1932

Abstract

Nonenzymatic lipid oxidation is usually viewed as deleterious. But if this is the case, then why does it occur so frequently in cells? Here we review the mechanisms of membrane peroxidation and examine the genesis of reactive electrophile species (RES). Recent evidence suggests that during stress, both lipid peroxidation and RES generation can benefit cells. New results from genetic approaches support a model in which entire membranes can act as supramolecular sinks for singlet oxygen, the predominant reactive oxygen species (ROS) in plastids. RES reprogram gene expression through a class II TGA transcription factor module as well as other, unknown signaling pathways. We propose a framework to explain how RES signaling promotes cell “REScue” by stimulating the expression of genes encoding detoxification functions, cell cycle regulators, and chaperones. The majority of the known biological activities of oxygenated lipids (oxylipins) in plants are mediated either by jasmonate perception or through RES signaling networks.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-050312-120132
2013-04-29
2024-04-16
Loading full text...

Full text loading...

/content/journals/10.1146/annurev-arplant-050312-120132
Loading
/content/journals/10.1146/annurev-arplant-050312-120132
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error