1932

Abstract

Large macromolecular assemblies, so-called molecular machines, are critical to ensuring proper cellular function. Understanding how proper function is achieved at the atomic level is crucial to advancing multiple avenues of biomedical research. Biophysical studies often include X-ray diffraction and cryo–electron microscopy, providing detailed structural descriptions of these machines. However, their inherent flexibility has complicated an understanding of the relation between structure and function. Solution NMR spectroscopy is well suited to the study of such dynamic complexes, and continued developments have increased size boundaries; insights into function have been obtained for complexes with masses as large as 1 MDa. We highlight methyl-TROSY (transverse relaxation optimized spectroscopy) NMR, which enables the study of such large systems, and include examples of applications to several cellular machines. We show how this emerging technique contributes to an understanding of cellular function and the role of molecular plasticity in regulating an array of biochemical activities.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-060713-035829
2014-06-02
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/biochem/83/1/annurev-biochem-060713-035829.html?itemId=/content/journals/10.1146/annurev-biochem-060713-035829&mimeType=html&fmt=ahah

Literature Cited

  1. Clore GM, Gronenborn AM. 1.  1991. Structures of larger proteins in solution: three- and four-dimensional heteronuclear NMR spectroscopy. Science 252:1390–99 [Google Scholar]
  2. Bax A.2.  2003. Weak alignment offers new NMR opportunities to study protein structure and dynamics. Protein Sci. 12:1–16 [Google Scholar]
  3. Barrett PJ, Chen J, Cho MK, Kim JH, Lu Z. 3.  et al. 2013. The quiet renaissance of protein nuclear magnetic resonance. Biochemistry 52:1303–20 [Google Scholar]
  4. Mittermaier A, Kay LE. 4.  2006. New tools provide new insights in NMR studies of protein dynamics. Science 312:224–28 [Google Scholar]
  5. Ishima R, Torchia DA. 5.  2000. Protein dynamics from NMR. Nat. Struct. Biol. 7:740–43 [Google Scholar]
  6. Sekhar A, Vallurupalli P, Kay LE. 6.  2013. Defining a length scale for millisecond-timescale protein conformational exchange. Proc. Natl. Acad. Sci. USA 110:11391–96 [Google Scholar]
  7. Goto NK, Kay LE. 7.  2000. New developments in isotope labeling strategies for protein solution NMR spectroscopy. Curr. Opin. Struct. Biol. 10:585–92 [Google Scholar]
  8. Tugarinov V, Kay LE. 8.  2004. An isotope labeling strategy for methyl TROSY spectroscopy. J. Biomol. NMR 28:165–72 [Google Scholar]
  9. Kainosho M, Torizawa T, Iwashita Y, Terauchi T, Mei Ono A, Guntert P. 9.  2006. Optimal isotope labelling for NMR protein structure determinations. Nature 440:52–57 [Google Scholar]
  10. Pervushin K, Riek R, Wider G, Wüthrich K. 10.  1997. Attenuated T2 relaxation by mutual cancellation of dipole–dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc. Natl. Acad. Sci. USA 94:12366–71 [Google Scholar]
  11. Tugarinov V, Hwang PM, Ollerenshaw JE, Kay LE. 11.  2003. Cross-correlated relaxation enhanced 1H–13C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes. J. Am. Chem. Soc. 125:10420–28 [Google Scholar]
  12. Ogawa S, Shulman RG. 12.  1972. High resolution nuclear magnetic resonance spectra of hemoglobin. III. The half-ligated state and allosteric interactions. J. Mol. Biol. 70:315–36 [Google Scholar]
  13. Ogawa S, Shulman RG, Fujiwara M, Yamane T. 13.  1972. High resolution nuclear resonance spectra of hemoglobin. II. Ligated tetramers. J. Mol. Biol. 70:301–13 [Google Scholar]
  14. Otvos JD, Armitage IM. 14.  1980. Determination by cadmium-113 nuclear magnetic resonance of the structural basis for metal ion dependent anticooperativity in alkaline phosphatase. Biochemistry 19:4031–43 [Google Scholar]
  15. Eichhorn GL, Marzilli LG. 15.  1979. Advances in Inorganic Biochemistry 1 New York: Elsevier
  16. Bobsein BR, Myers RJ. 16.  1980. Cadmium-113 NMR spectrum of substituted horse liver alcohol dehydrogenase. J. Am. Chem. Soc. 102:2454–55 [Google Scholar]
  17. Blow DM, Birktoft JJ, Hartley BS. 17.  1969. Role of a buried acid group in the mechanism of action of chymotrypsin. Nature 221:337–40 [Google Scholar]
  18. Matthews DA, Alden RA, Birktoft JJ, Freer T, Kraut J. 18.  1977. Re-examination of the charge relay system in subtilisin comparison with other serine proteases. J. Biol. Chem. 252:8875–83 [Google Scholar]
  19. Schmidt PG, Stark GR, Baldeschwieler JD. 19.  1969. Aspartate transcarbamylase. A nuclear magnetic resonance study of the binding of inhibitors and substrates to the catalytic subunit. J. Biol. Chem. 244:1860–68 [Google Scholar]
  20. Sykes BD, Schmidt PG, Stark GR. 20.  1970. Aspartate transcarbamylase. A study by transient nuclear magnetic resonance of the binding of succinate to the native enzyme and its catalytic subunit. J. Biol. Chem. 245:1180–89 [Google Scholar]
  21. Beard CB, Schmidt PG. 21.  1973. Binding of succinate to aspartate trancarbamylase catalytic subunit. pH and temperature dependence of nuclear magnetic resonance relaxation times. Biochemistry 12:2255–64 [Google Scholar]
  22. London RE, Schmidt PG. 22.  1974. A nuclear magnetic resonance study of the interaction of inhibitory nucleosides with Escherichia coli aspartate transcarbamylase and its regulatory subunit. Biochemistry 13:1170–79 [Google Scholar]
  23. Ireland CB, Schmidt PG. 23.  1977. Proton magnetic relaxation of aspartate transcarbamylase–succinate complexes. J. Biol. Chem. 252:2262–70 [Google Scholar]
  24. Martinez-Carrion M, Cheng S, Relimpio AM. 24.  1973. Nuclear magnetic resonance of aspartate transaminase. A 19F and 1H investigation of the binding of dicarboxylic acids to various forms of each isoenzyme. J. Biol. Chem. 248:2153–60 [Google Scholar]
  25. Briley PA, Eisenthal R, Harrison R, Smith GD. 25.  1977. [19F]Fluorine nuclear-magnetic-resonance study of the interaction of difluoro-oxaloacetate with aspartate transaminase. Biochem. J. 163:325–31 [Google Scholar]
  26. Lee L, Sykes BD. 26.  1980. Strategies for the uses of lanthanide NMR shift probes in the determination of protein structure in solutio. Application to the EF calcium binding site of carp parvalbumin. Biophys. J. 32:193–210 [Google Scholar]
  27. Lee L, Sykes BD, Birnbaum ER. 27.  1979. A determination of the relative compactness of the Ca2+-binding sites of a Ca2+-binding fragment of troponin-C and parvalbumin using lanthanide-induced 1H NMR shifts. FEBS Lett. 98:169–72 [Google Scholar]
  28. Shriver JW, Sykes BD. 28.  1981. Energetics and kinetics of interconversion of two myosin subfragment-1•adenosine 5′-diphosphate complexes as viewed by phosphorus-31 nuclear magnetic resonance. Biochemistry 20:6357–62 [Google Scholar]
  29. Shriver JW, Sykes BD. 29.  1981. Phosphorus-31 nuclear magnetic resonance evidence for two conformations of myosin subfragment-1•nucleotide complexes. Biochemistry 20:2004–12 [Google Scholar]
  30. Brauer M, Sykes BD. 30.  1981. Phosphorus-31 nuclear magnetic resonance studies of adenosine 5′-triphosphate bound to a nitrated derivative of G-actin. Biochemistry 20:6767–75 [Google Scholar]
  31. Zuiderweg ER.31.  2002. Mapping protein–protein interactions in solution by NMR spectroscopy. Biochemistry 41:1–7 [Google Scholar]
  32. Palmer AG WJ, McDermott A. 32.  1996. Nuclear magnetic resonance studies of biopolymer dynamics. J. Phys. Chem. 100:13293–310 [Google Scholar]
  33. Tugarinov V, Kay LE. 33.  2005. Methyl groups as probes of structure and dynamics in NMR studies of high-molecular-weight proteins. ChemBioChem 6:1567–77 [Google Scholar]
  34. Gardner KH, Kay LE. 34.  1997. Production and incorporation of 15N, 13C, 2H (1H-δ1 methyl) isoleucine into proteins for multidimensional NMR studies. J. Am. Chem. Soc. 119:7599–600 [Google Scholar]
  35. Goto NK, Gardner KH, Mueller GA, Willis RC, Kay LE. 35.  1999. A robust and cost-effective method for the production of Val, Leu, Ile (δ1) methyl-protonated 15N-, 13C-, 2H-labeled proteins. J. Biomol. NMR 13:369–74 [Google Scholar]
  36. Tugarinov V, Kanelis V, Kay LE. 36.  2006. Isotope labeling strategies for the study of high-molecular-weight proteins by solution NMR spectroscopy. Nat. Protoc. 1:749–54 [Google Scholar]
  37. Fischer M, Kloiber K, Häusler J, Ledolter K, Konrat R, Schmid W. 37.  2007. Synthesis of a 13C-methyl-group-labeled methionine precursor as a useful tool for simplifying protein structural analysis by NMR spectroscopy. ChemBioChem 8:610–12 [Google Scholar]
  38. Ayala I, Sounier R, Use N, Gans P, Boisbouvier J. 38.  2009. An efficient protocol for the complete incorporation of methyl-protonated alanine in perdeuterated protein. J. Biomol. NMR 43:111–19 [Google Scholar]
  39. Isaacson RL, Simpson PJ, Liu M, Cota E, Zhang X. 39.  et al. 2007. A new labeling method for methyl transverse relaxation–optimized spectroscopy NMR spectra of alanine residues. J. Am. Chem. Soc. 129:15428–29 [Google Scholar]
  40. Ayala I, Hamelin O, Amero C, Pessey O, Plevin MJ. 40.  et al. 2012. An optimized isotopic labelling strategy of isoleucine-γ2 methyl groups for solution NMR studies of high molecular weight proteins. Chem. Commun. 48:1434–36 [Google Scholar]
  41. Ruschak AM, Velyvis A, Kay LE. 41.  2010. A simple strategy for 13C, 1H labeling at the Ile-γ2 methyl position in highly deuterated proteins. J. Biomol. NMR 48:129–35 [Google Scholar]
  42. Lichtenecker R, Ludwiczek ML, Schmid W, Konrat R. 42.  2004. Simplification of protein NOESY spectra using bioorganic precursor synthesis and NMR spectral editing. J. Am. Chem. Soc. 126:5348–49 [Google Scholar]
  43. Gans P, Hamelin O, Sounier R, Ayala I, Dura MA. 43.  et al. 2010. Stereospecific isotopic labeling of methyl groups for NMR spectroscopic studies of high-molecular-weight proteins. Angew. Chem. Int. Ed. Engl. 49:1958–62 [Google Scholar]
  44. Velyvis A, Ruschak AM, Kay LE. 44.  2012. An economical method for production of 2H, 13CH3-threonine for solution NMR studies of large protein complexes: application to the 670 kDa proteasome. PLoS ONE 7:e43725 [Google Scholar]
  45. Lichtenecker RJ, Coudevylle N, Konrat R, Schmid W. 45.  2013. Selective isotope labelling of leucine residues by using α-ketoacid precursor compounds. ChemBioChem 14:818–21 [Google Scholar]
  46. Janin J, Miller S, Chothia C. 46.  1988. Surface, subunit interfaces and interior of oligomeric proteins. J. Mol. Biol. 204:155–64 [Google Scholar]
  47. Ollerenshaw JE, Tugarinov V, Skrynnikov NR, Kay LE. 47.  2005. Comparison of 13CH3, 13CH2D, and 13CHD2 methyl labeling strategies in proteins. J. Biomol. NMR 33:25–41 [Google Scholar]
  48. Religa TL, Ruschak AM, Rosenzweig R, Kay LE. 48.  2011. Site-directed methyl group labeling as an NMR probe of structure and dynamics in supramolecular protein systems: applications to the proteasome and to the ClpP protease. J. Am. Chem. Soc. 133:9063–68 [Google Scholar]
  49. Ruschak AM, Kay LE. 49.  2010. Methyl groups as probes of supra-molecular structure, dynamics and function. J. Biomol. NMR 46:75–87 [Google Scholar]
  50. Tzeng SR, Pai MT, Kalodimos CG. 50.  2012. NMR studies of large protein systems. Methods Mol. Biol. 831:133–40 [Google Scholar]
  51. Ollerenshaw JE, Tugarnov V, Kay LE. 51.  2003. Methyl TROSY: explanation and experimental verification. Magn. Reson. Chem. 41:843–52 [Google Scholar]
  52. Sheppard D, Sprangers R, Tugarinov V. 52.  2010. Experimental approaches for NMR studies of side-chain dynamics in high-molecular-weight proteins. Prog. Nucl. Magn. Reson. Spectrosc. 56:1–45 [Google Scholar]
  53. Wand AJ, Englander SW. 53.  1996. Protein complexes studied by NMR spectroscopy. Curr. Opin. Biotechnol. 7:403–8 [Google Scholar]
  54. Vaynberg J, Qin J. 54.  2006. Weak protein–protein interactions as probed by NMR spectroscopy. Trends Biotechnol. 24:22–27 [Google Scholar]
  55. Williamson MP.55.  2013. Using chemical shift perturbation to characterise ligand binding. Prog. Nucl. Magn. Reson. Spectrosc. 73:1–16 [Google Scholar]
  56. Brocchieri L, Karlin S. 56.  2005. Protein length in eukaryotic and prokaryotic proteomes. Nucleic Acids Res. 33:3390–400 [Google Scholar]
  57. Goodsell DS, Olson AJ. 57.  2000. Structural symmetry and protein function. Annu. Rev. Biophys. Biomol. Struct. 29:105–53 [Google Scholar]
  58. Matthews JM. 58.  2012. Protein Dimerization and Oligomerization in Biology Sydney: Springer170
  59. Winkler J, Tyedmers J, Bukau B, Mogk A. 59.  2012. Chaperone networks in protein disaggregation and prion propagation. J. Struct. Biol. 179:152–60 [Google Scholar]
  60. Parsell DA, Kowal AS, Singer MA, Lindquist SL. 60.  1994. Protein disaggregation mediated by heat-shock protein Hsp104. Nature 372:475–78 [Google Scholar]
  61. Sanchez Y, Lindquist SL. 61.  1990. HSP104 required for induced thermotolerance. Science 248:1112–15 [Google Scholar]
  62. Bukau B, Weissman J, Horwich A. 62.  2006. Molecular chaperones and protein quality control. Cell 125:443–51 [Google Scholar]
  63. Haslberger T, Bukau B, Mogk A. 63.  2010. Towards a unifying mechanism for ClpB/Hsp104-mediated protein disaggregation and prion propagation. Biochem. Cell Biol. 88:63–75 [Google Scholar]
  64. Glover JR, Lindquist SL. 64.  1998. Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94:73–82 [Google Scholar]
  65. Goloubinoff P, Mogk A, Zvi AP, Tomoyasu T, Bukau B. 65.  1999. Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proc. Natl. Acad. Sci. USA 96:13732–37 [Google Scholar]
  66. Mogk A, Tomoyasu T, Goloubinoff P, Rüdiger S, Röder D. 66.  et al. 1999. Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB. EMBO J. 18:6934–49 [Google Scholar]
  67. Motohashi K, Watanabe Y, Yohda M, Yoshida M. 67.  1999. Heat-inactivated proteins are rescued by the DnaK·J–GrpE set and ClpB chaperones. Proc. Natl. Acad. Sci. USA 96:7184–89 [Google Scholar]
  68. Rosenzweig R, Moradi S, Zarrine-Afsar A, Glover JR, Kay LE. 68.  2013. Unraveling the mechanism of protein disaggregation through a ClpB–DnaK interaction. Science 339:1080–83 [Google Scholar]
  69. Battiste JL, Wagner G. 69.  2000. Utilization of site-directed spin labeling and high-resolution heteronuclear nuclear magnetic resonance for global fold determination of large proteins with limited nuclear Overhauser effect data. Biochemistry 39:5355–65 [Google Scholar]
  70. Clore GM, Iwahara J. 70.  2009. Theory, practice, and applications of paramagnetic relaxation enhancement for the characterization of transient low-population states of biological macromolecules and their complexes. Chem. Rev. 109:4108–39 [Google Scholar]
  71. Religa TL, Sprangers R, Kay LE. 71.  2010. Dynamic regulation of archaeal proteasome gate opening as studied by TROSY NMR. Science 328:98–102 [Google Scholar]
  72. Dominguez C, Boelens R, Bonvin AM. 72.  2003. HADDOCK: a protein–protein docking approach based on biochemical or biophysical information. J. Am. Chem. Soc. 125:1731–37 [Google Scholar]
  73. de Vries SJ, van Dijk AD, Krzeminski M, van Dijk M, Thureau A. 73.  et al. 2007. HADDOCK versus HADDOCK: new features and performance of HADDOCK2.0 on the CAPRI targets. Proteins 69:726–33 [Google Scholar]
  74. Lum R, Tkach JM, Vierling E, Glover JR. 74.  2004. Evidence for an unfolding/threading mechanism for protein disaggregation by Saccharomyces cerevisiae Hsp104. J. Biol. Chem. 279:29139–46 [Google Scholar]
  75. Schlieker C, Tews I, Bukau B, Mogk A. 75.  2004. Solubilization of aggregated proteins by ClpB/DnaK relies on the continuous extraction of unfolded polypeptides. FEBS Lett. 578:351–56 [Google Scholar]
  76. Weibezahn J, Tessarz P, Schlieker C, Zahn R, Maglica Z. 76.  et al. 2004. Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB. Cell 119:653–65 [Google Scholar]
  77. Sudhof TC.77.  2004. The synaptic vesicle cycle. Annu. Rev. Neurosci. 27:509–47 [Google Scholar]
  78. Jahn R, Fasshauer D. 78.  2012. Molecular machines governing exocytosis of synaptic vesicles. Nature 490:201–7 [Google Scholar]
  79. Ma C, Li W, Xu Y, Rizo J. 79.  2011. Munc13 mediates the transition from the closed syntaxin–Munc18 complex to the SNARE complex. Nat. Struct. Mol. Biol. 18:542–49 [Google Scholar]
  80. Dulubova I, Sugita S, Hill S, Hosaka M, Fernandez I. 80.  et al. 1999. A conformational switch in syntaxin during exocytosis: role of Munc18. EMBO J. 18:4372–82 [Google Scholar]
  81. Misura KM, Scheller RH, Weis WI. 81.  2000. Three-dimensional structure of the neuronal-Sec1–syntaxin 1a complex. Nature 404:355–62 [Google Scholar]
  82. Rizo J, Sudhof TC. 82.  2012. The membrane fusion enigma: SNAREs, Sec1/Munc18 proteins, and their accomplices—guilty as charged?. Annu. Rev. Cell Dev. Biol. 28:279–308 [Google Scholar]
  83. Betz A, Okamoto M, Benseler F, Brose N. 83.  1997. Direct interaction of the rat unc-13 homologue Munc13-1 with the N terminus of syntaxin. J. Biol. Chem. 272:2520–26 [Google Scholar]
  84. Richmond JE, Weimer RM, Jorgensen EM. 84.  2001. An open form of syntaxin bypasses the requirement for UNC-13 in vesicle priming. Nature 412:338–41 [Google Scholar]
  85. Dulubova I, Khvotchev M, Liu S, Huryeva I, Sudhof TC, Rizo J. 85.  2007. Munc18-1 binds directly to the neuronal SNARE complex. Proc. Natl. Acad. Sci. USA 104:2697–702 [Google Scholar]
  86. Shen J, Tareste DC, Paumet F, Rothman JE, Melia TJ. 86.  2007. Selective activation of cognate SNAREpins by Sec1/Munc18 proteins. Cell 128:183–95 [Google Scholar]
  87. Bianchi ME, Agresti A. 87.  2005. HMG proteins: dynamic players in gene regulation and differentiation. Curr. Opin. Genet. Dev. 15:496–506 [Google Scholar]
  88. Kato H, van Ingen H, Zhou BR, Feng H, Bustin M. 88.  et al. 2011. Architecture of the high mobility group nucleosomal protein 2–nucleosome complex as revealed by methyl-based NMR. Proc. Natl. Acad. Sci. USA 108:12283–88 [Google Scholar]
  89. Creighton TE.89.  2010. The Biophysical Chemistry of Nucleic Acids and Proteins New York: Helvetian
  90. McIntosh LP, Naito D, Baturin SJ, Okon M, Joshi MD, Nielsen JE. 90.  2011. Dissecting electrostatic interactions in Bacillus circulans xylanase through NMR-monitored pH titrations. J. Biomol. NMR 51:5–19 [Google Scholar]
  91. Baumeister W, Walz J, Zuhl F, Seemüller E. 91.  1998. The proteasome: paradigm of a self-compartmentalizing protease. Cell 92:367–80 [Google Scholar]
  92. Seemüller E, Lupas A, Stock D, Löwe J, Huber R, Baumeister W. 92.  1995. Proteasome from Thermoplasma acidophilum: a threonine protease. Science 268:579–82 [Google Scholar]
  93. Velyvis A, Kay LE. 93.  2013. Measurement of active site ionization equilibria in the 670 kDa proteasome core particle using methyl-TROSY NMR. J. Am. Chem. Soc. 135:9259–62 [Google Scholar]
  94. Goldberg AL.94.  2012. Development of proteasome inhibitors as research tools and cancer drugs. J. Cell Biol. 199:583–88 [Google Scholar]
  95. Ying Z, Wang H, Wang G. 95.  2013. The ubiquitin proteasome system as a potential target for the treatment of neurodegenerative diseases. Curr. Pharm. Des. 19:3305–14 [Google Scholar]
  96. Gelis I, Bonvin AM, Keramisanou D, Koukaki M, Gouridis G. 96.  et al. 2007. Structural basis for signal-sequence recognition by the translocase motor SecA as determined by NMR. Cell 131:756–69 [Google Scholar]
  97. Ruschak AM, Religa TL, Breuer S, Witt S, Kay LE. 97.  2010. The proteasome antechamber maintains substrates in an unfolded state. Nature 467:868–71 [Google Scholar]
  98. Bista M, Freund SM, Fersht AR. 98.  2012. Domain–domain interactions in full-length p53 and a specific DNA complex probed by methyl NMR spectroscopy. Proc. Natl. Acad. Sci. USA 109:15752–56 [Google Scholar]
  99. Karagöz GE, Duarte AM, Ippel H, Uetrecht C, Sinnige T. 99.  et al. 2011. N-terminal domain of human Hsp90 triggers binding to the cochaperone p23. Proc. Natl. Acad. Sci. USA 108:580–85 [Google Scholar]
  100. Karplus M, Kuriyan J. 100.  2005. Molecular dynamics and protein function. Proc. Natl. Acad. Sci. USA 102:6679–85 [Google Scholar]
  101. Löwe J, Stock D, Jap B, Zwickl P, Baumeister W, Huber R. 101.  1995. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 Å resolution. Science 268:533–39 [Google Scholar]
  102. Wenzel T, Baumeister W. 102.  1995. Conformational constraints in protein degradation by the 20S proteasome. Nat. Struct. Biol. 2:199–204 [Google Scholar]
  103. Förster A, Whitby FG, Hill CP. 103.  2003. The pore of activated 20S proteasomes has an ordered 7-fold symmetric conformation. EMBO J. 22:4356–64 [Google Scholar]
  104. Whitby FG, Masters EI, Kramer L, Knowlton JR, Yao Y. 104.  et al. 2000. Structural basis for the activation of 20S proteasomes by 11S regulators. Nature 408:115–20 [Google Scholar]
  105. Förster A, Masters EI, Whitby FG, Robinson H, Hill CP. 105.  2005. The 1.9 Å structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions. Mol. Cell 18:589–99 [Google Scholar]
  106. Groll M, Brandstetter H, Bartunik H, Bourenkow G, Huber R. 106.  2003. Investigations on the maturation and regulation of archaebacterial proteasomes. J. Mol. Biol. 327:75–83 [Google Scholar]
  107. Kwon YD, Nagy I, Adams PD, Baumeister W, Jap BK. 107.  2004. Crystal structures of the Rhodococcus proteasome with and without its pro-peptides: implications for the role of the pro-peptide in proteasome assembly. J. Mol. Biol. 335:233–45 [Google Scholar]
  108. Zhang F, Hu M, Tian G, Zhang P, Finley D. 108.  et al. 2009. Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii. Mol. Cell 34:473–84 [Google Scholar]
  109. Ruschak AM, Kay LE. 109.  2012. Proteasome allostery as a population shift between interchanging conformers. Proc. Natl. Acad. Sci. USA 109:E3454–62 [Google Scholar]
  110. Schmidtke G, Emch S, Groettrup M, Holzhütter HG. 110.  2000. Evidence for the existence of a non-catalytic modifier site of peptide hydrolysis by the 20 S proteasome. J. Biol. Chem. 275:22056–63 [Google Scholar]
  111. Myung J, Kim KB, Lindsten K, Dantuma NP, Crews CM. 111.  2001. Lack of proteasome active site allostery as revealed by subunit-specific inhibitors. Mol. Cell 7:411–20 [Google Scholar]
  112. Sprangers R, Li X, Mao X, Rubinstein JL, Schimmer AD, Kay LE. 112.  2008. TROSY-based NMR evidence for a novel class of 20S proteasome inhibitors. Biochemistry 47:6727–34 [Google Scholar]
  113. Smith DM, Chang SC, Park S, Finley D, Cheng Y, Goldberg AL. 113.  2007. Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's α ring opens the gate for substrate entry. Mol. Cell 27:731–44 [Google Scholar]
  114. Rabl J, Smith DM, Yu Y, Chang SC, Goldberg AL, Cheng Y. 114.  2008. Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases. Mol. Cell 30:360–68 [Google Scholar]
  115. Mayer MP.115.  2010. Gymnastics of molecular chaperones. Mol. Cell 39:321–31 [Google Scholar]
  116. Young JC.116.  2010. Mechanisms of the Hsp70 chaperone system. Biochem. Cell Biol. 88:291–300 [Google Scholar]
  117. Kim YE HM, Bracher A, Hayer-Hartl M, Hartl FU. 117.  2013. Molecular chaperone functions in protein folding and proteostasis. Annu. Rev. Biochem. 83:323–55 [Google Scholar]
  118. Bukau B, Horwich AL. 118.  1998. The Hsp70 and Hsp60 chaperone machines. Cell 92:351–66 [Google Scholar]
  119. Bertelsen EB, Chang L, Gestwicki JE, Zuiderweg ER. 119.  2009. Solution conformation of wild-type E. coli Hsp70 (DnaK) chaperone complexed with ADP and substrate. Proc. Natl. Acad. Sci. USA 106:8471–76 [Google Scholar]
  120. Kityk R, Kopp J, Sinning I, Mayer MP. 120.  2012. Structure and dynamics of the ATP-bound open conformation of Hsp70 chaperones. Mol. Cell 48:863–74 [Google Scholar]
  121. Schuermann JP, Jiang J, Cuellar J, Llorca O, Wang L. 121.  et al. 2008. Structure of the Hsp110:Hsc70 nucleotide exchange machine. Mol. Cell 31:232–43 [Google Scholar]
  122. Flynn GC, Chappell TG, Rothman JE. 122.  1989. Peptide binding and release by proteins implicated as catalysts of protein assembly. Science 245:385–90 [Google Scholar]
  123. Swain JF, Dinler G, Sivendran R, Montgomery DL, Stotz M, Gierasch LM. 123.  2007. Hsp70 chaperone ligands control domain association via an allosteric mechanism mediated by the interdomain linker. Mol. Cell 26:27–39 [Google Scholar]
  124. Zhuravleva A, Gierasch LM. 124.  2011. Allosteric signal transmission in the nucleotide-binding domain of 70-kDa heat shock protein (Hsp70) molecular chaperones. Proc. Natl. Acad. Sci. USA 108:6987–92 [Google Scholar]
  125. Zhuravleva A, Clerico EM, Gierasch LM. 125.  2012. An interdomain energetic tug-of-war creates the allosterically active state in Hsp70 molecular chaperones. Cell 151:1296–307 [Google Scholar]
  126. Jiang J, Maes EG, Taylor AB, Wang L, Hinck AP. 126.  et al. 2007. Structural basis of J cochaperone binding and regulation of Hsp70. Mol. Cell 28:422–33 [Google Scholar]
  127. Fedida D, Hesketh JC. 127.  2001. Gating of voltage-dependent potassium channels. Prog. Biophys. Mol. Biol. 75:165–99 [Google Scholar]
  128. Gao L, Mi X, Paajanen V, Wang K, Fan Z. 128.  2005. Activation-coupled inactivation in the bacterial potassium channel KcsA. Proc. Natl. Acad. Sci. USA 102:17630–35 [Google Scholar]
  129. Cordero-Morales JF, Cuello LG, Zhao Y, Jogini V, Cortes DM. 129.  et al. 2006. Molecular determinants of gating at the potassium-channel selectivity filter. Nat. Struct. Mol. Biol. 13:311–18 [Google Scholar]
  130. Chakrapani S, Cordero-Morales JF, Perozo E. 130.  2007. A quantitative description of KcsA gating. II: Single-channel currents. J. Gen. Physiol. 130:479–96 [Google Scholar]
  131. Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM. 131.  et al. 1998. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77 [Google Scholar]
  132. Blunck R, Cordero-Morales JF, Cuello LG, Perozo E, Bezanilla F. 132.  2006. Detection of the opening of the bundle crossing in KcsA with fluorescence lifetime spectroscopy reveals the existence of two gates for ion conduction. J. Gen. Physiol. 128:569–81 [Google Scholar]
  133. Shimizu H, Iwamoto M, Konno T, Nihei A, Sasaki YC, Oiki S. 133.  2008. Global twisting motion of single molecular KcsA potassium channel upon gating. Cell 132:67–78 [Google Scholar]
  134. Imai S, Osawa M, Takeuchi K, Shimada I. 134.  2010. Structural basis underlying the dual gate properties of KcsA. Proc. Natl. Acad. Sci. USA 107:6216–21 [Google Scholar]
  135. Irie K, Shimomura T, Fujiyoshi Y. 135.  2012. The C-terminal helical bundle of the tetrameric prokaryotic sodium channel accelerates the inactivation rate. Nat. Commun. 3:793 [Google Scholar]
  136. Imai S, Osawa M, Mita K, Toyonaga S, Machiyama A. 136.  et al. 2012. Functional equilibrium of the KcsA structure revealed by NMR. J. Biol. Chem. 287:39634–41 [Google Scholar]
  137. Cortes DM, Cuello LG, Perozo E. 137.  2001. Molecular architecture of full-length KcsA: role of cytoplasmic domains in ion permeation and activation gating. J. Gen. Physiol. 117:165–80 [Google Scholar]
  138. Sprangers R, Gribun A, Hwang PM, Houry WA, Kay LE. 138.  2005. Quantitative NMR spectroscopy of supramolecular complexes: dynamic side pores in ClpP are important for product release. Proc. Natl. Acad. Sci. USA 102:16678–83 [Google Scholar]
  139. Houseley J, LaCava J, Tollervey D. 139.  2006. RNA-quality control by the exosome. Nat. Rev. Mol. Cell Biol. 7:529–39 [Google Scholar]
  140. Liu Q, Greimann JC, Lima CD. 140.  2006. Reconstitution, activities, and structure of the eukaryotic RNA exosome. Cell 127:1223–37 [Google Scholar]
  141. Lorentzen E, Basquin J, Conti E. 141.  2008. Structural organization of the RNA-degrading exosome. Curr. Opin. Struct. Biol. 18:709–13 [Google Scholar]
  142. Korzhnev DM, Kloiber K, Kay LE. 142.  2004. Multiple–quantum relaxation dispersion NMR spectroscopy probing millisecond time-scale dynamics in proteins: theory and application. J. Am. Chem. Soc. 126:7320–29 [Google Scholar]
  143. Audin MJ, Dorn G, Fromm SA, Reiss K, Schütz S. 143.  et al. 2013. The archaeal exosome: identification and quantification of site-specific motions that correlate with cap and RNA binding. Angew. Chem. Int. Ed. Engl. 125:8470–74 [Google Scholar]
  144. Lorentzen E, Walter P, Fribourg S, Evguenieva-Hackenberg E, Klug G, Conti E. 144.  2005. The archaeal exosome core is a hexameric ring structure with three catalytic subunits. Nat. Struct. Mol. Biol. 12:575–81 [Google Scholar]
/content/journals/10.1146/annurev-biochem-060713-035829
Loading
/content/journals/10.1146/annurev-biochem-060713-035829
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error