Scholar]
  162. Rose T, Goltstein PM, Portugues R, Griesbeck O. 162.  2014. Putting a finishing touch on GECIs. Front. Mol. Neurosci. 7:88 [Google Scholar]
  163. Rosenwasser S, Rot I, Meyer AJ, Feldman L, Jiang K, Friedman H. 163.  2010. A fluorometer-based method for monitoring oxidation of redox-sensitive GFP (roGFP) during development and extended dark stress. Physiol. Plant 138:493–502 [Google Scholar]
  164. Sabatini S, Beis D, Wolkenfelt H, Murfett J, Guilfoyle T. 164.  et al. 1999. An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99:463–72 [Google Scholar]
  165. Sadanandom A, Napier RM. 165.  2010. Biosensors in plants. Curr. Opin. Plant Biol. 13:736–43 [Google Scholar]
  166. Samodelov SL, Beyer HM, Guo X, Augustin M, Jia KP. 166.  et al. 2016. StrigoQuant: a genetically encoded biosensor for quantifying strigolactone activity and specificity. Sci. Adv. 2:e1601266 [Google Scholar]
  167. Sato EM, Hijazi H, Bennett MJ, Vissenberg K, Swarup R. 167.  2015. New insights into root gravitropic signalling. J. Exp. Bot. 66:2155–65 [Google Scholar]
  168. Sauret-Gueto S, Calder G, Harberd NP. 168.  2012. Transient gibberellin application promotes Arabidopsis thaliana hypocotyl cell elongation without maintaining transverse orientation of microtubules on the outer tangential wall of epidermal cells. Plant J 69:628–39 [Google Scholar]
  169. Schulte A, Lorenzen I, Bottcher M, Plieth C. 169.  2006. A novel fluorescent pH probe for expression in plants. Plant Methods 2:7 [Google Scholar]
  170. Schumacher K.170.  2014. pH in the plant endomembrane system: an import and export business. Curr. Opin. Plant Biol. 22:71–76 [Google Scholar]
  171. Schumacher K, Vafeados D, McCarthy M, Sze H, Wilkins T, Chory J. 171.  1999. The Arabidopsis det3 mutant reveals a central role for the vacuolar H+-ATPase in plant growth and development. Genes Dev 13:3259–70 [Google Scholar]
  172. Schuster C, Gaillochet C, Medzihradszky A, Busch W, Daum G. 172.  et al. 2014. A regulatory framework for shoot stem cell control integrating metabolic, transcriptional, and phytohormone signals. Dev. Cell 28:438–49 [Google Scholar]
  173. Schwarzlander M, Fricker MD, Muller C, Marty L, Brach T. 173.  et al. 2008. Confocal imaging of glutathione redox potential in living plant cells. J. Microsc. 231:299–316 [Google Scholar]
  174. Shaner NC, Patterson GH, Davidson MW. 174.  2007. Advances in fluorescent protein technology. J. Cell Sci. 120:4247–60 [Google Scholar]
  175. Shaner NC, Steinbach PA, Tsien RY. 175.  2005. A guide to choosing fluorescent proteins. Nat. Methods 2:905–9 [Google Scholar]
  176. Shen J, Zeng Y, Zhuang X, Sun L, Yao X. 176.  et al. 2013. Organelle pH in the Arabidopsis endomembrane system. Mol. Plant 6:1419–37 [Google Scholar]
  177. Shih HW, DePew CL, Miller ND, Monshausen GB. 177.  2015. The cyclic nucleotide-gated channel CNGC14 regulates root gravitropism in Arabidopsis thaliana. Curr. Biol 25:3119–25 [Google Scholar]
  178. Sieberer BJ, Chabaud M, Fournier J, Timmers AC, Barker DG. 178.  2012. A switch in Ca2+ spiking signature is concomitant with endosymbiotic microbe entry into cortical root cells of Medicago truncatula. Plant J 69:822–30 [Google Scholar]
  179. Sieberer BJ, Chabaud M, Timmers AC, Monin A, Fournier J, Barker DG. 179.  2009. A nuclear-targeted cameleon demonstrates intranuclear Ca2+ spiking in Medicago truncatula root hairs in response to rhizobial nodulation factors. Plant Physiol 151:1197–206 [Google Scholar]
  180. Silverstone AL, Tseng TS, Swain SM, Dill A, Jeong SY. 180.  et al. 2007. Functional analysis of SPINDLY in gibberellin signaling in Arabidopsis. Plant Physiol 143:987–1000 [Google Scholar]
  181. Simon ML, Platre MP, Assil S, van Wijk R, Chen WY. 181.  et al. 2014. A multi-colour/multi-affinity marker set to visualize phosphoinositide dynamics in Arabidopsis. Plant J 77:322–37 [Google Scholar]
  182. Sozzani R, Busch W, Spalding EP, Benfey PN. 182.  2014. Advanced imaging techniques for the study of plant growth and development. Trends Plant Sci 19:304–10 [Google Scholar]
  183. Steinhorst L, Kudla J. 183.  2013. Calcium - a central regulator of pollen germination and tube growth. Biochim. Biophys. Acta 1833:1573–81 [Google Scholar]
  184. Stepanova AN, Yun J, Likhacheva AV, Alonso JM. 184.  2007. Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell 19:2169–85 [Google Scholar]
  185. Suzuki J, Kanemaru K, Ishii K, Ohkura M, Okubo Y, Iino M. 185.  2014. Imaging intraorganellar Ca2+ at subcellular resolution using CEPIA. Nat. Commun. 5:4153 [Google Scholar]
  186. Swarup K, Benkova E, Swarup R, Casimiro I, Peret B. 186.  et al. 2008. The auxin influx carrier LAX3 promotes lateral root emergence. Nat. Cell Biol. 10:946–54 [Google Scholar]
  187. Tang S, Wong HC, Wang ZM, Huang Y, Zou J. 187.  et al. 2011. Design and application of a class of sensors to monitor Ca2+ dynamics in high Ca2+ concentration cellular compartments. PNAS 108:16265–70 [Google Scholar]
  188. Thestrup T, Litzlbauer J, Bartholomaus I, Mues M, Russo L. 188.  et al. 2014. Optimized ratiometric calcium sensors for functional in vivo imaging of neurons and T lymphocytes. Nat. Methods 11:175–82 [Google Scholar]
  189. Thor K, Peiter E. 189.  2014. Cytosolic calcium signals elicited by the pathogen-associated molecular pattern flg22 in stomatal guard cells are of an oscillatory nature. New Phytol 204:873–81 [Google Scholar]
  190. Tian L, Hires SA, Mao T, Huber D, Chiappe ME. 190.  et al. 2009. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat. Methods 6:875–81 [Google Scholar]
  191. Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ. 191.  1997. Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9:1963–71 [Google Scholar]
  192. Uslu VV, Grossmann G. 192.  2016. The biosensor toolbox for plant developmental biology. Curr. Opin. Plant Biol. 29:138–47 [Google Scholar]
  193. Vermeer JE, Munnik T. 193.  2013. Using genetically encoded fluorescent reporters to image lipid signalling in living plants. Methods Mol. Biol. 1009:283–89 [Google Scholar]
  194. Vermeer JE, Thole JM, Goedhart J, Nielsen E, Munnik T, Gadella TW Jr. 194.  2009. Imaging phosphatidylinositol 4-phosphate dynamics in living plant cells. Plant J 57:356–72 [Google Scholar]
  195. Vinkenborg JL, Nicolson TJ, Bellomo EA, Koay MS, Rutter GA, Merkx M. 195.  2009. Genetically encoded FRET sensors to monitor intracellular Zn2+ homeostasis. Nat. Methods 6:737–40 [Google Scholar]
  196. von Wiren N, Gazzarrini S, Gojon A, Frommer WB. 196.  2000. The molecular physiology of ammonium uptake and retrieval. Curr. Opin. Plant Biol. 3:254–61 [Google Scholar]
  197. Waadt R, Hitomi K, Nishimura N, Hitomi C, Adams SR. 197.  et al. 2014. FRET-based reporters for the direct visualization of abscisic acid concentration changes and distribution in Arabidopsis. eLife 3:e01739Describes a genetically encoded FRET biosensor (ABAleon2.1) for the stress hormone abscisic acid. [Google Scholar]
  198. Waadt R, Hsu PK, Schroeder JI. 198.  2015. Abscisic acid and other plant hormones: methods to visualize distribution and signaling. Bioessays 37:1338–49 [Google Scholar]
  199. Waadt R, Krebs M, Kudla J, Schumacher K. 199.  2017. Multiparameter imaging of calcium and abscisic acid and high-resolution quantitative calcium measurements using R-GECO1-mTurquoise in Arabidopsis. New Phytol 216:303–20 [Google Scholar]
  200. Wachter RM, Remington SJ. 200.  1999. Sensitivity of the yellow variant of green fluorescent protein to halides and nitrate. Curr. Biol. 9:R628–29 [Google Scholar]
  201. Wagner S, Behera S, De Bortoli S, Logan DC, Fuchs P. 201.  et al. 2015. The EF-hand Ca2+ binding protein MICU choreographs mitochondrial Ca2+ dynamics in Arabidopsis. Plant Cell 27:3190–212 [Google Scholar]
  202. Wang YF, Munemasa S, Nishimura N, Ren HM, Robert N. 202.  et al. 2013. Identification of cyclic GMP-activated nonselective Ca2+-permeable cation channels and associated CNGC5 and CNGC6 genes in Arabidopsis guard cells. Plant Physiol 163:578–90 [Google Scholar]
  203. Weinl S, Held K, Schlucking K, Steinhorst L, Kuhlgert S. 203.  et al. 2008. A plastid protein crucial for Ca2+-regulated stomatal responses. New Phytol 179:675–86 [Google Scholar]
  204. Wells DM, Laplaze L, Bennett MJ, Vernoux T. 204.  2013. Biosensors for phytohormone quantification: challenges, solutions, and opportunities. Trends Plant Sci 18:244–49 [Google Scholar]
  205. Wrzaczek M, Brosche M, Kangasjarvi J. 205.  2013. ROS signaling loops: production, perception, regulation. Curr. Opin. Plant Biol. 16:575–82 [Google Scholar]
  206. Xue S, Hu H, Ries A, Merilo E, Kollist H, Schroeder JI. 206.  2011. Central functions of bicarbonate in S-type anion channel activation and OST1 protein kinase in CO2 signal transduction in guard cell. EMBO J 30:1645–58 [Google Scholar]
  207. Yang H, Bogner M, Stierhof YD, Ludewig U. 207.  2010. H-independent glutamine transport in plant root tips. PLOS ONE 5:e8917 [Google Scholar]
  208. Ye W, Muroyama D, Munemasa S, Nakamura Y, Mori IC, Murata Y. 208.  2013. Calcium-dependent protein kinase CPK6 positively functions in induction by yeast elicitor of stomatal closure and inhibition by yeast elicitor of light-induced stomatal opening in Arabidopsis. Plant Physiol 163:591–99 [Google Scholar]
  209. Young JJ, Mehta S, Israelsson M, Godoski J, Grill E, Schroeder JI. 209.  2006. CO2 signaling in guard cells: calcium sensitivity response modulation, a Ca2+-independent phase, and CO2 insensitivity of the gca2 mutant. PNAS 103:7506–11 [Google Scholar]
  210. Yuan F, Yang H, Xue Y, Kong D, Ye R. 210.  et al. 2014. OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature 514:367–71 [Google Scholar]
  211. Zhao Y, Araki S, Wu J, Teramoto T, Chang YF. 211.  et al. 2011. An expanded palette of genetically encoded Ca2+ indicators. Science 333:1888–91Describes the development of genetically encoded calcium indicators for optical imaging (GECOs) that emit fluorescence at various wavelengths. [Google Scholar]
  212. Zhu Q, Wang L, Dong Q, Chang S, Wen K. 212.  et al. 2017. FRET-based glucose imaging identifies glucose signalling in response to biotic and abiotic stresses in rice roots. J. Plant Physiol. 215:65–72 [Google Scholar]
  213. Zurcher E, Tavor-Deslex D, Lituiev D, Enkerli K, Tarr PT, Muller B. 213.  2013. A robust and sensitive synthetic sensor to monitor the transcriptional output of the cytokinin signaling network in planta. Plant Physiol 161:1066–75 [Google Scholar]
  214. Ishitani M, Xiong L, Stevenson B, Zhu JK. 214.  1997. Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis thaliana: interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways.. Plant Cell 9:1935–49 [Google Scholar]
  215. Kim TH, Hauser F, Ha T, Xue S, Böhmer M. 215.  2011. Chemical genetics reveals negative regulation of abscisic acid signaling by a plant immune response pathway.. Curr. Biol 21:990–97 [Google Scholar]
/content/journals/10.1146/annurev-arplant-042817-040104
Loading
/content/journals/10.1146/annurev-arplant-042817-040104
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error