1932

Abstract

Cryptochromes are blue-light receptors that mediate photoresponses in plants. The genomes of most land plants encode two clades of cryptochromes, CRY1 and CRY2, which mediate distinct and overlapping photoresponses within the same species and between different plant species. Photoresponsive protein–protein interaction is the primary mode of signal transduction of cryptochromes. Cryptochromes exist as physiologically inactive monomers in the dark; the absorption of photons leads to conformational change and cryptochrome homooligomerization, which alters the affinity of cryptochromes interacting with cryptochrome-interacting proteins to form various cryptochrome complexes. These cryptochrome complexes, collectively referred to as the cryptochrome complexome, regulate transcription or stability of photoresponsive proteins to modulate plant growth and development. The activity of cryptochromes is regulated by photooligomerization; dark monomerization; cryptochrome regulatory proteins; and cryptochrome phosphorylation, ubiquitination, and degradation. Most of the more than 30 presently known cryptochrome-interacting proteins are either regulated by other photoreceptors or physically interactingwith the protein complexes of other photoreceptors. Some cryptochrome-interacting proteins are also hormonal signaling or regulatory proteins. These two mechanisms enable cryptochromes to integrate blue-light signals with other internal and external signals to optimize plant growth and development.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-050718-100300
2020-04-29
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/arplant/71/1/annurev-arplant-050718-100300.html?itemId=/content/journals/10.1146/annurev-arplant-050718-100300&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Ahmad M. 2016. Photocycle and signaling mechanisms of plant cryptochromes. Curr. Opin. Plant Biol. 33:108–15
    [Google Scholar]
  2. 2. 
    Ahmad M, Cashmore AR. 1993. HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 366:162–66Genetic identification of the first cryptochrome.
    [Google Scholar]
  3. 3. 
    Ahmad M, Galland P, Ritz T, Wiltschko R, Wiltschko W 2007. Magnetic intensity affects cryptochrome-dependent responses in Arabidopsis thaliana. Planta 225:615–24
    [Google Scholar]
  4. 4. 
    Ahmad M, Jarillo JA, Smirnova O, Cashmore AR 1998. The CRY1 blue light photoreceptor of Arabidopsis interacts with phytochrome A in vitro. Mol. Cell 1:939–48
    [Google Scholar]
  5. 5. 
    Ahmad M, Jarillo JA, Smirnova O, Cashmore AR 1998. Cryptochrome blue-light photoreceptors of Arabidopsis implicated in phototropism. Nature 392:720–23
    [Google Scholar]
  6. 6. 
    Balland V, Byrdin M, Eker AP, Ahmad M, Brettel K 2009. What makes the difference between a cryptochrome and DNA photolyase? A spectroelectrochemical comparison of the flavin redox transitions. J. Am. Chem. Soc. 131:426–27
    [Google Scholar]
  7. 7. 
    Barrero JM, Downie AB, Xu Q, Gubler F 2014. A role for barley CRYPTOCHROME1 in light regulation of grain dormancy and germination. Plant Cell 26:1094–104
    [Google Scholar]
  8. 8. 
    Beel B, Prager K, Spexard M, Sasso S, Weiss D et al. 2012. A flavin binding cryptochrome photoreceptor responds to both blue and red light in Chlamydomonas reinhardtii. Plant Cell 24:2992–3008
    [Google Scholar]
  9. 9. 
    Biskup T, Hitomi K, Getzoff ED, Krapf S, Koslowski T et al. 2011. Unexpected electron transfer in cryptochrome identified by time-resolved EPR spectroscopy. Angew. Chem. Int. Ed. 50:12647–51
    [Google Scholar]
  10. 10. 
    Blazquez MA, Ahn JH, Weigel D 2003. A thermosensory pathway controlling flowering time in Arabidopsis thaliana. Nat. Genet 33:168–71
    [Google Scholar]
  11. 11. 
    Brautigam CA, Smith BS, Ma Z, Palnitkar M, Tomchick DR et al. 2004. Structure of the photolyase-like domain of cryptochrome 1 from Arabidopsis thaliana. PNAS 101:12142–47
    [Google Scholar]
  12. 12. 
    Bugaj LJ, Choksi AT, Mesuda CK, Kane RS, Schaffer DV 2013. Optogenetic protein clustering and signaling activation in mammalian cells. Nat. Methods 10:249–52
    [Google Scholar]
  13. 13. 
    Cailliez F, Müller P, Gallois M, de la Lande A 2014. ATP binding and aspartate protonation enhance photoinduced electron transfer in plant cryptochrome. J. Am. Chem. Soc. 136:12974–86
    [Google Scholar]
  14. 14. 
    Cashmore AR. 2003. Cryptochromes: enabling plants and animals to determine circadian time. Cell 114:537–43
    [Google Scholar]
  15. 15. 
    Cashmore AR, Jarillo JA, Wu YJ, Liu D 1999. Cryptochromes: blue light receptors for plants and animals. Science 284:760–65
    [Google Scholar]
  16. 16. 
    Castillon A, Shen H, Huq E 2009. Blue light induces degradation of the negative regulator phytochrome interacting factor 1 to promote photomorphogenic development of Arabidopsis seedlings. Genetics 182:161–71
    [Google Scholar]
  17. 17. 
    Chatterjee M, Sharma P, Khurana JP 2006. Cryptochrome 1 from Brassica napus is up-regulated by blue light and controls hypocotyl/stem growth and anthocyanin accumulation. Plant Physiol 141:61–74
    [Google Scholar]
  18. 18. 
    Chaves I, Pokorny R, Byrdin M, Hoang N, Ritz T et al. 2011. The cryptochromes: blue light photoreceptors in plants and animals. Annu. Rev. Plant Biol. 62:335–64
    [Google Scholar]
  19. 19. 
    Christie JM. 2007. Phototropin blue-light receptors. Annu. Rev. Plant Biol. 58:21–45
    [Google Scholar]
  20. 20. 
    Cluis CP, Mouchel CF, Hardtke CS 2004. The Arabidopsis transcription factor HY5 integrates light and hormone signaling pathways. Plant J 38:332–47
    [Google Scholar]
  21. 21. 
    Coesel S, Mangogna M, Ishikawa T, Heijde M, Rogato A et al. 2009. Diatom PtCPF1 is a new cryptochrome/photolyase family member with DNA repair and transcription regulation activity. EMBO Rep 10:655–61
    [Google Scholar]
  22. 22. 
    Colón-Carmona A, Chen DL, Yeh KC, Abel S 2000. Aux/IAA proteins are phosphorylated by phytochrome in vitro. Plant Physiol 124:1728–38
    [Google Scholar]
  23. 23. 
    Corchnoy SB, Swartz TE, Lewis JW, Szundi I, Briggs WR, Bogomolni RA 2003. Intramolecular proton transfers and structural changes during the photocycle of the LOV2 domain of phototropin 1. J. Biol. Chem. 278:724–31
    [Google Scholar]
  24. 24. 
    Czarna A, Berndt A, Singh HR, Grudziecki A, Ladurner AG et al. 2013. Structures of Drosophila cryptochrome and mouse cryptochrome1 provide insight into circadian function. Cell 153:1394–405
    [Google Scholar]
  25. 25. 
    Danon A, Coll NS, Apel K 2006. Cryptochrome-1-dependent execution of programmed cell death induced by singlet oxygen in Arabidopsis thaliana. PNAS 103:17036–41
    [Google Scholar]
  26. 26. 
    De Riso V, Raniello R, Maumus F, Rogato A, Bowler C, Falciatore A 2009. Gene silencing in the marine diatom Phaeodactylum tricornutum. Nucleic Acids Res 37:e96
    [Google Scholar]
  27. 27. 
    de Wit M, Galvão VC, Fankhauser C 2016. Light-mediated hormonal regulation of plant growth and development. Annu. Rev. Plant Biol. 67:513–37
    [Google Scholar]
  28. 28. 
    Deng X-W, Matsui M, Wei N, Wagner D, Chu AM et al. 1992. COP1, an Arabidopsis regulatory gene, encodes a protein with both a zinc-binding motif and a Gβ homologous domain. Cell 71:791–801
    [Google Scholar]
  29. 29. 
    El-Assal SE-D, Alonso-Blanco C, Hanhart CJ, Koornneef M 2004. Pleiotropic effects of the Arabidopsis cryptochrome 2 allelic variation underlie fruit trait-related QTL. Plant Biol 6:370–74
    [Google Scholar]
  30. 30. 
    El-Assal SE-D, Alonso-Blanco C, Peeters AJ, Raz V, Koornneef M 2001. A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2. Nat. Genet. 29:435–40
    [Google Scholar]
  31. 31. 
    Emery P, So WV, Kaneko M, Hall JC, Rosbash M 1998. CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell 95:669–79
    [Google Scholar]
  32. 32. 
    Essen L-O, Franz S, Banerjee A 2017. Structural and evolutionary aspects of algal blue light receptors of the cryptochrome and aureochrome type. J. Plant Physiol. 217:27–37
    [Google Scholar]
  33. 33. 
    Folta KM, Pontin MA, Karlin-Neumann G, Bottini R, Spalding EP 2003. Genomic and physiological studies of early cryptochrome 1 action demonstrate roles for auxin and gibberellin in the control of hypocotyl growth by blue light. Plant J 36:203–14
    [Google Scholar]
  34. 34. 
    Foreman J, Johansson H, Hornitschek P, Josse EM, Fankhauser C, Halliday KJ 2011. Light receptor action is critical for maintaining plant biomass at warm ambient temperatures. Plant J 65:441–52
    [Google Scholar]
  35. 35. 
    Fortunato AE, Annunziata R, Jaubert M, Bouly J-P, Falciatore A 2015. Dealing with light: the widespread and multitasking cryptochrome/photolyase family in photosynthetic organisms. J. Plant Physiol. 172:42–54
    [Google Scholar]
  36. 36. 
    Franz S, Ignatz E, Wenzel S, Zielosko H, Putu EPGN et al. 2018. Structure of the bifunctional cryptochrome aCRY from Chlamydomonas reinhardtii. Nucleic Acids Res 46:8010–22
    [Google Scholar]
  37. 37. 
    Friedrichsen DM, Nemhauser J, Muramitsu T, Maloof JN, Alonso J et al. 2002. Three redundant brassinosteroid early response genes encode putative bHLH transcription factors required for normal growth. Genetics 162:1445–56
    [Google Scholar]
  38. 38. 
    Gao J, Wang X, Zhang M, Bian M, Deng W et al. 2015. Trp triad-dependent rapid photoreduction is not required for the function of Arabidopsis CRY1. PNAS 112:9135–40
    [Google Scholar]
  39. 39. 
    Gould PD, Ugarte N, Domijan M, Costa M, Foreman J et al. 2013. Network balance via CRY signalling controls the Arabidopsis circadian clock over ambient temperatures. Mol. Syst. Biol. 9:650
    [Google Scholar]
  40. 40. 
    Guo H, Yang H, Mockler TC, Lin C 1998. Regulation of flowering time by Arabidopsis photoreceptors. Science 279:1360–63
    [Google Scholar]
  41. 41. 
    Han L, Mason M, Risseeuw EP, Crosby WL, Somers DE 2004. Formation of an SCFZTL complex is required for proper regulation of circadian timing. Plant J 40:291–301
    [Google Scholar]
  42. 42. 
    Han X, Chang X, Zhang Z, Chen H, He H et al. 2019. Origin and evolution of core components responsible for monitoring light environment changes during plant terrestrialization. Mol. Plant 12:847–62
    [Google Scholar]
  43. 43. 
    Harris SR, Henbest KB, Maeda K, Pannell JR, Timmel CR et al. 2009. Effect of magnetic fields on cryptochrome-dependent responses in Arabidopsis thaliana. J. R. Soc. Interface 6:1193–205
    [Google Scholar]
  44. 44. 
    He G, Liu J, Dong H, Sun J 2019. The blue-light receptor CRY1 interacts with BZR1 and BIN2 to modulate the phosphorylation and nuclear function of BZR1 in repressing BR signaling in Arabidopsis. Mol. Plant 12:689–703
    [Google Scholar]
  45. 45. 
    Heijde M, Ulm R. 2012. UV-B photoreceptor-mediated signalling in plants. Trends Plant Sci 17:230–37
    [Google Scholar]
  46. 46. 
    Heijde M, Zabulon G, Corellou F, Ishikawa T, Brazard J et al. 2010. Characterization of two members of the cryptochrome/photolyase family from Ostreococcus tauri provides insights into the origin and evolution of cryptochromes. Plant Cell Environ 33:1614–26
    [Google Scholar]
  47. 47. 
    Herbel V, Orth C, Wenzel R, Ahmad M, Bittl R, Batschauer A 2013. Lifetimes of Arabidopsis cryptochrome signaling states in vivo. Plant J 74:583–92
    [Google Scholar]
  48. 48. 
    Hirose F, Shinomura T, Tanabata T, Shimada H, Takano M 2006. Involvement of rice cryptochromes in de-etiolation responses and flowering. Plant Cell Physiol 47:915–25
    [Google Scholar]
  49. 49. 
    Ho MKC, Su Y, Yeung WWS, Wong YH 2009. Regulation of transcription factors by heterotrimeric G proteins. Curr. Mol. Pharmacol. 2:19–31
    [Google Scholar]
  50. 50. 
    Hoecker U. 2017. The activities of the E3 ubiquitin ligase COP1/SPA, a key repressor in light signaling. Curr. Opin. Plant Biol. 37:63–69
    [Google Scholar]
  51. 51. 
    Hoecker U, Tepperman JM, Quail PH 1999. SPA1, a WD-repeat protein specific to phytochrome A signal transduction. Science 284:496–99
    [Google Scholar]
  52. 52. 
    Holm M, Hardtke CS, Gaudet R, Deng XW 2001. Identification of a structural motif that confers specific interaction with the WD40 repeat domain of Arabidopsis COP1. EMBO J 20:118–27
    [Google Scholar]
  53. 53. 
    Hsu DS, Zhao X, Zhao S, Kazantsev A, Wang RP et al. 1996. Putative human blue-light photoreceptors hCRY1 and hCRY2 are flavoproteins. Biochemistry 35:13871–77
    [Google Scholar]
  54. 54. 
    Hu W, Franklin KA, Sharrock RA, Jones MA, Harmer SL, Lagarias JC 2013. Unanticipated regulatory roles for Arabidopsis phytochromes revealed by null mutant analysis. PNAS 110:1542–47
    [Google Scholar]
  55. 55. 
    Huang H, Alvarez S, Bindbeutel R, Shen Z, Naldrett MJ et al. 2016. Identification of evening complex associated proteins in Arabidopsis by affinity purification and mass spectrometry. Mol. Cell. Proteomics 15:201–17
    [Google Scholar]
  56. 56. 
    Huang X, Ouyang X, Deng XW 2014. Beyond repression of photomorphogenesis: role switching of COP/DET/FUS in light signaling. Curr. Opin. Plant Biol. 21:96–103
    [Google Scholar]
  57. 57. 
    Ikeda M, Fujiwara S, Mitsuda N, Ohme-Takagi M 2012. A triantagonistic basic helix-loop-helix system regulates cell elongation in Arabidopsis. Plant Cell 24:4483–97
    [Google Scholar]
  58. 58. 
    Imaizumi T, Kanegae T, Wada M 2000. Cryptochrome nucleocytoplasmic distribution and gene expression are regulated by light quality in the fern Adiantum capillus-veneris. Plant Cell 12:81–95
    [Google Scholar]
  59. 59. 
    Ito S, Song YH, Imaizumi T 2012. LOV domain-containing F-box proteins: light-dependent protein degradation modules in Arabidopsis. Mol. Plant 5:573–82
    [Google Scholar]
  60. 60. 
    Jarillo JA, Capel J, Tang RH, Yang HQ, Alonso JM et al. 2001. An Arabidopsis circadian clock component interacts with both CRY1 and phyB. Nature 410:487–90
    [Google Scholar]
  61. 61. 
    Jenkins GI. 2014. The UV-B photoreceptor UVR8: from structure to physiology. Plant Cell 26:21–37
    [Google Scholar]
  62. 62. 
    Jones AM, Ecker JR, Chen J-G 2003. A reevaluation of the role of the heterotrimeric G protein in coupling light responses in Arabidopsis. Plant Physiol 131:1623–27
    [Google Scholar]
  63. 63. 
    Kanai S, Kikuno R, Toh H, Ryo H, Todo T 1997. Molecular evolution of the photolyase-blue-light photoreceptor family. J. Mol. Evol. 45:535–48
    [Google Scholar]
  64. 64. 
    Kang CY, Lian HL, Wang FF, Huang JR, Yang HQ 2009. Cryptochromes, phytochromes, and COP1 regulate light-controlled stomatal development in Arabidopsis. Plant Cell 21:2624–41
    [Google Scholar]
  65. 65. 
    Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK et al. 1999. Activation tagging of the floral inducer FT. Science 286:1962–65
    [Google Scholar]
  66. 66. 
    Kennedy MJ, Hughes RM, Peteya LA, Schwartz JW, Ehlers MD, Tucker CL 2010. Rapid blue-light-mediated induction of protein interactions in living cells. Nat. Methods 7:973–75
    [Google Scholar]
  67. 67. 
    Kleine T, Kindgren P, Benedict C, Hendrickson L, Strand A 2007. Genome-wide gene expression analysis reveals a critical role for CRYPTOCHROME1 in the response of Arabidopsis to high irradiance. Plant Physiol 144:1391–406
    [Google Scholar]
  68. 68. 
    Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T 1999. A pair of related genes with antagonistic roles in mediating flowering signals. Science 286:1960–62
    [Google Scholar]
  69. 69. 
    König S, Juhas M, Jäger S, Kottke T, Büchel C 2017. The cryptochrome–photolyase protein family in diatoms. J. Plant Physiol. 217:15–19
    [Google Scholar]
  70. 70. 
    Kottke T, Batschauer A, Ahmad M, Heberle J 2006. Blue-light-induced changes in Arabidopsis cryptochrome 1 probed by FTIR difference spectroscopy. Biochemistry 45:2472–79
    [Google Scholar]
  71. 71. 
    Kottke T, Oldemeyer S, Wenzel S, Zou Y, Mittag M 2017. Cryptochrome photoreceptors in green algae: unexpected versatility of mechanisms and functions. J. Plant Physiol. 217:4–14
    [Google Scholar]
  72. 72. 
    Kunihiro A, Yamashino T, Mizuno T 2010. PHYTOCHROME-INTERACTING FACTORS PIF4 and PIF5 are implicated in the regulation of hypocotyl elongation in response to blue light in Arabidopsis thaliana. Biosci. Biotechnol. Biochem 74:2538–41
    [Google Scholar]
  73. 73. 
    Lasceve G, Leymarie J, Olney MA, Liscum E, Christie JM et al. 1999. Arabidopsis contains at least four independent blue-light-activated signal transduction pathways. Plant Physiol 120:605–14
    [Google Scholar]
  74. 74. 
    Lau K, Podolec R, Chappuis R, Ulm R, Hothorn M 2019. Plant photoreceptors and their signaling components compete for COP1 binding via VP peptide motifs. EMBO J 38:e102140
    [Google Scholar]
  75. 75. 
    Lau OS, Deng XW. 2012. The photomorphogenic repressors COP1 and DET1: 20 years later. Trends Plant Sci 17:584–93
    [Google Scholar]
  76. 76. 
    Leivar P, Monte E. 2014. PIFs: systems integrators in plant development. Plant Cell 26:56–78
    [Google Scholar]
  77. 77. 
    Leivar P, Quail PH. 2011. PIFs: pivotal components in a cellular signaling hub. Trends Plant Sci 16:19–28
    [Google Scholar]
  78. 78. 
    Leivar P, Tepperman JM, Monte E, Calderon RH, Liu TL, Quail PH 2009. Definition of early transcriptional circuitry involved in light-induced reversal of PIF-imposed repression of photomorphogenesis in young Arabidopsis seedlings. Plant Cell 21:3535–53
    [Google Scholar]
  79. 79. 
    Li X, Wang Q, Yu X, Liu H, Yang H et al. 2011. Arabidopsis cryptochrome 2 (CRY2) functions by the photoactivation mechanism distinct from the tryptophan (trp) triad-dependent photoreduction. PNAS 108:20844–49
    [Google Scholar]
  80. 80. 
    Lian H, Xu P, He S, Wu J, Pan J et al. 2018. Photoexcited CRYPTOCHROME 1 interacts directly with G-protein β subunit AGB1 to regulate the DNA-binding activity of HY5 and photomorphogenesis in Arabidopsis. Mol. Plant 11:1248–63
    [Google Scholar]
  81. 81. 
    Lian HL, He SB, Zhang YC, Zhu DM, Zhang JY et al. 2011. Blue-light-dependent interaction of cryptochrome 1 with SPA1 defines a dynamic signaling mechanism. Genes Dev 25:1023–28
    [Google Scholar]
  82. 82. 
    Lin C, Ahmad M, Gordon D, Cashmore AR 1995. Expression of an Arabidopsis cryptochrome gene in transgenic tobacco results in hypersensitivity to blue, UV-A, and green light. PNAS 92:8423–27
    [Google Scholar]
  83. 83. 
    Lin C, Robertson DE, Ahmad M, Raibekas AA, Jorns MS et al. 1995. Association of flavin adenine dinucleotide with the Arabidopsis blue light receptor CRY1. Science 269:968–70Biochemical characterization of the first cryptochrome.
    [Google Scholar]
  84. 84. 
    Lin C, Shalitin D. 2003. Cryptochrome structure and signal transduction. Annu. Rev. Plant Biol. 54:469–96
    [Google Scholar]
  85. 85. 
    Lin C, Top D, Manahan CC, Young MW, Crane BR 2018. Circadian clock activity of cryptochrome relies on tryptophan-mediated photoreduction. PNAS 115:3822–27
    [Google Scholar]
  86. 86. 
    Lin C, Yang H, Guo H, Mockler T, Chen J, Cashmore AR 1998. Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2. PNAS 95:2686–90
    [Google Scholar]
  87. 87. 
    Liu B, Liu H, Zhong D, Lin C 2010. Searching for a photocycle of the cryptochrome photoreceptors. Curr. Opin. Plant Biol. 13:578–86
    [Google Scholar]
  88. 88. 
    Liu B, Zuo Z, Liu H, Liu X, Lin C 2011. Arabidopsis cryptochrome 1 interacts with SPA1 to suppress COP1 activity in response to blue light. Genes Dev 25:1029–34
    [Google Scholar]
  89. 89. 
    Liu H, Su T, He W, Wang Q, Lin C 2019. The universally conserved residues are not universally required for stable protein expression or functions of cryptochromes. Mol. Biol. Evol. 37:327–40
    [Google Scholar]
  90. 90. 
    Liu H, Wang Q, Liu Y, Zhao X, Imaizumi T et al. 2013. Arabidopsis CRY2 and ZTL mediate blue-light regulation of the transcription factor CIB1 by distinct mechanisms. PNAS 110:17582–87
    [Google Scholar]
  91. 91. 
    Liu H, Yu X, Li K, Klejnot J, Yang H et al. 2008. Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis. Science 322:1535–39Identification of the first blue light-specific cryptochrome-interacting protein.
    [Google Scholar]
  92. 92. 
    Liu Q, Su T, He W, Ren H, Liu S et al. 2020. Photooligomerization determines photosensitivity and photoreactivity of plant cryptochromes. Mol. Plant 13:398–413
    [Google Scholar]
  93. 93. 
    Liu Q, Wang Q, Deng W, Wang X, Piao M et al. 2017. Molecular basis for blue light-dependent phosphorylation of Arabidopsis cryptochrome 2. Nat. Commun. 8:15234Identification of four protein kinases that phosphorylate cryptochromes.
    [Google Scholar]
  94. 94. 
    Liu Q, Wang Q, Liu B, Wang W, Wang X et al. 2016. The blue light-dependent polyubiquitination and degradation of Arabidopsis cryptochrome2 requires multiple E3 ubiquitin ligases. Plant Cell Physiol 57:2175–86
    [Google Scholar]
  95. 95. 
    Liu Y, Li X, Li K, Liu H, Lin C 2013. Multiple bHLH proteins form heterodimers to mediate CRY2-dependent regulation of flowering-time in Arabidopsis. PLOS Genet 9:e1003861
    [Google Scholar]
  96. 96. 
    Liu Y, Li X, Ma D, Chen Z, Wang J-W, Liu H 2018. CIB1 and CO interact to mediate CRY2-dependent regulation of flowering. EMBO Rep 19:e45762
    [Google Scholar]
  97. 97. 
    Luo Q, Lian H-L, He S-B, Li L, Jia K-P, Yang H-Q 2014. COP1 and phyB physically interact with PIL1 to regulate its stability and photomorphogenic development in Arabidopsis. Plant Cell 26:2441–56
    [Google Scholar]
  98. 98. 
    Ma D, Li X, Guo Y, Chu J, Fang S et al. 2016. Cryptochrome 1 interacts with PIF4 to regulate high temperature-mediated hypocotyl elongation in response to blue light. PNAS 113:224–29
    [Google Scholar]
  99. 99. 
    Ma L, Chen C, Liu X, Jiao Y, Su N et al. 2005. A microarray analysis of the rice transcriptome and its comparison to Arabidopsis. Genome Res 15:1274–83
    [Google Scholar]
  100. 100. 
    Ma L, Li J, Qu L, Hager J, Chen Z et al. 2001. Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways. Plant Cell 13:2589–607
    [Google Scholar]
  101. 101. 
    Malhotra K, Kim ST, Batschauer A, Dawut L, Sancar A 1995. Putative blue-light photoreceptors from Arabidopsis thaliana and Sinapisalba with a high degree of sequence homology to DNA photolyase contain the two photolyase cofactors but lack DNA repair activity. Biochemistry 34:6892–99Biochemical characterization of the first cryptochrome.
    [Google Scholar]
  102. 102. 
    Mao J, Zhang Y-C, Sang Y, Li Q-H, Yang H-Q 2005. A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening. PNAS 102:12270–75
    [Google Scholar]
  103. 103. 
    Mas P, Devlin PF, Panda S, Kay SA 2000. Functional interaction of phytochrome B and cryptochrome 2. Nature 408:207–11Discovery of the cryptochrome photobody.
    [Google Scholar]
  104. 104. 
    McCormick DB, Koster JF, Veeger C 1967. On the mechanisms of photochemical reductions of FAD and FAD-dependent flavoproteins. Eur. J. Biochem. 2:387–91
    [Google Scholar]
  105. 105. 
    Mei Q, Dvornyk V. 2015. Evolutionary history of the photolyase/cryptochrome superfamily in eukaryotes. PLOS ONE 10:e0135940
    [Google Scholar]
  106. 106. 
    Meng Y, Li H, Wang Q, Liu B, Lin C 2013. Blue light-dependent interaction between cryptochrome 2 and CIB1 regulates transcription and leaf senescence in soybean. Plant Cell 25:4405–20
    [Google Scholar]
  107. 107. 
    Meyer AJ, Brach T, Marty L, Kreye S, Rouhier N et al. 2007. Redox-sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer. Plant J 52:973–86
    [Google Scholar]
  108. 108. 
    Miyamoto Y, Sancar A. 1998. Vitamin B2-based blue-light photoreceptors in the retinohypothalamic tract as the photoactive pigments for setting the circadian clock in man and mouse. PNAS 95:6097–102
    [Google Scholar]
  109. 109. 
    Mockler T, Yang H, Yu X, Parikh D, Cheng Y-C et al. 2003. Regulation of photoperiodic flowering by Arabidopsis photoreceptors. PNAS 100:2140–45Demonstration of the redundant functions of phyA, CRY1, and CRY2 in flowering.
    [Google Scholar]
  110. 110. 
    Muller M, Carell T. 2009. Structural biology of DNA photolyases and cryptochromes. Curr. Opin. Struct. Biol. 19:277–85
    [Google Scholar]
  111. 111. 
    Müller N, Wenzel S, Zou Y, Künzel S, Sasso S et al. 2017. A plant cryptochrome controls key features of the Chlamydomonas circadian clock and its life cycle. Plant Physiol 174:185–201
    [Google Scholar]
  112. 112. 
    Müller P, Bouly J-P. 2015. Searching for the mechanism of signalling by plant photoreceptor cryptochrome. FEBS Lett 589:189–92
    [Google Scholar]
  113. 113. 
    Müller P, Bouly J-P, Hitomi K, Balland V, Getzoff ED et al. 2014. ATP binding turns plant cryptochrome into an efficient natural photoswitch. Sci. Rep. 4:5175
    [Google Scholar]
  114. 114. 
    Müller P, Yamamoto J, Martin R, Iwai S, Brettel K 2015. Discovery and functional analysis of a 4th electron-transferring tryptophan conserved exclusively in animal cryptochromes and (6-4) photolyases. Chem. Commun. 51:15502–5
    [Google Scholar]
  115. 115. 
    Ni W, Xu S-L, González-Grandío E, Chalkley RJ, Huhmer AFR et al. 2017. PPKs mediate direct signal transfer from phytochrome photoreceptors to transcription factor PIF3. Nat. Commun. 8:15236Demonstration of the common kinases shared by cryptochrome and phytochrome signaling.
    [Google Scholar]
  116. 116. 
    Ni W, Xu S-L, Tepperman JM, Stanley DJ, Maltby DA et al. 2014. A mutually assured destruction mechanism attenuates light signaling in Arabidopsis. Science 344:1160–64
    [Google Scholar]
  117. 117. 
    Nohr D, Franz S, Rodriguez R, Paulus B, Essen L-O et al. 2016. Extended electron-transfer in animal cryptochromes mediated by a tetrad of aromatic amino acids. Biophys. J. 111:301–11
    [Google Scholar]
  118. 118. 
    Ohgishi M, Saji K, Okada K, Sakai T 2004. Functional analysis of each blue light receptor, cry1, cry2, phot1, and phot2, by using combinatorial multiple mutants in Arabidopsis. PNAS 101:2223–28
    [Google Scholar]
  119. 119. 
    Ozkan-Dagliyan I, Chiou Y-Y, Ye R, Hassan BH, Ozturk N, Sancar A 2013. Formation of Arabidopsis cryptochrome 2 photobodies in mammalian nuclei: application as an optogenetic DNA damage checkpoint switch. J. Biol. Chem. 288:23244–51
    [Google Scholar]
  120. 120. 
    Paik I, Kathare PK, Kim J-I, Huq E 2017. Expanding roles of PIFs in signal integration from multiple processes. Mol. Plant 10:1035–46
    [Google Scholar]
  121. 121. 
    Partch CL, Clarkson MW, Ozgur S, Lee AL, Sancar A 2005. Role of structural plasticity in signal transduction by the cryptochrome blue-light photoreceptor. Biochemistry 44:3795–805Demonstration of the light-induced conformational change of cryptochromes.
    [Google Scholar]
  122. 122. 
    Patanjali SR, Parimoo S, Weissman SM 1991. Construction of a uniform-abundance (normalized) cDNA library. PNAS 88:1943–47
    [Google Scholar]
  123. 123. 
    Pedmale UV, Huang SC, Zander M, Cole BJ, Hetzel J et al. 2016. Cryptochromes interact directly with PIFs to control plant growth in limiting blue light. Cell 164:233–45
    [Google Scholar]
  124. 124. 
    Penzer GR, Radda GK. 1968. The chemistry of flavines and flavoproteins: photoreduction of flavines by amino acids. Biochem. J. 109:259–68
    [Google Scholar]
  125. 125. 
    Podolec R, Ulm R. 2018. Photoreceptor-mediated regulation of the COP1/SPA E3 ubiquitin ligase. Curr. Opin. Plant Biol. 45:18–25
    [Google Scholar]
  126. 126. 
    Pooam M, Arthaut L-D, Burdick D, Link J, Martino CF, Ahmad M 2019. Magnetic sensitivity mediated by the Arabidopsis blue-light receptor cryptochrome occurs during flavin reoxidation in the dark. Planta 249:319–32
    [Google Scholar]
  127. 127. 
    Poppenberger B, Rozhon W, Khan M, Husar S, Adam G et al. 2011. CESTA, a positive regulator of brassinosteroid biosynthesis. EMBO J 30:1149–61
    [Google Scholar]
  128. 128. 
    Quail PH. 2010. Phytochromes. Curr. Biol. 20:R504–7
    [Google Scholar]
  129. 129. 
    Reisdorph NA, Small GD. 2004. The CPH1 gene of Chlamydomonas reinhardtii encodes two forms of cryptochrome whose levels are controlled by light-induced proteolysis. Plant Physiol 134:1546–54
    [Google Scholar]
  130. 130. 
    Rockwell NC, Su YS, Lagarias JC 2006. Phytochrome structure and signaling mechanisms. Annu. Rev. Plant Biol. 57:837–58
    [Google Scholar]
  131. 131. 
    Rosenfeldt G, Viana RM, Mootz HD, von Arnim AG, Batschauer A 2008. Chemically induced and light-independent cryptochrome photoreceptor activation. Mol. Plant 1:4–14
    [Google Scholar]
  132. 132. 
    Saijo Y, Sullivan JA, Wang H, Yang J, Shen Y et al. 2003. The COP1-SPA1 interaction defines a critical step in phytochrome A-mediated regulation of HY5 activity. Genes Dev 17:2642–47
    [Google Scholar]
  133. 133. 
    Salehin M, Bagchi R, Estelle M 2015. SCFTIR1/AFB-based auxin perception: mechanism and role in plant growth and development. Plant Cell 27:9–19
    [Google Scholar]
  134. 134. 
    Sancar A. 1994. Structure and function of DNA photolyase. Biochemistry 33:2–9
    [Google Scholar]
  135. 135. 
    Sancar A. 2000. Cryptochrome: the second photoactive pigment in the eye and its role in circadian photoreception. Annu. Rev. Biochem. 69:31–67
    [Google Scholar]
  136. 136. 
    Sancar A. 2003. Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chem. Rev. 103:2203–37
    [Google Scholar]
  137. 137. 
    Sang Y, Li QH, Rubio V, Zhang YC, Mao J et al. 2005. N-terminal domain–mediated homodimerization is required for photoreceptor activity of Arabidopsis CRYPTOCHROME 1. Plant Cell 17:1569–84
    [Google Scholar]
  138. 138. 
    Schmalen I, Reischl S, Wallach T, Klemz R, Grudziecki A et al. 2014. Interaction of circadian clock proteins CRY1 and PER2 is modulated by zinc binding and disulfide bond formation. Cell 157:1203–15
    [Google Scholar]
  139. 139. 
    Schwarzlander M, Fricker MD, Muller C, Marty L, Brach T et al. 2008. Confocal imaging of glutathione redox potential in living plant cells. J. Microsc. 231:299–316
    [Google Scholar]
  140. 140. 
    Selby CP, Sancar A. 2006. A cryptochrome/photolyase class of enzymes with single-stranded DNA-specific photolyase activity. PNAS 103:17696–700
    [Google Scholar]
  141. 141. 
    Senda T, Senda M, Kimura S, Ishida T 2009. Redox control of protein conformation in flavoproteins. Antioxid. Redox Signal. 11:1741–66
    [Google Scholar]
  142. 142. 
    Seo HS, Yang J-Y, Ishikawa M, Bolle C, Ballesteros ML, Chua N-H 2003. LAF1 ubiquitination by COP1 controls photomorphogenesis and is stimulated by SPA1. Nature 423:995–99
    [Google Scholar]
  143. 143. 
    Shalitin D, Yang H, Mockler TC, Maymon M, Guo H et al. 2002. Regulation of Arabidopsis cryptochrome 2 by blue-light-dependent phosphorylation. Nature 417:763–67
    [Google Scholar]
  144. 144. 
    Shalitin D, Yu X, Maymon M, Mockler T, Lin C 2003. Blue light-dependent in vivo and in vitro phosphorylation of Arabidopsis cryptochrome 1. Plant Cell 15:2421–29
    [Google Scholar]
  145. 145. 
    Shin J, Kim K, Kang H, Zulfugarov I, Bae G et al. 2009. Phytochromes promote seedling light responses by inhibiting four negatively-acting phytochrome-interacting factors. PNAS 106:7660–65
    [Google Scholar]
  146. 146. 
    Somers DE, Devlin PF, Kay SA 1998. Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science 282:1488–90Demonstration of the function of cryptochromes in the circadian clock of plants.
    [Google Scholar]
  147. 147. 
    Stanewsky R, Kaneko M, Emery P, Beretta B, Wager-Smith K et al. 1998. The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell 95:681–92
    [Google Scholar]
  148. 148. 
    Strasser B, Sanchez-Lamas M, Yanovsky MJ, Casal JJ, Cerdan PD 2010. Arabidopsis thaliana life without phytochromes. PNAS 107:4776–81
    [Google Scholar]
  149. 149. 
    Su Y, Wang S, Zhang F, Zheng H, Liu Y et al. 2017. Phosphorylation of histone H2A at serine 95: a plant-specific mark involved in flowering time regulation and H2A.Z deposition. Plant Cell 29:2197–213
    [Google Scholar]
  150. 150. 
    Tagua VG, Pausch M, Eckel M, Gutiérrez G, Miralles-Durán A et al. 2015. Fungal cryptochrome with DNA repair activity reveals an early stage in cryptochrome evolution. PNAS 112:15130–35
    [Google Scholar]
  151. 151. 
    Takahashi JS. 2017. Transcriptional architecture of the mammalian circadian clock. Nat. Rev. Genet. 18:164–79
    [Google Scholar]
  152. 152. 
    Toledo-Ortiz G, Huq E, Quail PH 2003. The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell 15:1749–70
    [Google Scholar]
  153. 153. 
    Ullah H, Chen J-G, Temple B, Boyes DC, Alonso JM et al. 2003. The β-subunit of the Arabidopsis G protein negatively regulates auxin-induced cell division and affects multiple developmental processes. Plant Cell 15:393–409
    [Google Scholar]
  154. 154. 
    Usami T, Mochizuki N, Kondo M, Nishimura M, Nagatani A 2004. Cryptochromes and phytochromes synergistically regulate Arabidopsis root greening under blue light. Plant Cell Physiol 45:1798–808
    [Google Scholar]
  155. 155. 
    Uversky VN. 2019. Intrinsically disordered proteins and their “mysterious” (meta)physics. Front. Phys. 7:10
    [Google Scholar]
  156. 156. 
    Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G 2004. Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303:1003–6
    [Google Scholar]
  157. 157. 
    van der Horst GT, Muijtjens M, Kobayashi K, Takano R, Kanno S et al. 1999. Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 398:627–30
    [Google Scholar]
  158. 158. 
    Varaud E, Brioudes F, Szécsi J, Leroux J, Brown S et al. 2011. AUXIN RESPONSE FACTOR8 regulates Arabidopsis petal growth by interacting with the bHLH transcription factor BIGPETALp. Plant Cell 23:973–83
    [Google Scholar]
  159. 159. 
    Wang H, Ma LG, Li JM, Zhao HY, Deng XW 2001. Direct interaction of Arabidopsis cryptochromes with COP1 in light control development. Science 294:154–58Demonstration of the first signaling mechanism of plant cryptochromes.
    [Google Scholar]
  160. 160. 
    Wang Q, Barshop WD, Bian M, Vashisht AA, He R et al. 2015. The blue light-dependent phosphorylation of the CCE domain determines the photosensitivity of Arabidopsis CRY2. Mol. Plant 8:631–43
    [Google Scholar]
  161. 161. 
    Wang Q, Zuo Z, Wang X, Gu L, Yoshizumi T et al. 2016. Photoactivation and inactivation of Arabidopsis cryptochrome 2. Science 354:343–47Demonstration of photoactivation and inactivation mechanisms of a plant cryptochrome.
    [Google Scholar]
  162. 162. 
    Wang Q, Zuo Z, Wang X, Liu Q, Gu L et al. 2018. Beyond the photocycle—how cryptochromes regulate photoresponses in plants?. Curr. Opin. Plant Biol. 45:120–26
    [Google Scholar]
  163. 163. 
    Wang S, Li L, Xu P, Lian H, Wang W et al. 2018. CRY1 interacts directly with HBI1 to regulate its transcriptional activity and photomorphogenesis in Arabidopsis. J. Exp. Bot. 69:3867–81
    [Google Scholar]
  164. 164. 
    Wang W, Lu X, Li L, Lian H, Mao Z et al. 2018. Photoexcited CRYPTOCHROME1 interacts with dephosphorylated BES1 to regulate brassinosteroid signaling and photomorphogenesis in Arabidopsis. Plant Cell 30:1989–2005
    [Google Scholar]
  165. 165. 
    Wang X, Wang Q, Han Y-J, Liu Q, Gu L et al. 2017. A CRY-BIC negative feedback circuitry regulating blue light sensitivity of Arabidopsis. Plant J 92:426–36
    [Google Scholar]
  166. 166. 
    Wang Z, Casas-Mollano JA, Xu J, Riethoven J-JM, Zhang C, Cerutti H 2015. Osmotic stress induces phosphorylation of histone H3 at threonine 3 in pericentromeric regions of Arabidopsis thaliana. PNAS 112:8487–92
    [Google Scholar]
  167. 167. 
    Weidler G, zur Oven-Krockhaus S, Heunemann M, Orth C, Schleifenbaum F et al. 2012. Degradation of Arabidopsis CRY2 is regulated by SPA proteins and phytochrome A. Plant Cell 24:2610–23
    [Google Scholar]
  168. 168. 
    Weijers D, Wagner D. 2016. Transcriptional responses to the auxin hormone. Annu. Rev. Plant Biol. 67:539–74
    [Google Scholar]
  169. 169. 
    Weis WI, Kobilka BK. 2018. The molecular basis of G protein–coupled receptor activation. Annu. Rev. Biochem. 87:897–919
    [Google Scholar]
  170. 170. 
    Wickland DP, Hanzawa Y. 2015. The FLOWERING LOCUS T/TERMINAL FLOWER 1 gene family: functional evolution and molecular mechanisms. Mol. Plant 8:P983–97
    [Google Scholar]
  171. 171. 
    Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M et al. 2005. Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309:1056–59
    [Google Scholar]
  172. 172. 
    Wu G, Spalding EP. 2007. Separate functions for nuclear and cytoplasmic cryptochrome 1 during photomorphogenesis of Arabidopsis seedlings. PNAS 104:18813–18
    [Google Scholar]
  173. 173. 
    Wu L, Yang H. 2010. CRYPTOCHROME 1 is implicated in promoting R protein-mediated plant resistance to Pseudomonas syringae in Arabidopsis. Mol. Plant 3:539–48
    [Google Scholar]
  174. 174. 
    Xing W, Busino L, Hinds TR, Marionni ST, Saifee NH et al. 2013. SCFFBXL3 ubiquitin ligase targets cryptochromes at their cofactor pocket. Nature 496:64–68
    [Google Scholar]
  175. 175. 
    Xu F, He S, Zhang J, Mao Z, Wang W et al. 2017. Photoactivated CRY1 and phyB interact directly with AUX/IAA proteins to inhibit auxin signaling in Arabidopsis. Mol. Plant 11:P521–41
    [Google Scholar]
  176. 176. 
    Xu X, Paik I, Zhu L, Huq E 2015. Illuminating progress in phytochrome-mediated light signaling pathways. Trends Plant Sci 20:641–50
    [Google Scholar]
  177. 177. 
    Yang C, Xie F, Jiang Y, Li Z, Huang X, Li L 2018. Phytochrome A negatively regulates the shade avoidance response by increasing auxin/indole acidic acid protein stability. Dev. Cell 44:29–41.e4
    [Google Scholar]
  178. 178. 
    Yang H-Q, Tang R-H, Cashmore AR 2001. The signaling mechanism of Arabidopsis CRY1 involves direct interaction with COP1. Plant Cell 13:2573–87
    [Google Scholar]
  179. 179. 
    Yang H-Q, Wu Y-J, Tang R-H, Liu D, Liu Y, Cashmore AR 2000. The C termini of Arabidopsis cryptochromes mediate a constitutive light response. Cell 103:815–27Discovery of the function of CCE domains of plant cryptochromes.
    [Google Scholar]
  180. 180. 
    Yang L, Mo W, Yu X, Yao N, Zhou Z et al. 2018. Reconstituting Arabidopsis CRY2 signaling pathway in mammalian cells reveals regulation of transcription by direct binding of CRY2 to DNA. Cell Rep 24:585–93.e4
    [Google Scholar]
  181. 181. 
    Yanovsky MJ, Kay SA. 2002. Molecular basis of seasonal time measurement in Arabidopsis. Nature 419:308–12
    [Google Scholar]
  182. 182. 
    Yu X, Klejnot J, Zhao X, Shalitin D, Maymon M et al. 2007. Arabidopsis cryptochrome 2 completes its posttranslational life cycle in the nucleus. Plant Cell 19:3146–56
    [Google Scholar]
  183. 183. 
    Yu X, Sayegh R, Maymon M, Warpeha K, Klejnot J et al. 2009. Formation of nuclear bodies of Arabidopsis CRY2 in response to blue light is associated with its blue light-dependent degradation. Plant Cell 21:118–30
    [Google Scholar]
  184. 184. 
    Yu X, Shalitin D, Liu X, Maymon M, Klejnot J et al. 2007. Derepression of the NC80 motif is critical for the photoactivation of Arabidopsis CRY2. PNAS 104:7289–94
    [Google Scholar]
  185. 185. 
    Zhang K, Cui B. 2015. Optogenetic control of intracellular signaling pathways. Trends Biotechnol 33:92–100
    [Google Scholar]
  186. 186. 
    Zhang L-Y, Bai M-Y, Wu J, Zhu J-Y, Wang H et al. 2009. Antagonistic HLH/bHLH transcription factors mediate brassinosteroid regulation of cell elongation and plant development in rice and Arabidopsis. Plant Cell 21:3767–80
    [Google Scholar]
  187. 187. 
    Zhang Q, Li H, Li R, Hu R, Fan C et al. 2008. Association of the circadian rhythmic expression of GmCRY1a with a latitudinal cline in photoperiodic flowering of soybean. PNAS 105:21028–33
    [Google Scholar]
  188. 188. 
    Zhou T, Zhou L, Ma Y, Gao J, Li W et al. 2018. Cryptochrome 1b from sweet sorghum regulates photoperiodic flowering, photomorphogenesis, and ABA response in transgenic Arabidopsis thaliana. Plant Mol. Biol. Report 36:13–22
    [Google Scholar]
  189. 189. 
    Zhu D, Maier A, Lee JH, Laubinger S, Saijo Y et al. 2008. Biochemical characterization of Arabidopsis complexes containing CONSTITUTIVELY PHOTOMORPHOGENIC1 and SUPPRESSOR OF PHYA proteins in light control of plant development. Plant Cell 20:2307–23
    [Google Scholar]
  190. 190. 
    Zoltowski BD, Vaidya AT, Top D, Widom J, Young MW, Crane BR 2011. Structure of full-length Drosophila cryptochrome. Nature 480:396–99
    [Google Scholar]
  191. 191. 
    Zuo Z, Liu H, Liu B, Liu X, Lin C 2011. Blue light-dependent interaction of CRY2 with SPA1 regulates COP1 activity and floral initiation in Arabidopsis. Curr. Biol. 21:841–47
    [Google Scholar]
  192. 192. 
    Zuo Z-C, Meng Y-Y, Yu X-H, Zhang Z-L, Feng D-S et al. 2012. A study of the blue-light-dependent phosphorylation, degradation, and photobody formation of Arabidopsis CRY2. Mol. Plant 5:726–33
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-050718-100300
Loading
/content/journals/10.1146/annurev-arplant-050718-100300
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error