1932

Abstract

Translation elongation is a highly coordinated, multistep, multifactor process that ensures accurate and efficient addition of amino acids to a growing nascent-peptide chain encoded in the sequence of translated messenger RNA (mRNA). Although translation elongation is heavily regulated by external factors, there is clear evidence that mRNA and nascent-peptide sequences control elongation dynamics, determining both the sequence and structure of synthesized proteins. Advances in methods have driven experiments that revealed the basic mechanisms of elongation as well as the mechanisms of regulation by mRNA and nascent-peptide sequences. In this review, we highlight how mRNA and nascent-peptide elements manipulate the translation machinery to alter the dynamics and pathway of elongation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-060815-014818
2018-06-20
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/biochem/87/1/annurev-biochem-060815-014818.html?itemId=/content/journals/10.1146/annurev-biochem-060815-014818&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Atkins JF, Gesteland RF 2010. Recoding: Expansion of Decoding Rules Enriches Gene Expression New York: Springer Verlag
    [Google Scholar]
  2. 2.  Caliskan N, Peske F, Rodnina MV 2015. Changed in translation: mRNA recoding by −1 programmed ribosomal frameshifting. Trends Biochem. Sci. 40:5265–74
    [Google Scholar]
  3. 3.  Atkins JF, Loughran G, Bhatt PR, Firth AE, Baranov PV 2016. Ribosomal frameshifting and transcriptional slippage: from genetic steganography and cryptography to adventitious use. Nucleic Acids Res 44:157007–78
    [Google Scholar]
  4. 4.  Ito K, Chiba S 2013. Arrest peptides: cis-acting modulators of translation. Annu. Rev. Biochem. 82:171–202
    [Google Scholar]
  5. 5.  Wilson DN, Arenz S, Beckmann R 2016. Translation regulation via nascent polypeptide-mediated ribosome stalling. Curr. Opin. Struct. Biol. 37:123–33
    [Google Scholar]
  6. 6.  Weiss RB, Huang WM, Dunn DM 1990. A nascent peptide is required for ribosomal bypass of the coding gap in bacteriophage T4 gene 60. Cell 62:1117–26
    [Google Scholar]
  7. 7.  Meydan S, Klepacki D, Karthikeyan S, Margus T, Thomas P et al. 2017. Programmed ribosomal frameshifting generates a copper transporter and a copper chaperone from the same gene. Mol. Cell. 65:2207–19
    [Google Scholar]
  8. 8.  Mustoe AM, Brooks CL, Al-Hashimi HM 2014. Hierarchy of RNA functional dynamics. Annu. Rev. Biochem. 83:441–66
    [Google Scholar]
  9. 9.  Javed A, Christodoulou J, Cabrita LD, Orlova EV 2017. The ribosome and its role in protein folding: looking through a magnifying glass. Acta Crystallogr. Sect. D. 73:6509–21
    [Google Scholar]
  10. 10.  Nygaard R, Romaniuk JAH, Rice DM, Cegelski L 2017. Whole ribosome NMR: dipolar couplings and contributions to whole cells. J. Phys. Chem. B. 121:409331–35
    [Google Scholar]
  11. 11.  Gelis I, Vitzthum V, Dhimole N, Caporini MA, Schedlbauer A et al. 2013. Solid-state NMR enhanced by dynamic nuclear polarization as a novel tool for ribosome structural biology. J. Biomol. NMR. 56:285–93
    [Google Scholar]
  12. 12.  Kurauskas V, Crublet E, Macek P, Kerfah R, Gauto DF et al. 2016. Sensitive proton-detected solid-state NMR spectroscopy of large proteins with selective CH3 labelling: application to the 50S ribosome subunit. Chem. Commun. 52:619558–61
    [Google Scholar]
  13. 13.  Barbet-Massin E, Huang CT, Daebel V, Hsu STD, Reif B 2015. Site-specific solid-state NMR studies of “trigger factor” in complex with the large ribosomal subunit 50S. Angew. Chem. Int. Ed. Engl 54:144367–69
    [Google Scholar]
  14. 14.  Voorhees RM, Ramakrishnan V 2013. Structural basis of the translational elongation cycle. Annu. Rev. Biochem. 82:203–36
    [Google Scholar]
  15. 15.  Liu Z, Gutierrez-Vargas C, Wei J, Grassucci RA, Sun M et al. 2017. Determination of the ribosome structure to a resolution of 2.5 Å by single-particle cryo-EM. Protein Sci 26:182–92
    [Google Scholar]
  16. 16.  Loveland AB, Demo G, Grigorieff N, Korostelev AA 2017. Ensemble cryo-EM elucidates the mechanism of translation fidelity. Nature 546:7656113–17
    [Google Scholar]
  17. 17.  Fischer N, Neumann P, Konevega AL, Bock LV, Ficner R et al. 2015. Structure of the E. coli ribosome-EF-Tu complex at <3Å resolution by Cs-corrected cryo-EM. Nature 520:7548567–70
    [Google Scholar]
  18. 18.  Chen B, Kaledhonkar S, Sun M, Shen B, Lu Z et al. 2015. Structural dynamics of ribosome subunit association studied by mixing-spraying time-resolved cryogenic electron microscopy. Structure 23:61097–1105
    [Google Scholar]
  19. 19.  Shaikh TR, Yassin AS, Lu Z, Barnard D, Meng X et al. 2014. Initial bridges between two ribosomal subunits are formed within 9.4 milliseconds, as studied by time-resolved cryo-EM. PNAS 111:279822–27
    [Google Scholar]
  20. 20.  Johansson M, Bouakaz E, Lovmar M, Ehrenberg M 2008. The kinetics of ribosomal peptidyl transfer revisited. Mol. Cell. 30:5589–98
    [Google Scholar]
  21. 21.  Belardinelli R, Sharma H, Caliskan N, Cunha CE, Peske F et al. 2016. Choreography of molecular movements during ribosome progression along mRNA. Nat. Struct. Mol. Biol. 23:4342–48
    [Google Scholar]
  22. 22.  Caliskan N, Katunin VI, Belardinelli R, Peske F, Rodnina MV 2014. Programmed -1 frameshifting by kinetic partitioning during impeded translocation. Cell 157:71619–31
    [Google Scholar]
  23. 23.  Wang J, Kwiatkowski M, Forster AC 2015. Kinetics of ribosome-catalyzed polymerization using artificial aminoacyl-tRNA substrates clarifies inefficiencies and improvements. ACS Chem. Biol. 10:102187–92
    [Google Scholar]
  24. 24.  Blanchard SC, Gonzalez RL, Kim HD, Chu S, Puglisi JD 2004. tRNA selection and kinetic proofreading in translation. Nat. Struct. Mol. Biol. 11:101008–14
    [Google Scholar]
  25. 25.  Uemura S, Aitken CE, Korlach J, Flusberg BA, Turner SW, Puglisi JD 2010. Real-time tRNA transit on single translating ribosomes at codon resolution. Nature 464:72911012–17
    [Google Scholar]
  26. 26.  Marshall RA, Aitken CE, Dorywalska M, Puglisi JD 2008. Translation at the single-molecule level. Annu. Rev. Biochem. 77:177–203
    [Google Scholar]
  27. 27.  Frank J, Gonzalez RL 2010. Structure and dynamics of a processive Brownian motor: the translating ribosome. Annu. Rev. Biochem. 79:381–412
    [Google Scholar]
  28. 28.  Wang Y, Qin H, Kudaravalli RD, Kirillov SV, Dempsey GT et al. 2007. Single-molecule structural dynamics of EF-G-ribosome interaction during translocation. Biochemistry 46:3810767–75
    [Google Scholar]
  29. 29.  Munro JB, Altman RB, O'Connor N, Blanchard SC 2007. Identification of two distinct hybrid state intermediates on the ribosome. Mol. Cell. 25:4505–17
    [Google Scholar]
  30. 30.  Fei J, Kosuri P, MacDougall DD, Gonzalez RL 2008. Coupling of ribosomal L1 stalk and tRNA dynamics during translation elongation. Mol. Cell. 30:3348–59
    [Google Scholar]
  31. 31.  Qu X, Wen J-D, Lancaster L, Noller HF, Bustamante C, Tinoco I 2011. The ribosome uses two active mechanisms to unwind messenger RNA during translation. Nature 475:7354118–21
    [Google Scholar]
  32. 32.  Comstock MJ, Ha T, Chemla YR 2011. Ultrahigh-resolution optical trap with single-fluorophore sensitivity. Nat. Methods. 8:4335–40
    [Google Scholar]
  33. 33.  Roy R, Hohng S, Ha T 2008. A practical guide to single-molecule FRET. Nat. Methods. 5:6507–16
    [Google Scholar]
  34. 34.  Wasserman MR, Alejo JL, Altman RB, Blanchard SC 2016. Multiperspective smFRET reveals rate-determining late intermediates of ribosomal translocation. Nat. Struct. Mol. Biol. 23:4333–41
    [Google Scholar]
  35. 35.  Chen J, Petrov A, Tsai A, O'Leary SE, Puglisi JD 2013. Coordinated conformational and compositional dynamics drive ribosome translocation. Nat. Struct. Mol. Biol. 20:6718–27
    [Google Scholar]
  36. 36.  Choi J, Puglisi JD 2017. Three tRNAs on the ribosome slow translation elongation. PNAS 114:5213691–96
    [Google Scholar]
  37. 37.  Ingolia NT, Ghaemmaghami S, Newman JRS, Weissman JS 2009. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324:5924218–23
    [Google Scholar]
  38. 38.  Brar GA, Weissman JS 2015. Ribosome profiling reveals the what, when, where and how of protein synthesis. Nat. Rev. Mol. Cell Biol. 16:11651–64
    [Google Scholar]
  39. 39.  McGlincy NJ, Ingolia NT 2017. Transcriptome-wide measurement of translation by ribosome profiling. Methods 126:112–29
    [Google Scholar]
  40. 40.  Jan CH, Williams CC, Weissman JS 2014. Principles of ER cotranslational translocation revealed by proximity-specific ribosome profiling. Science 346:62101257521
    [Google Scholar]
  41. 41.  Bartholomäus A, Del Campo C, Ignatova Z 2016. Mapping the non-standardized biases of ribosome profiling. Biol. Chem. 397:123–35
    [Google Scholar]
  42. 42.  Van Dijk EL, Jaszczyszyn Y, Thermes C 2014. Library preparation methods for next-generation sequencing: Tone down the bias. Exp. Cell Res. 322:112–20
    [Google Scholar]
  43. 43.  Gonzalez C, Sims JS, Hornstein N, Mela A, Garcia F et al. 2014. Ribosome profiling reveals a cell-type-specific translational landscape in brain tumors. J. Neurosci. 34:3310924–36
    [Google Scholar]
  44. 44.  Chen J, Choi J, O'Leary SE, Prabhakar A, Petrov A et al. 2016. The molecular choreography of protein synthesis: translational control, regulation, and pathways. Q. Rev. Biophys. 49:e11
    [Google Scholar]
  45. 45.  Simms CL, Thomas EN, Zaher HS 2017. Ribosome-based quality control of mRNA and nascent peptides. Wiley Interdiscip. Rev. RNA. 8:1e1366
    [Google Scholar]
  46. 46.  Buskirk AR, Green R 2017. Ribosome pausing, arrest and rescue in bacteria and eukaryotes. Philos. Trans. R. Soc. B 372:171620160183
    [Google Scholar]
  47. 47.  Joazeiro CAP. 2017. Ribosomal stalling during translation: providing substrates for ribosome-associated protein quality control. Annu. Rev. Cell Dev. Biol. 33:343–68
    [Google Scholar]
  48. 48.  Brandman O, Hegde RS 2016. Ribosome-associated protein quality control. Nat. Struct. Mol. Biol. 23:17–15
    [Google Scholar]
  49. 49.  Defenouillère Q, Fromont-Racine M 2017. The ribosome-bound quality control complex: from aberrant peptide clearance to proteostasis maintenance. Curr. Genet. 63:6997–1005
    [Google Scholar]
  50. 50.  Ninio J. 1975. Kinetic amplification of enzyme discrimination. Biochimie 57:5587–95
    [Google Scholar]
  51. 51.  Hopfield JJ. 1974. Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. PNAS 71:104135–39
    [Google Scholar]
  52. 52.  Gromadski KB, Rodnina MV 2004. Kinetic determinants of high-fidelity tRNA discrimination on the ribosome. Mol. Cell. 13:2191–200
    [Google Scholar]
  53. 53.  Gromadski KB, Daviter T, Rodnina MV 2006. A uniform response to mismatches in codon-anticodon complexes ensures ribosomal fidelity. Mol. Cell. 21:3369–77
    [Google Scholar]
  54. 54.  Fischer N, Neumann P, Bock LV, Maracci C, Wang Z et al. 2016. The pathway to GTPase activation of elongation factor SelB on the ribosome. Nature 540:763180–85
    [Google Scholar]
  55. 55.  Rodnina MV, Gromadski KB, Kothe U, Wieden HJ 2005. Recognition and selection of tRNA in translation. FEBS Lett 579:4938–42
    [Google Scholar]
  56. 56.  Yoshizawa S, Fourmy D, Puglisi JD 1999. Recognition of the codon-anticodon helix by ribosomal RNA. Science 285:54341722–25
    [Google Scholar]
  57. 57.  Ogle JM, Brodersen DE, Clemons WM, Tarry MJ, Carter AP, Ramakrishnan V 2001. Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science 292:5518897–902
    [Google Scholar]
  58. 58.  Ogle JM, Murphy FV, Tarry MJ, Ramakrishnan V 2002. Selection of tRNA by the ribosome requires a transition from an open to a closed form. Cell 111:5721–32
    [Google Scholar]
  59. 59.  Satpati P, Sund J, Åqvist J 2014. Structure-based energetics of mRNA decoding on the ribosome. Biochemistry 53:101714–22
    [Google Scholar]
  60. 60.  Ieong K-W, Uzun Ü, Selmer M, Ehrenberg M 2016. Two proofreading steps amplify the accuracy of genetic code translation. PNAS 113:13744–49
    [Google Scholar]
  61. 61.  Noel JK, Whitford PC 2016. How EF-Tu can contribute to efficient proofreading of aa-tRNA by the ribosome. Nat. Commun. 7:13314
    [Google Scholar]
  62. 62.  Beringer M, Rodnina MV 2007. The ribosomal peptidyl transferase. Mol. Cell. 26:3311–21
    [Google Scholar]
  63. 63.  Ratje AH, Loerke J, Mikolajka A, Brünner M, Hildebrand PW et al. 2010. Head swivel on the ribosome facilitates translocation by means of intra-subunit tRNA hybrid sites. Nature 468:7324713–16
    [Google Scholar]
  64. 64.  Moazed D, Noller HF 1989. Intermediate states in the movement of transfer RNA in the ribosome. Nature 342:6246142–48
    [Google Scholar]
  65. 65.  Frank J, Agrawal RK 2000. A ratchet-like inter-subunit reorganization of the ribosome during translocation. Nature 406:6793318–22
    [Google Scholar]
  66. 66.  Valle M, Zavialov A, Sengupta J, Rawat U, Ehrenberg M, Frank J 2003. Locking and unlocking of ribosomal motions. Cell 114:1123–34
    [Google Scholar]
  67. 67.  Brilot AF, Korostelev AA, Ermolenko DN, Grigorieff N 2013. Structure of the ribosome with elongation factor G trapped in the pretranslocation state. PNAS 110:5220994–99
    [Google Scholar]
  68. 68.  Pulk A, Cate JHD 2013. Control of ribosomal subunit rotation by elongation factor G. Science 340:61401235970
    [Google Scholar]
  69. 69.  Tourigny DS, Fernández IS, Kelley AC, Ramakrishnan V 2013. Elongation factor G bound to the ribosome in an intermediate state of translocation. Science 340:61401235490
    [Google Scholar]
  70. 70.  Sharma H, Adio S, Senyushkina T, Belardinelli R, Peske F, Rodnina MV 2016. Kinetics of spontaneous and EF-G-accelerated rotation of ribosomal subunits. Cell Rep 16:2187–96
    [Google Scholar]
  71. 71.  Rodnina MV, Savelsbergh A, Katunin VI, Wintermeyer W 1997. Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome. Nature 385:37–41
    [Google Scholar]
  72. 72.  Guo Z, Noller HF 2012. Rotation of the head of the 30S ribosomal subunit during mRNA translocation. PNAS 109:5020391–94
    [Google Scholar]
  73. 73.  Zhou J, Lancaster L, Donohue JP, Noller HF 2014. How the ribosome hands the A-site tRNA to the P site during EF-G-catalyzed translocation. Science 345:62011188–91
    [Google Scholar]
  74. 74.  Adio S, Senyushkina T, Peske F, Fischer N, Wintermeyer W, Rodnina MV 2015. Fluctuations between multiple EF-G-induced chimeric tRNA states during translocation on the ribosome. Nat. Commun. 6:7442
    [Google Scholar]
  75. 75.  Chen C, Cui X, Beausang JF, Zhang H, Farrell I et al. 2016. Elongation factor G initiates translocation through a power stroke. PNAS 113:277515–20
    [Google Scholar]
  76. 76.  Bock L V, Blau C, Schröder GF, Davydov II, Fischer N et al. 2013. Energy barriers and driving forces in tRNA translocation through the ribosome. Nat. Struct. Mol. Biol. 20:121390–96
    [Google Scholar]
  77. 77.  Liu G, Song G, Zhang D, Zhang D, Li Z et al. 2014. EF-G catalyzes tRNA translocation by disrupting interactions between decoding center and codon-anticodon duplex. Nat. Struct. Mol. Biol. 21:9817–24
    [Google Scholar]
  78. 78.  Marshall RA, Dorywalska M, Puglisi JD 2008. Irreversible chemical steps control intersubunit dynamics during translation. PNAS 105:4015364–69
    [Google Scholar]
  79. 79.  Ermolenko DN, Majumdar ZK, Hickerson RP, Spiegel PC, Clegg RM, Noller HF 2007. Observation of intersubunit movement of the ribosome in solution using FRET. J. Mol. Biol. 370:3530–40
    [Google Scholar]
  80. 80.  Gao Y, Selmer M, Dunham CM, Weixlbaumer A, Kelley AC, Ramakrishnan V 2009. The structure of the ribosome with elongation factor G trapped in the posttranslocational state. Science 326:694–700
    [Google Scholar]
  81. 81.  Chen C, Stevens B, Kaur J, Smilansky Z, Cooperman BS, Goldman YE 2011. Allosteric vs. spontaneous exit-site (E-site) tRNA dissociation early in protein synthesis. PNAS 108:4116980–85
    [Google Scholar]
  82. 82.  Semenkov YP, Rodnina MV, Wintermeyer W 1996. The “allosteric three-site model” of elongation cannot be confirmed in a well-defined ribosome system from Escherichia coli. PNAS 93:2212183–88
    [Google Scholar]
  83. 83.  Petropoulos AD, Green R 2012. Further in vitro exploration fails to support the allosteric three-site model. J. Biol. Chem. 287:1511642–48
    [Google Scholar]
  84. 84.  Burkhardt N, Jünemann R, Spahn CM, Nierhaus KH 1998. Ribosomal tRNA binding sites: three-site models of translation. Crit. Rev. Biochem. Mol. Biol. 33:295–149
    [Google Scholar]
  85. 85.  Fei J, Bronson JE, Hofman JM, Srinivas RL, Wiggins CH, Gonzalez RL 2009. Allosteric collaboration between elongation factor G and the ribosomal L1 stalk directs tRNA movements during translation. PNAS 106:3715702–7
    [Google Scholar]
  86. 86.  Triana-Alonso FJ, Chakraburtty K, Nierhaus KH 1995. The elongation factor 3 unique in higher fungi and essential for protein biosynthesis is an E site factor. J. Biol. Chem. 270:3520473–78
    [Google Scholar]
  87. 87.  Pech M, Karim Z, Yamamoto H, Kitakawa M, Qin Y, Nierhaus KH 2011. Elongation factor 4 (EF4/LepA) accelerates protein synthesis at increased Mg2+ concentrations. PNAS 108:83199–203
    [Google Scholar]
  88. 88.  Machnicka MA, Milanowska K, Oglou OO, Purta E, Kurkowska M et al. 2018. MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res 46:D1D303–7
    [Google Scholar]
  89. 89.  He C. 2010. Grand challenge commentary: RNA epigenetics?. Nat. Chem. Biol. 6:12863–65
    [Google Scholar]
  90. 90.  Saletore Y, Meyer K, Korlach J, Vilfan ID, Jaffrey S, Mason CE 2012. The birth of the Epitranscriptome: deciphering the function of RNA modifications. Genome Biol 13:10175
    [Google Scholar]
  91. 91.  Roundtree IA, Evans ME, Pan T, He C 2017. Dynamic RNA modifications in gene expression regulation. Cell 169:71187–1200
    [Google Scholar]
  92. 92.  Li X, Xiong X, Yi C 2016. Epitranscriptome sequencing technologies: decoding RNA modifications. Nat. Methods 14:123–31
    [Google Scholar]
  93. 93.  Lewis CJT, Pan T, Kalsotra A 2017. RNA modifications and structures cooperate to guide RNA-protein interactions. Nat. Rev. Mol. Cell Biol. 18:3202–10
    [Google Scholar]
  94. 94.  Helm M, Motorin Y 2017. Detecting RNA modifications in the epitranscriptome: predict and validate. Nat. Rev. Genet. 18:5275–91
    [Google Scholar]
  95. 95.  Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L et al. 2012. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485:7397201–6
    [Google Scholar]
  96. 96.  Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR 2012. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149:71635–46
    [Google Scholar]
  97. 97.  Hoernes TP, Clementi N, Faserl K, Glasner H, Breuker K et al. 2016. Nucleotide modifications within bacterial messenger RNAs regulate their translation and are able to rewire the genetic code. Nucleic Acids Res 44:2852–62
    [Google Scholar]
  98. 98.  Roost C, Lynch SR, Batista PJ, Qu K, Chang HY, Kool ET 2015. Structure and thermodynamics of N6-methyladenosine in RNA: a spring-loaded base modification. J. Am. Chem. Soc. 137:52107–15
    [Google Scholar]
  99. 99.  Choi J, Ieong K-W, Demirci H, Chen J, Petrov A et al. 2016. N6-methyladenosine in mRNA disrupts tRNA selection and translation-elongation dynamics. Nat. Struct. Mol. Biol. 23:2110–15
    [Google Scholar]
  100. 100.  Li X, Xiong X, Wang K, Wang L, Shu X et al. 2016. Transcriptome-wide mapping reveals reversible and dynamic N1-methyladenosine methylome. Nat. Chem. Biol. 12:5311–16
    [Google Scholar]
  101. 101.  Dominissini D, Nachtergaele S, Moshitch-Moshkovitz S, Peer E, Kol N et al. 2016. The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA. Nature 530:7591441–46
    [Google Scholar]
  102. 102.  You C, Dai X, Wang Y 2017. Position-dependent effects of regioisomeric methylated adenine and guanine ribonucleosides on translation. Nucleic Acids Res 45:159059–67
    [Google Scholar]
  103. 103.  Ge J, Yu YT 2013. RNA pseudouridylation: new insights into an old modification. Trends Biochem. Sci. 38:4210–18
    [Google Scholar]
  104. 104.  King TH, Liu B, McCully RR, Fournier MJ 2003. Ribosome structure and activity are altered in cells lacking snoRNPs that form pseudouridines in the peptidyl transferase center. Mol. Cell. 11:2425–35
    [Google Scholar]
  105. 105.  Fernández IS, Ng CL, Kelley AC, Wu G, Yu Y-T, Ramakrishnan V 2013. Unusual base pairing during the decoding of a stop codon by the ribosome. Nature 500:7460107–10
    [Google Scholar]
  106. 106.  Karijolich J, Yu Y-T 2011. Converting nonsense codons into sense codons by targeted pseudouridylation. Nature 474:7351395–98
    [Google Scholar]
  107. 107.  Schwartz S, Bernstein DA, Mumbach MR, Jovanovic M, Herbst RH et al. 2014. Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell 159:1148–62
    [Google Scholar]
  108. 108.  Carlile TM, Rojas-Duran MF, Zinshteyn B, Shin H, Bartoli KM, Gilbert WV 2014. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 515:7525143–46
    [Google Scholar]
  109. 109.  Cummins LL, Owens SR, Risen LM, Lesnik EA, Freier SM et al. 1995. Characterization of fully 2′-modified oligoribonucleotide hetero- and homoduplex hybridization and nuclease sensitivity. Nucleic Acids Res 23:112019–24
    [Google Scholar]
  110. 110.  Dai Q, Moshitch-Moshkovitz S, Han D, Kol N, Amariglio N et al. 2017. Nm-seq maps 2′-O-methylation sites in human mRNA with base precision. Nat. Methods 14:7695–98
    [Google Scholar]
  111. 182.  Choi J, Indrisiunaite G, DeMirci H, Ieong K-W, Wang J et al. 2018. 2′-O-methylation in mRNA disrupts tRNA decoding during translation elongation. Nat. Struct. Mol. Biol. 25:208–16
    [Google Scholar]
  112. 111.  Novoa EM, Ribas de Pouplana L 2012. Speeding with control: codon usage, tRNAs, and ribosomes. Trends Genet 28:11574–81
    [Google Scholar]
  113. 112.  Richter JD, Coller J 2015. Pausing on polyribosomes: make way for elongation in translational control. Cell 163:2292–300
    [Google Scholar]
  114. 113.  Presnyak V, Alhusaini N, Chen YH, Martin S, Morris N et al. 2015. Codon optimality is a major determinant of mRNA stability. Cell 160:61111–24
    [Google Scholar]
  115. 114.  Boël G, Letso R, Neely H, Price WN, Wong K-H et al. 2016. Codon influence on protein expression in E. coli correlates with mRNA levels. Nature 529:7586358–63
    [Google Scholar]
  116. 115.  Gingold H, Tehler D, Christoffersen NR, Nielsen MM, Asmar F et al. 2014. A dual program for translation regulation in cellular proliferation and differentiation. Cell 158:61281–92
    [Google Scholar]
  117. 116.  Schmitt BM, Rudolph KLM, Karagianni P, Schmitt BM, Rudolph KLM et al. 2014. High-resolution mapping of transcriptional dynamics across tissue development reveals a stable mRNA−tRNA interface. Genome Res 24:1797–1807
    [Google Scholar]
  118. 117.  Pavon-Eternod M, Gomes S, Geslain R, Dai Q, Rosner MR, Pan T 2009. tRNA over-expression in breast cancer and functional consequences. Nucleic Acids Res 37:217268–80
    [Google Scholar]
  119. 118.  Goodarzi H, Nguyen HCB, Zhang S, Dill BD, Molina H, Tavazoie SF 2016. Modulated expression of specific tRNAs drives gene expression and cancer progression. Cell 165:61416–27
    [Google Scholar]
  120. 119.  Kirchner S, Ignatova Z 2014. Emerging roles of tRNA in adaptive translation, signalling dynamics and disease. Nat. Rev. Genet. 16:298–112
    [Google Scholar]
  121. 120.  Buhr F, Jha S, Thommen M, Mittelstaet J, Kutz F et al. 2016. Synonymous codons direct cotranslational folding toward different protein conformations. Mol. Cell. 61:3341–51
    [Google Scholar]
  122. 121.  Pechmann S, Frydman J 2012. Evolutionary conservation of codon optimality reveals hidden signatures of cotranslational folding. Nat. Struct. Mol. Biol. 20:2237–43
    [Google Scholar]
  123. 122.  Gamble CE, Brule CE, Dean KM, Fields S, Grayhack EJ 2016. Adjacent codons act in concert to modulate translation efficiency in yeast. Cell 166:3679–90
    [Google Scholar]
  124. 123.  Yusupova GZ, Yusupov MM, Cate JHD, Noller HF 2001. The path of messenger RNA through the ribosome. Cell 106:2233–41
    [Google Scholar]
  125. 124.  Jenner LB, Demeshkina N, Yusupova G, Yusupov M 2010. Structural aspects of messenger RNA reading frame maintenance by the ribosome. Nat. Struct. Mol. Biol. 17:5555–60
    [Google Scholar]
  126. 125.  Chen C, Zhang H, Broitman SL, Reiche M, Farrell I et al. 2013. Dynamics of translation by single ribosomes through mRNA secondary structures. Nat. Struct. Mol. Biol. 20:5582–88
    [Google Scholar]
  127. 126.  Liu T, Kaplan A, Alexander L, Yan S, Wen J-D et al. 2014. Direct measurement of the mechanical work during translocation by the ribosome. eLife 3:e03406
    [Google Scholar]
  128. 127.  Kontos H, Napthine S, Brierley I 2001. Ribosomal pausing at a frameshifter RNA pseudoknot is sensitive to reading phase but shows little correlation with frameshift efficiency. Mol. Cell. Biol. 21:248657–70
    [Google Scholar]
  129. 128.  Farabaugh PJ. 1996. Programmed translational frameshifting. Annu. Rev. Genet. 30:507–28
    [Google Scholar]
  130. 129.  Mohammad F, Woolstenhulme CJ, Green R, Buskirk AR 2016. Clarifying the translational pausing landscape in bacteria by ribosome profiling. Cell Rep 14:4686–94
    [Google Scholar]
  131. 130.  Wohlgemuth I, Brenner S, Beringer M, Rodnina MV 2008. Modulation of the rate of peptidyl transfer on the ribosome by the nature of substrates. J. Biol. Chem. 283:4732229–35
    [Google Scholar]
  132. 131.  Johansson M, Ieong K-W, Trobro S, Strazewski P, Åqvist J et al. 2011. pH-sensitivity of the ribosomal peptidyl transfer reaction dependent on the identity of the A-site aminoacyl-tRNA. PNAS 108:179–84
    [Google Scholar]
  133. 132.  Pavlov MY, Watts RE, Tan Z, Cornish VW, Ehrenberg M, Forster AC 2009. Slow peptide bond formation by proline and other N-alkylamino acids in translation. PNAS 106:150–54
    [Google Scholar]
  134. 133.  Melnikov S, Mailliot J, Rigger L, Neuner S, Shin B et al. 2016. Molecular insights into protein synthesis with proline residues. EMBO Rep 17:121776–84
    [Google Scholar]
  135. 134.  Doerfel LK, Wohlgemuth I, Kothe C, Peske F, Urlaub H, Rodnina MV 2013. EF-P is essential for rapid synthesis of proteins containing consecutive proline residues. Science 339:611585–88
    [Google Scholar]
  136. 135.  Starosta AL, Lassak J, Peil L, Atkinson GC, Virumäe K et al. 2014. Translational stalling at polyproline stretches is modulated by the sequence context upstream of the stall site. Nucleic Acids Res 42:1610711–19
    [Google Scholar]
  137. 136.  Peil L, Starosta AL, Lassak J, Atkinson GC, Virumäe K et al. 2013. Distinct XPPX sequence motifs induce ribosome stalling, which is rescued by the translation elongation factor EF-P. PNAS 110:3815265–70
    [Google Scholar]
  138. 137.  Gutierrez E, Shin BS, Woolstenhulme CJ, Kim JR, Saini P et al. 2013. eIF5A promotes translation of polyproline motifs. Mol. Cell. 51:135–45
    [Google Scholar]
  139. 138.  Ude S, Lassak J, Starosta AL, Kraxenberger T, Wilson DN, Jung K 2013. Translation elongation factor EF-P alleviates ribosome stalling at polyproline stretches. Science 339:82–86
    [Google Scholar]
  140. 139.  Doerfel LK, Wohlgemuth I, Kubyshkin V, Starosta AL, Wilson DN et al. 2015. Entropic contribution of elongation factor P to proline positioning at the catalytic center of the ribosome. J. Am. Chem. Soc. 137:4012997–13006
    [Google Scholar]
  141. 140.  Woolstenhulme CJ, Guydosh NR, Green R, Buskirk AR 2015. High-precision analysis of translational pausing by ribosome profiling in bacteria lacking EFP. Cell Rep 11:113–21
    [Google Scholar]
  142. 141.  Huter P, Arenz S, Bock LV, Graf M, Frister JO et al. 2017. Structural basis for polyproline-mediated ribosome stalling and rescue by the translation elongation factor EF-P. Mol. Cell. 68:3515–527.e6
    [Google Scholar]
  143. 142.  Nam D, Choi E, Shin D, Lee EJ 2016. tRNAPro-mediated downregulation of elongation factor P is required for mgtCBR expression during Salmonella infection. Mol. Microbiol. 102:2221–32
    [Google Scholar]
  144. 143.  Elgamal S, Katz A, Hersch SJ, Newsom D, White P et al. 2014. EF-P dependent pauses integrate proximal and distal signals during translation. PLOS Genet 10:8e1004553
    [Google Scholar]
  145. 144.  Nakatogawa H, Ito K 2002. The ribosomal exit tunnel functions as a discriminating gate. Cell 108:5629–36
    [Google Scholar]
  146. 145.  Muto H, Nakatogawa H, Ito K 2006. Genetically encoded but nonpolypeptide prolyl-tRNA functions in the A site for SecM-mediated ribosomal stall. Mol. Cell. 22:4545–52
    [Google Scholar]
  147. 146.  Bhushan S, Hoffmann T, Seidelt B, Frauenfeld J, Mielke T et al. 2011. SecM-stalled ribosomes adopt an altered geometry at the peptidyl transferase center. PLOS Biol 9:1e1000581
    [Google Scholar]
  148. 147.  Zhang J, Pan X, Yan K, Sun S, Gao N, Sui SF 2015. Mechanisms of ribosome stalling by SecM at multiple elongation steps. eLife 4:4e09684
    [Google Scholar]
  149. 148.  Tsai A, Kornberg G, Johansson M, Chen J, Puglisi JD 2014. The dynamics of SecM-induced translational stalling. Cell Rep 7:51521–33
    [Google Scholar]
  150. 149.  Navon SP, Kornberg G, Chen J, Schwartzman T, Tsai A et al. 2016. Amino acid sequence repertoire of the bacterial proteome and the occurrence of untranslatable sequences. PNAS 113:267166–70
    [Google Scholar]
  151. 150.  Tanner DR, Cariello DA, Woolstenhulme CJ, Broadbent MA, Buskirk AR 2009. Genetic identification of nascent peptides that induce ribosome stalling. J. Biol. Chem. 284:5034809–18
    [Google Scholar]
  152. 151.  Vázquez-Laslop N, Mankin AS 2014. Triggering peptide-dependent translation arrest by small molecules: ribosome stalling modulated by antibiotics. Regulatory Nascent Polypeptides K Ito, S Chiba 165–86 Tokyo: Springer Jpn
    [Google Scholar]
  153. 152.  Arenz S, Meydan S, Starosta AL, Berninghausen O, Beckmann R et al. 2014. Drug sensing by the ribosome induces translational arrest via active site perturbation. Mol. Cell. 56:3446–52
    [Google Scholar]
  154. 153.  Johansson M, Chen J, Tsai A, Kornberg G, Puglisi JD 2014. Sequence-dependent elongation dynamics on macrolide-bound ribosomes. Cell Rep 7:51534–46
    [Google Scholar]
  155. 154.  Arenz S, Bock LV, Graf M, Innis CA, Beckmann R et al. 2016. A combined cryo-EM and molecular dynamics approach reveals the mechanism of ErmBL-mediated translation arrest. Nat. Commun. 7:12026
    [Google Scholar]
  156. 155.  Marks J, Kannan K, Roncase EJ, Klepacki D, Kefi A et al. 2016. Context-specific inhibition of translation by ribosomal antibiotics targeting the peptidyl transferase center. PNAS 113:4312150–55
    [Google Scholar]
  157. 156.  Weisblum B. 1995. Erythromycin resistance by ribosome modification. Antimicrob. Agents Chemother. 39:3577–85
    [Google Scholar]
  158. 157.  Vazquez-Laslop N, Thum C, Mankin AS 2008. Molecular mechanism of drug-dependent ribosome stalling. Mol. Cell. 30:2190–202
    [Google Scholar]
  159. 158.  Weisblum B. 1995. Insights into erythromycin action from studies of its activity as inducer of resistance. Antimicrob. Agents Chemother. 39:4797–805
    [Google Scholar]
  160. 159.  Lovett PS. 1996. Translation attenuation regulation of chloramphenicol resistance in bacteria—a review. Gene 179:1157–62
    [Google Scholar]
  161. 160.  Kannan K, Vázquez-Laslop N, Mankin AS 2012. Selective protein synthesis by ribosomes with a drug-obstructed exit tunnel. Cell 151:3508–20
    [Google Scholar]
  162. 161.  Napthine S, Ling R, Finch LK, Jones JD, Bell S et al. 2017. Protein-directed ribosomal frameshifting temporally regulates gene expression. Nat. Commun. 8:15582
    [Google Scholar]
  163. 162.  Belew AT, Meskauskas A, Musalgaonkar S, Advani VM, Sulima SO et al. 2014. Ribosomal frameshifting in the CCR5 mRNA is regulated by miRNAs and the NMD pathway. Nature 512:7514265–69
    [Google Scholar]
  164. 163.  Gupta P, Kannan K, Mankin AS, Vázquez-Laslop N 2013. Regulation of gene expression by macrolide-induced ribosomal frameshifting. Mol. Cell. 52:5629–42
    [Google Scholar]
  165. 164.  Atkins JF, Elseviers D, Gorini L 1972. Low activity of β-galactosidase in frameshift mutants of Escherichia coli. PNAS 69:51192–95
    [Google Scholar]
  166. 165.  Jørgensen F, Kurland CG 1990. Processivity errors of gene expression in Escherichia coli. J. Mol. Biol 215:4511–21
    [Google Scholar]
  167. 166.  Parker J. 1989. Errors and alternatives in reading the universal genetic code. Microbiol. Rev. 53:3273–98
    [Google Scholar]
  168. 167.  Kramer EB, Farabaugh PJ 2007. The frequency of translational misreading errors in E. coli is largely determined by tRNA competition. RNA 13:187–96
    [Google Scholar]
  169. 168.  Sharma V, Prère MF, Canal I, Firth AE, Atkins JF et al. 2014. Analysis of tetra- and hepta-nucleotides motifs promoting -1 ribosomal frameshifting in Escherichia coli. Nucleic Acids Res 42:117210–25
    [Google Scholar]
  170. 169.  Larsen B, Wills NM, Gesteland RF, Atkins JF 1994. rRNA-mRNA base pairing stimulates a programmed −1 ribosomal frameshift. J. Bacteriol. 176:226842–51
    [Google Scholar]
  171. 170.  Larsen B, Gesteland RF, Atkins JF 1997. Structural probing and mutagenic analysis of the stem-loop required for Escherichia colidnaX ribosomal frameshifting: programmed efficiency of 50%. J. Mol. Biol. 271:147–60
    [Google Scholar]
  172. 171.  Kim H-K, Liu F, Fei J, Bustamante C, Gonzalez RL, Tinoco I 2014. A frameshifting stimulatory stem loop destabilizes the hybrid state and impedes ribosomal translocation. PNAS 111:155538–43
    [Google Scholar]
  173. 172.  Kim HK, Tinoco I 2017. EF-G catalyzed translocation dynamics in the presence of ribosomal frameshifting stimulatory signals. Nucleic Acids Res 45:52865–74
    [Google Scholar]
  174. 173.  Koutmou KS, Schuller AP, Brunelle JL, Radhakrishnan A, Djuranovic S, Green R 2015. Ribosomes slide on lysine-encoding homopolymeric A stretches. eLife 4:e05534
    [Google Scholar]
  175. 174.  Arthur L, Pavlovic-Djuranovic S, Smith-Koutmou K, Green R, Szczesny P, Djuranovic S 2015. Translational control by lysine-encoding A-rich sequences. Sci. Adv. 1:6e1500154
    [Google Scholar]
  176. 175.  Donly BC, Edgar CD, Adamski FM, Tate WP 1990. Frameshift autoregulation in the gene for Escherichia coli release factor 2: Partly functional mutants result in frameshift enhancement. Nucleic Acids Res 18:226517–22
    [Google Scholar]
  177. 176.  Lobanov AV, Heaphy SM, Turanov AA, Gerashchenko MV, Pucciarelli S et al. 2016. Position-dependent termination and widespread obligatory frameshifting in Euplotes translation. Nat. Struct. Mol. Biol. 24:585–97
    [Google Scholar]
  178. 177.  Wang R, Xiong J, Wang W, Miao W, Liang A 2016. High frequency of +1 programmed ribosomal frameshifting in Euplotesoctocarinatus. Sci. Rep 6:21139
    [Google Scholar]
  179. 178.  Huang WM, Ao S, Casjens S, Orlandi R, Zeikus R et al. 1988. A persistent untranslated sequence within bacteriophage T4 DNA topoisomerase gene 60. Science 239:48431005–12
    [Google Scholar]
  180. 179.  Chen J, Coakley A, O'Connor M, Petrov A, O'Leary SE et al. 2015. Coupling of mRNA structure rearrangement to ribosome movement during bypassing of non-coding regions. Cell 163:51267–80
    [Google Scholar]
  181. 180.  Agirrezabala X, Samatova E, Klimova M, Zamora M, Gil-Carton D et al. 2017. Ribosome rearrangements at the onset of translational bypassing. Sci. Adv. 3:e1700147
    [Google Scholar]
  182. 181.  Samatova E, Konevega AL, Wills NM, Atkins JF, Rodnina MV 2014. High-efficiency translational bypassing of non-coding nucleotides specified by mRNA structure and nascent peptide. Nat. Commun. 5:4459
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-060815-014818
Loading
/content/journals/10.1146/annurev-biochem-060815-014818
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error