1932

Abstract

Over the past three decades, studies of ancient biomolecules—particularly ancient DNA, proteins, and lipids—have revolutionized our understanding of evolutionary history. Though initially fraught with many challenges, today the field stands on firm foundations. Researchers now successfully retrieve nucleotide and amino acid sequences, as well as lipid signatures, from progressively older samples, originating from geographic areas and depositional environments that, until recently, were regarded as hostile to long-term preservation of biomolecules. Sampling frequencies and the spatial and temporal scope of studies have also increased markedly, and with them the size and quality of the data sets generated. This progress has been made possible by continuous technical innovations in analytical methods, enhanced criteria for the selection of ancient samples, integrated experimental methods, and advanced computational approaches. Here, we discuss the history and current state of ancient biomolecule research, its applications to evolutionary inference, and future directions for this young and exciting field.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-062917-012002
2018-06-20
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/biochem/87/1/annurev-biochem-062917-012002.html?itemId=/content/journals/10.1146/annurev-biochem-062917-012002&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Higuchi R, Bowman B, Freiberger M, Ryder OA, Wilson AC 1984. DNA sequences from the quagga, an extinct member of the horse family. Nature 312:5991282–84
    [Google Scholar]
  2. 2.  Shapiro B, Drummond AJ, Rambaut A, Wilson MC, Matheus PE et al. 2004. Rise and fall of the Beringian steppe bison. Science 306:57011561–65
    [Google Scholar]
  3. 3.  Lorenzen ED, Nogués-Bravo D, Orlando L, Weinstock J, Binladen J et al. 2011. Species-specific responses of Late Quaternary megafauna to climate and humans. Nature 479:7373359–64
    [Google Scholar]
  4. 4.  Rasmussen M, Li Y, Lindgreen S, Pedersen JS, Albrechtsen A et al. 2010. Ancient human genome sequence of an extinct Palaeo-Eskimo. Nature 463:7282757–62
    [Google Scholar]
  5. 5.  Green RE, Krause J, Briggs AW, Maricic T, Stenzel U et al. 2010. A draft sequence of the Neandertal genome. Science 328:5979710–22
    [Google Scholar]
  6. 6.  Haak W, Lazaridis I, Patterson N, Rohland N, Mallick S et al. 2015. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522:7555207–11
    [Google Scholar]
  7. 7.  Allentoft ME, Sikora M, Sjögren K-G, Rasmussen S, Rasmussen M et al. 2015. Population genomics of Bronze Age Eurasia. Nature 522:7555167–72
    [Google Scholar]
  8. 8.  Orlando L, Ginolhac A, Zhang G, Froese D, Albrechtsen A et al. 2013. Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature 499:745674–78
    [Google Scholar]
  9. 9.  Willerslev E, Hansen AJ, Binladen J, Brand TB, Gilbert MTP et al. 2003. Diverse plant and animal genetic records from Holocene and Pleistocene sediments. Science 300:5620791–95
    [Google Scholar]
  10. 10.  Willerslev E, Cappellini E, Boomsma W, Nielsen R, Hebsgaard MB et al. 2007. Ancient biomolecules from deep ice cores reveal a forested southern Greenland. Science 317:5834111–14
    [Google Scholar]
  11. 11.  Pedersen MW, Overballe-Petersen S, Ermini L, Sarkissian CD, Haile J et al. 2015. Ancient and modern environmental DNA. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370:166020130383
    [Google Scholar]
  12. 12.  Pedersen MW, Ruter A, Schweger C, Friebe H, Staff RA et al. 2016. Postglacial viability and colonization in North America's ice-free corridor. Nature 537:761845–49
    [Google Scholar]
  13. 13.  Orlando L, Gilbert MTP, Willerslev E 2015. Reconstructing ancient genomes and epigenomes. Nat. Rev. Genet. 16:7395–408
    [Google Scholar]
  14. 14.  Abelson PH. 1954. Amino acids in fossils. Science 119:3096576
    [Google Scholar]
  15. 15.  Lowenstein JM. 1981. Immunological reactions from fossil material. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2921057:143–49
    [Google Scholar]
  16. 16.  Huq NL, Tseng A, Chapman GE 1990. Partial amino acid sequence of osteocalcin from an extinct species of ratite bird. Biochem. Int. 21:3491–96
    [Google Scholar]
  17. 17.  Ostrom PH, Schall M, Gandhi H, Shen T-L, Hauschka PV et al. 2000. New strategies for characterizing ancient proteins using matrix-assisted laser desorption ionization mass spectrometry. Geochim. Cosmochim. Acta 64:61043–50
    [Google Scholar]
  18. 18.  Buckley M, Collins M, Thomas-Oates J, Wilson JC 2009. Species identification by analysis of bone collagen using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 23:233843–54
    [Google Scholar]
  19. 19.  Cappellini E, Jensen LJ, Szklarczyk D, Ginolhac A, da Fonseca RAR et al. 2012. Proteomic analysis of a Pleistocene mammoth femur reveals more than one hundred ancient bone proteins. J. Proteome Res. 11:2917–26
    [Google Scholar]
  20. 20.  Welker F, Collins MJ, Thomas JA, Wadsley M, Brace S et al. 2015. Ancient proteins resolve the evolutionary history of Darwin's South American ungulates. Nature 522:755481–84
    [Google Scholar]
  21. 21.  Bergmann W. 1963. Organic Geochemistry IA Breger 503–42 Oxford, UK: Pergamon
  22. 22.  Thornton MD, Morgan ED, Celoria F 1970. The composition of bog butter. Sci. Archaeol. 1:2 320–25
    [Google Scholar]
  23. 23.  Killops SD, Killops VJ 1993. An Introduction to Organic Geochemistry Harlow, UK: Longman265 pp.
  24. 24.  Briggs DEG, Evershed RP, Lockheart MJ 2000. The biomolecular paleontology of continental fossils. Paleobiology 26:sp4169–93
    [Google Scholar]
  25. 25.  Evershed RP. 2008. Organic residue analysis in archaeology: the archaeological biomarker revolution. Archaeometry 50:6895–924
    [Google Scholar]
  26. 26.  Summons RE, Powell TG, Boreham CJ 1988. Petroleum geology and geochemistry of the Middle Proterozoic McArthur Basin, Northern Australia: III. Composition of extractable hydrocarbons. Geochim. Cosmochim. Acta 52:71747–63
    [Google Scholar]
  27. 27.  Dunne J, Evershed RP, Salque M, Cramp L, Bruni S et al. 2012. First dairying in green Saharan Africa in the fifth millennium BC. Nature 486:7403390–94
    [Google Scholar]
  28. 28.  Green EJ, Speller CF 2017. Novel substrates as sources of ancient DNA: prospects and hurdles. Genes 8:7180
    [Google Scholar]
  29. 29.  Warinner C, Rodrigues JFM, Vyas R, Trachsel C, Shved N et al. 2014. Pathogens and host immunity in the ancient human oral cavity. Nat. Genet. 46:4336–44
    [Google Scholar]
  30. 30.  Gilbert MTP, Tomsho LP, Rendulic S, Packard M, Drautz DI et al. 2007. Whole-genome shotgun sequencing of mitochondria from ancient hair shafts. Science 317:58461927–30
    [Google Scholar]
  31. 31.  Wales N, Allaby R, Willerslev E, Gilbert MTP 2013. Ancient plant DNA. Encyclopedia of Quaternary Science SA Elias, CJ Mock 705–15 Amsterdam: Elsevier, 2nd ed..
    [Google Scholar]
  32. 32.  Slon V, Hopfe C, Weiß CL, Mafessoni F, de la Rasilla M et al. 2017. Neandertal and Denisovan DNA from Pleistocene sediments. Science 356:6338605–8
    [Google Scholar]
  33. 33.  Bennett KD, Parducci L 2006. DNA from pollen: principles and potential. Holocene 16:81031–34
    [Google Scholar]
  34. 34.  Shoulders MD, Raines RT 2009. Collagen structure and stability. Annu. Rev. Biochem. 78:929–58
    [Google Scholar]
  35. 35.  Salmon CR, Tomazela DM, Ruiz KGS, Foster BL, Paes Leme AF et al. 2013. Proteomic analysis of human dental cementum and alveolar bone. J. Proteom. 91:544–55
    [Google Scholar]
  36. 36.  Stewart NA, Gerlach RF, Gowland RL, Gron KJ, Montgomery J 2017. Sex determination of human remains from peptides in tooth enamel. PNAS 114:5213649–54
    [Google Scholar]
  37. 37.  Dallongeville S, Garnier N, Rolando C, Tokarski C 2016. Proteins in art, archaeology, and paleontology: from detection to identification. Chem. Rev. 116:12–79
    [Google Scholar]
  38. 38.  Fiddyment S, Holsinger B, Ruzzier C, Devine A, Binois A et al. 2015. Animal origin of 13th-century uterine vellum revealed using noninvasive peptide fingerprinting. PNAS 112:4915066–71
    [Google Scholar]
  39. 39.  Cappellini E, Gilbert MTP, Geuna F, Fiorentino G, Hall A et al. 2010. A multidisciplinary study of archaeological grape seeds. Naturwissenschaften 97:2205–17
    [Google Scholar]
  40. 40.  Clark KA, Ikram S, Evershed RP 2013. Organic chemistry of balms used in the preparation of pharaonic meat mummies. PNAS 110:5120392–95
    [Google Scholar]
  41. 41.  Charters S, Evershed RP, Goad LJ, Leyden A, Blinkhorn PW, Denham V 1993. Quantification and distribution of lipid in archaeological ceramics: implications for sampling potsherds for organic residue analysis and the classification of vessel use. Archaeometry 35:2211–23
    [Google Scholar]
  42. 42.  Berstan R, Dudd SN, Copley MS, Morgan ED, Quye A, Evershed RP 2004. Characterisation of “bog butter” using a combination of molecular and isotopic techniques. Analyst 129:3270–75
    [Google Scholar]
  43. 43.  Allentoft ME, Collins M, Harker D, Haile J, Oskam CL et al. 2012. The half-life of DNA in bone: measuring decay kinetics in 158 dated fossils. Proc. Biol. Sci. 279:17484724–33
    [Google Scholar]
  44. 44.  Kistler L, Ware R, Smith O, Collins M, Allaby RG 2017. A new model for ancient DNA decay based on paleogenomic meta-analysis. Nucleic Acids Res 45:116310–20
    [Google Scholar]
  45. 45.  Hansen A, Willerslev E, Wiuf C, Mourier T, Arctander P 2001. Statistical evidence for miscoding lesions in ancient DNA templates. Mol. Biol. Evol. 18:2262–65
    [Google Scholar]
  46. 46.  Hofreiter M, Jaenicke V, Serre D, von Haeseler A, Pääbo S 2001. DNA sequences from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA. Nucleic Acids Res 29:234793–99
    [Google Scholar]
  47. 47.  Welker F, Hajdinjak M, Talamo S, Jaouen K, Dannemann M et al. 2016. Palaeoproteomic evidence identifies archaic hominins associated with the Châtelperronian at the Grotte du Renne. PNAS 113:4011162–67
    [Google Scholar]
  48. 48.  Welker F, Smith GM, Hutson JM, Kindler L, Garcia-Moreno A et al. 2017. Middle Pleistocene protein sequences from the rhinoceros genus Stephanorhinus and the phylogeny of extant and extinct Middle/Late Pleistocene Rhinocerotidae. PeerJ 5:e3033
    [Google Scholar]
  49. 49.  Mackenzie AS, Brassell SC, Eglinton G, Maxwell JR 1982. Chemical fossils: the geological fate of steroids. Science 217:4559491–504
    [Google Scholar]
  50. 50.  Lindahl T. 1993. Instability and decay of the primary structure of DNA. Nature 362:6422709–15
    [Google Scholar]
  51. 51.  Miller W, Schuster SC, Welch AJ, Ratan A, Bedoya-Reina OC et al. 2012. Polar and brown bear genomes reveal ancient admixture and demographic footprints of past climate change. PNAS 109:36E2382–90
    [Google Scholar]
  52. 52.  Meyer M, Arsuaga J-L, de Filippo C, Nagel S, Aximu-Petri A et al. 2016. Nuclear DNA sequences from the Middle Pleistocene Sima de los Huesos hominins. Nature 531:7595504–7
    [Google Scholar]
  53. 53.  Bremond L, Favier C, Ficetola GF, Tossou MG, Akouégninou A et al. 2017. Five thousand years of tropical lake sediment DNA records from Benin. Quat. Sci. Rev. 170:203–11
    [Google Scholar]
  54. 54.  Geiger T, Clarke S 1987. Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. Succinimide-linked reactions that contribute to protein degradation. J. Biol. Chem. 262:2785–94
    [Google Scholar]
  55. 55.  Robinson AB, Rudd CJ 1974. Deamidation of glutaminyl and asparaginyl residues in peptides and proteins. Curr. Top. Cell. Regul. 8:247–95
    [Google Scholar]
  56. 56.  Joshi AB, Kirsch LE 2004. The estimation of glutaminyl deamidation and aspartyl cleavage rates in glucagon. Int. J. Pharm. 273:1–2213–19
    [Google Scholar]
  57. 57.  van Doorn NL, Wilson J, Hollund H, Soressi M, Collins MJ 2012. Site-specific deamidation of glutamine: a new marker of bone collagen deterioration. Rapid Commun. Mass Spectrom. 26:192319–27
    [Google Scholar]
  58. 58.  Cleland TP, Schroeter ER, Schweitzer MH 2015. Biologically and diagenetically derived peptide modifications in moa collagens. Proc. Biol. Sci. 282:180820150015
    [Google Scholar]
  59. 59.  Schweitzer MH, Zheng W, Cleland TP, Goodwin MB, Boatman E et al. 2014. A role for iron and oxygen chemistry in preserving soft tissues, cells and molecules from deep time. Proc. Biol. Sci. 281:177520132741
    [Google Scholar]
  60. 60.  Hill RC, Wither MJ, Nemkov T, Barrett A, D'Alessandro A et al. 2015. Preserved proteins from extinct Bison latifrons identified by tandem mass spectrometry; hydroxylysine glycosides are a common feature of ancient collagen. Mol. Cell. Proteom. 14:71946–58
    [Google Scholar]
  61. 61.  Demarchi B, Hall S, Roncal-Herrero T, Freeman CL, Woolley J et al. 2016. Protein sequences bound to mineral surfaces persist into deep time. eLife 5:e17092
    [Google Scholar]
  62. 62.  Correa-Ascencio M, Evershed RP 2014. High throughput screening of organic residues in archaeological potsherds using direct acidified methanol extraction. Anal. Methods 6:51330
    [Google Scholar]
  63. 63.  Corr LT, Richards MP, Jim S, Ambrose SH, Mackie A et al. 2008. Probing dietary change of the Kwädąy Dän Ts'ìnchį individual, an ancient glacier body from British Columbia: I. Complementary use of marine lipid biomarker and carbon isotope signatures as novel indicators of a marine diet. J. Archaeol. Sci. 35:82102–10
    [Google Scholar]
  64. 64.  Evershed RP, Bland HA, van Bergen PF, Carter JF, Horton MC, Rowley-Conwy PA 1997. Volatile compounds in archaeological plant remains and the Maillard reaction during decay of organic matter. Science 278:5337432–33
    [Google Scholar]
  65. 65.  Evershed RP. 1993. Biomolecular archaeology and lipids. World Archaeol 25:174–93
    [Google Scholar]
  66. 66.  Evershed RP. 2008. Experimental approaches to the interpretation of absorbed organic residues in archaeological ceramics. World Archaeol 40:126–47
    [Google Scholar]
  67. 67.  Craig OE, Saul H, Lucquin A, Nishida Y, Taché K et al. 2013. Earliest evidence for the use of pottery. Nature 496:7445351
    [Google Scholar]
  68. 68.  Rasmussen M, Anzick SL, Waters MR, Skoglund P, DeGiorgio M et al. 2014. The genome of a Late Pleistocene human from a Clovis burial site in western Montana. Nature 506:7487225–29
    [Google Scholar]
  69. 69.  Damgaard PB, Margaryan A, Schroeder H, Orlando L, Willerslev E et al. 2015. Improving access to endogenous DNA in ancient bones and teeth. Sci. Rep. 5:11184
    [Google Scholar]
  70. 70.  Sirak KA, Fernandes DM, Cheronet O, Novak M, Gamarra B et al. 2017. A minimally-invasive method for sampling human petrous bones from the cranial base for ancient DNA analysis. Biotechniques 62:6283–89
    [Google Scholar]
  71. 71.  Romanowski G, Lorenz MG, Wackernagel W 1991. Adsorption of plasmid DNA to mineral surfaces and protection against DNase I. Appl. Environ. Microbiol. 57:41057–61
    [Google Scholar]
  72. 72.  Wales N, Andersen K, Cappellini E, Avila-Arcos MC, Gilbert MTP 2014. Optimization of DNA recovery and amplification from non-carbonized archaeobotanical remains. PLOS ONE 9:1e86827
    [Google Scholar]
  73. 73.  Malmstrom H, Svensson EM, Gilbert MTP, Willerslev E, Gotherstrom A, Holmlund G 2007. More on contamination: the use of asymmetric molecular behavior to identify authentic ancient human DNA. Mol. Biol. Evol. 24:4998–1004
    [Google Scholar]
  74. 74.  Barnett R, Larson G 2012. A phenol-chloroform protocol for extracting DNA from ancient samples. Methods Mol. Biol. 840:13–19
    [Google Scholar]
  75. 75.  Albert TJ, Molla MN, Muzny DM, Nazareth L, Wheeler D et al. 2007. Direct selection of human genomic loci by microarray hybridization. Nat. Methods 4:11903–5
    [Google Scholar]
  76. 76.  Burbano HA, Hodges E, Green RE, Briggs AW, Krause J et al. 2010. Targeted investigation of the Neandertal genome by array-based sequence capture. Science 328:5979723–25
    [Google Scholar]
  77. 77.  Gnirke A, Melnikov A, Maguire J, Rogov P, LeProust EM et al. 2009. Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat. Biotechnol. 27:2182–89
    [Google Scholar]
  78. 78.  Cruz-Dávalos DI, Llamas B, Gaunitz C, Fages A, Gamba C et al. 2017. Experimental conditions improving in-solution target enrichment for ancient DNA. Mol. Ecol. Resour. 17:3508–22
    [Google Scholar]
  79. 79.  Carpenter ML, Buenrostro JD, Valdiosera C, Schroeder H, Allentoft ME et al. 2013. Pulling out the 1%: whole-genome capture for the targeted enrichment of ancient DNA sequencing libraries. Am. J. Hum. Genet. 93:5852–64
    [Google Scholar]
  80. 80.  Vinner L, Mourier T, Friis-Nielsen J, Gniadecki R, Dybkaer K et al. 2015. Investigation of human cancers for retrovirus by low-stringency target enrichment and high-throughput sequencing. Sci. Rep. 5:13201
    [Google Scholar]
  81. 81.  Bos KI, Schuenemann VJ, Golding GB, Burbano HA, Waglechner N et al. 2011. A draft genome of Yersinia pestis from victims of the Black Death. Nature 478:7370506–10
    [Google Scholar]
  82. 82.  Avila-Arcos MC, Cappellini E, Romero-Navarro JA, Wales N, Moreno-Mayar JV et al. 2011. Application and comparison of large-scale solution-based DNA capture-enrichment methods on ancient DNA. Sci. Rep. 1:74
    [Google Scholar]
  83. 83.  Pedersen MW, Ginolhac A, Orlando L, Olsen J, Andersen K et al. 2013. A comparative study of ancient environmental DNA to pollen and macrofossils from lake sediments reveals taxonomic overlap and additional plant taxa. Quat. Sci. Rev. 75:161–68
    [Google Scholar]
  84. 84.  Willerslev E, Davison J, Moora M, Zobel M, Coissac E et al. 2014. Fifty thousand years of Arctic vegetation and megafaunal diet. Nature 506:748647–51
    [Google Scholar]
  85. 85.  Coissac E, Riaz T, Puillandre N 2012. Bioinformatic challenges for DNA metabarcoding of plants and animals. Mol. Ecol. 21:81834–47
    [Google Scholar]
  86. 86.  Schubert M, Ermini L, Der Sarkissian C, Jónsson H, Ginolhac A et al. 2014. Characterization of ancient and modern genomes by SNP detection and phylogenomic and metagenomic analysis using PALEOMIX. Nat. Protoc. 9:51056–82
    [Google Scholar]
  87. 87.  Schubert M, Ginolhac A, Lindgreen S, Thompson JF, Al-Rasheid KAS et al. 2012. Improving ancient DNA read mapping against modern reference genomes. BMC Genom 13:178
    [Google Scholar]
  88. 88.  Orlando L, Ginolhac A, Raghavan M, Vilstrup J, Rasmussen M et al. 2011. True single-molecule DNA sequencing of a pleistocene horse bone. Genome Res 21:101705–19
    [Google Scholar]
  89. 89.  Ginolhac A, Rasmussen M, Gilbert MTP, Willerslev E, Orlando L 2011. mapDamage: testing for damage patterns in ancient DNA sequences. Bioinformatics 27:152153–55
    [Google Scholar]
  90. 90.  Skoglund P, Northoff BH, Shunkov MV, Derevianko AP, Pääbo S et al. 2014. Separating endogenous ancient DNA from modern day contamination in a Siberian Neandertal. PNAS 111:62229–34
    [Google Scholar]
  91. 91.  Rasmussen M, Guo X, Wang Y, Lohmueller KE, Rasmussen S et al. 2011. An Aboriginal Australian genome reveals separate human dispersals into Asia. Science 334:605294–98
    [Google Scholar]
  92. 92.  Racimo F, Renaud G, Slatkin M 2016. Joint estimation of contamination, error and demography for nuclear DNA from ancient humans. PLOS Genet 12:4e1005972
    [Google Scholar]
  93. 93.  Korneliussen TS, Albrechtsen A, Nielsen R 2014. ANGSD: analysis of next generation sequencing data. BMC Bioinformat 15:356
    [Google Scholar]
  94. 94.  Patterson N, Price AL, Reich D 2006. Population structure and eigenanalysis. PLOS Genet 2:12e190
    [Google Scholar]
  95. 95.  Pritchard JK, Stephens M, Donnelly P 2000. Inference of population structure using multilocus genotype data. Genetics 155:2945–59
    [Google Scholar]
  96. 96.  Excoffier L, Dupanloup I, Huerta-Sánchez E, Sousa VC, Foll M 2013. Robust demographic inference from genomic and SNP data. PLOS Genet 9:10e1003905
    [Google Scholar]
  97. 97.  Li H, Durbin R 2011. Inference of human population history from individual whole-genome sequences. Nature 475:7357493–96
    [Google Scholar]
  98. 98.  Cleland TP. 2018. Solid digestion of demineralized bone as a method to access potentially insoluble proteins and post-translational modifications. J. Proteome Res. 17:1536–42
    [Google Scholar]
  99. 99.  Cappellini E, Gentry A, Palkopoulou E, Ishida Y, Cram D et al. 2014. Resolution of the type material of the Asian elephant, Elephas maximus Linnaeus, 1758 (Proboscidea, Elephantidae). Zool. J. Linn. Soc. 170:1222–32
    [Google Scholar]
  100. 100.  Fornelli L, Durbin KR, Fellers RT, Early BP, Greer JB et al. 2017. Advancing top-down analysis of the human proteome using a benchtop quadrupole-orbitrap mass spectrometer. J. Proteome Res. 16:2609–18
    [Google Scholar]
  101. 101.  Toby TK, Fornelli L, Kelleher NL 2016. Progress in top-down proteomics and the analysis of proteoforms. Annu. Rev. Anal. Chem. 9:1499–519
    [Google Scholar]
  102. 102.  Aebersold R, Goodlett DR 2001. Mass spectrometry in proteomics. Chem. Rev. 101:2269–95
    [Google Scholar]
  103. 103.  Brown S, Higham T, Slon V, Pääbo S, Meyer M et al. 2016. Identification of a new hominin bone from Denisova Cave, Siberia using collagen fingerprinting and mitochondrial DNA analysis. Sci. Rep. 6:23559
    [Google Scholar]
  104. 104.  Kelstrup CD, Young C, Lavallee R, Nielsen ML, Olsen JV 2012. Optimized fast and sensitive acquisition methods for shotgun proteomics on a quadrupole orbitrap mass spectrometer. J. Proteome Res. 11:63487–97
    [Google Scholar]
  105. 105.  Wilm M, Mann M 1996. Analytical properties of the nanoelectrospray ion source. Anal. Chem. 68:11–8
    [Google Scholar]
  106. 106.  Hahne H, Pachl F, Ruprecht B, Maier SK, Klaeger S et al. 2013. DMSO enhances electrospray response, boosting sensitivity of proteomic experiments. Nat. Methods 10:10989–91
    [Google Scholar]
  107. 107.  Bern M, Kil YJ, Becker C 2012. Byonic: advanced peptide and protein identification software. Curr. Protoc. Bioinform. 40:13.201–13.20.14
    [Google Scholar]
  108. 108.  Cox J, Mann M 2008. MaxQuant enables high peptide identification rates, individualized ppb-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26:121367–72
    [Google Scholar]
  109. 109.  Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M 2011. Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10:41794–805
    [Google Scholar]
  110. 110.  Taylor JA, Johnson RS 1997. Sequence database searches via de novo peptide sequencing by tandem mass spectrometry. Rapid Commun. Mass Spectrom. 11:91067–75
    [Google Scholar]
  111. 111.  Ma B, Zhang K, Hendrie C, Liang C, Li M et al. 2003. PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun. Mass Spectrom. 17:202337–42
    [Google Scholar]
  112. 112.  Ma B, Johnson R 2012. De novo sequencing and homology searching. Mol. Cell. Proteom. 11:2O111.014902
    [Google Scholar]
  113. 113.  Welker F. 2018. Elucidation of cross-species proteomic effects in human and hominin bone proteome identification through a bioinformatics experiment. BMC Evol. Bio. 18:231–11
    [Google Scholar]
  114. 114.  Tran NH, Zhang X, Xin L, Shan B, Li M 2017. De novo peptide sequencing by deep learning. PNAS 114:8247–52
    [Google Scholar]
  115. 115.  Clark KA, Ikram S, Evershed RP 2016. The significance of petroleum bitumen in ancient Egyptian mummies. Philos. Trans. A Math. Phys. Eng. Sci. 374:20160229
    [Google Scholar]
  116. 116.  Regert M, Bland HA, Dudd SN, van Bergen PF, Evershed RP 1998. Free and bound fatty acid oxidation products in archaeological ceramic vessels. Proc. R. Soc. B: Biol. Sci. 265:14092027–32
    [Google Scholar]
  117. 117.  Richnow HH, Jenisch A, Michaelis W 1992. Structural investigations of sulphur-rich macromolecular oil fractions and a kerogen by sequential chemical degradation. Org. Geochem. 19:4–6351–70
    [Google Scholar]
  118. 118.  Colombini MP, Modugno F 2009. Organic Mass Spectrometry in Art and Archaeology Pisa, Italy: Wiley
  119. 119.  Evershed RP, Heron C, Goad LJ 1990. Analysis of organic residues of archaeological origin by high-temperature gas chromatography and gas chromatography-mass spectrometry. Analyst 115:101339
    [Google Scholar]
  120. 120.  Regert M, Devièse T, Le Hô A-S, Rougeulle A 2008. Reconstructing ancient Yemeni commercial routes during the Middle Ages using structural characterization of terpenoid resins. Archaeometry 50:4668–95
    [Google Scholar]
  121. 121.  Schouten S, Hopmans EC, Schefuß E, Sinninghe Damsté JS 2002. Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures?. Earth Planet. Sci. Lett. 204:1–2265–74
    [Google Scholar]
  122. 122.  Matthews DE, Hayes JM 1978. Isotope-ratio-monitoring gas chromatography-mass spectrometry. Anal. Chem. 50:111465–73
    [Google Scholar]
  123. 123.  Dunne J, Mercuri AM, Evershed RP, Bruni S, di Lernia S 2016. Earliest direct evidence of plant processing in prehistoric Saharan pottery. Nat. Plants 3:16194
    [Google Scholar]
  124. 124.  Dudd SN, Evershed RP 1998. Direct demonstration of milk as an element of archaeological economies. Science 282:53931478–81
    [Google Scholar]
  125. 125.  Corr LT, Sealy JC, Horton MC, Evershed RP 2005. A novel marine dietary indicator utilising compound-specific bone collagen amino acid δ13C values of ancient humans. J. Archaeol. Sci. 32:3321–30
    [Google Scholar]
  126. 126.  Styring AK, Sealy JC, Evershed RP 2010. Resolving the bulk δ15N values of ancient human and animal bone collagen via compound-specific nitrogen isotope analysis of constituent amino acids. Geochim. Cosmochim. Acta. 74:1241–51
    [Google Scholar]
  127. 127.  Outram AK, Stear NA, Bendrey R, Olsen S, Kasparov A et al. 2009. The earliest horse harnessing and milking. Science 323:59191332–35
    [Google Scholar]
  128. 128.  Pääbo S. 2014. The human condition—a molecular approach. Cell 157:1216–26
    [Google Scholar]
  129. 129.  Prüfer K, Racimo F, Patterson N, Jay F, Sankararaman S et al. 2014. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505:748143–49
    [Google Scholar]
  130. 130.  Huerta-Sánchez E, Jin X, Asan, Bianba Z, Peter BM et al. 2014. Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature 512:7513194–97
    [Google Scholar]
  131. 131.  Racimo F, Sankararaman S, Nielsen R, Huerta-Sánchez E 2015. Evidence for archaic adaptive introgression in humans. Nat. Rev. Genet. 16:6359–71
    [Google Scholar]
  132. 132.  Nielsen R, Akey JM, Jakobsson M, Pritchard JK, Tishkoff S, Willerslev E 2017. Tracing the peopling of the world through genomics. Nature 541:7637302–10
    [Google Scholar]
  133. 133.  Raghavan M, Skoglund P, Graf KE, Metspalu M, Albrechtsen A et al. 2014. Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans. Nature 505:748187–91
    [Google Scholar]
  134. 134.  Moreno-Mayar JV, Potter BA, Vinner L, Steinrücken M, Rasmussen S et al. 2018. Terminal Pleistocene Alaskan genome reveals first founding population of Native Americans. Nature 553:7687203–7
    [Google Scholar]
  135. 135.  Skoglund P, Malmström H, Raghavan M, Storå J, Hall P et al. 2012. Origins and genetic legacy of Neolithic farmers and hunter-gatherers in Europe. Science 336:6080466–69
    [Google Scholar]
  136. 136.  Mathieson I, Alpaslan-Roodenberg S, Posth C, Szécsényi-Nagy A, Rohland N et al. 2018. The genomic history of southeastern Europe. Nature 555:197–203
    [Google Scholar]
  137. 137.  Cooper A, Turney C, Hughen KA, Brook BW, McDonald HG, Bradshaw CJA 2015. Abrupt warming events drove Late Pleistocene Holarctic megafaunal turnover. Science 349:6248602–6
    [Google Scholar]
  138. 138.  Haile J, Froese DG, Macphee RDE, Roberts RG, Arnold LJ et al. 2009. Ancient DNA reveals late survival of mammoth and horse in interior Alaska. PNAS 106:5222352–57
    [Google Scholar]
  139. 139.  Larson G, Albarella U, Dobney K, Rowley-Conwy P, Schibler J et al. 2007. Ancient DNA, pig domestication, and the spread of the Neolithic into Europe. PNAS 104:3915276–81
    [Google Scholar]
  140. 140.  Frantz LAF, Mullin VE, Pionnier-Capitan M, Lebrasseur O, Ollivier M et al. 2016. Genomic and archaeological evidence suggest a dual origin of domestic dogs. Science 352:62901228–31
    [Google Scholar]
  141. 141.  Thomson VA, Lebrasseur O, Austin JJ, Hunt TL, Burney DA et al. 2014. Using ancient DNA to study the origins and dispersal of ancestral Polynesian chickens across the Pacific. PNAS 111:134826–31
    [Google Scholar]
  142. 142.  Gaunitz C, Fages A, Hanghøj K, Albrechtsen A, Khan N et al. 2018. Ancient genomes revisit the ancestry of domestic and Przewalski's horses. Science 360:111–14
    [Google Scholar]
  143. 143.  Schubert M, Jónsson H, Chang D, Der Sarkissian C, Ermini L et al. 2014. Prehistoric genomes reveal the genetic foundation and cost of horse domestication. PNAS 111:52E5661–69
    [Google Scholar]
  144. 144.  Librado P, Gamba C, Gaunitz C, Der Sarkissian C, Pruvost M et al. 2017. Ancient genomic changes associated with domestication of the horse. Science 356:6336442–45
    [Google Scholar]
  145. 145.  Roffet-Salque M, Regert M, Evershed RP, Outram AK, Cramp LJE et al. 2015. Widespread exploitation of the honeybee by early Neolithic farmers. Nature 527:7577226–30
    [Google Scholar]
  146. 146.  Taubenberger JK, Reid AH, Janczewski TA, Fanning TG 2001. Integrating historical, clinical and molecular genetic data in order to explain the origin and virulence of the 1918 Spanish influenza virus. Philos. Trans. R. Soc. Lond. B Biol. Sci. 356:14161829–39
    [Google Scholar]
  147. 147.  Rasmussen S, Allentoft ME, Nielsen K, Orlando L, Sikora M et al. 2015. Early divergent strains of Yersinia pestis in Eurasia 5,000 years ago. Cell 163:3571–82
    [Google Scholar]
  148. 148.  Minnikin DE, Lee OY-C, Wu HHT, Besra GS, Donoghue HD 2012. Molecular biomarkers for ancient tuberculosis. Understanding Tuberculosis: Deciphering the Secret Life of the Bacilli PJ Cardona 3–36 Rijeka, Croatia: InTech
    [Google Scholar]
  149. 149.  Adler CJ, Dobney K, Weyrich LS, Kaidonis J, Walker AW et al. 2013. Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions. Nat. Genet. 45:4450–55 455e1
    [Google Scholar]
  150. 150.  Weyrich LS, Duchene S, Soubrier J, Arriola L, Llamas B et al. 2017. Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus. Nature 544:7650357–61
    [Google Scholar]
  151. 151.  Buckley M. 2015. Ancient collagen reveals evolutionary history of the endemic South American “ungulates. .” Proc. Biol. Sci. 282:180620142671
    [Google Scholar]
  152. 152.  Westbury M, Baleka S, Barlow A, Hartmann S, Paijmans JLA et al. 2017. A mitogenomic timetree for Darwin's enigmatic South American mammal Macrauchenia patachonica. Nat. Commun 8:15951
    [Google Scholar]
  153. 153.  Cleland TP, Schroeter ER, Feranec RS, Vashishth D 2016. Peptide sequences from the first Castoroides ohioensis skull and the utility of old museum collections for palaeoproteomics. Proc. Biol. Sci. 283:20160593
    [Google Scholar]
  154. 154.  Buckley M. 2013. A molecular phylogeny of Plesiorycteropus reassigns the extinct mammalian order “Bibymalagasia. .” PLOS ONE 8:3e59614
    [Google Scholar]
  155. 155.  Evershed RP, Payne S, Sherratt AG, Copley MS, Coolidge J et al. 2008. Earliest date for milk use in the Near East and southeastern Europe linked to cattle herding. Nature 455:7212528–31
    [Google Scholar]
  156. 156.  Salque M, Bogucki PI, Pyzel J, Sobkowiak-Tabaka I, Grygiel R et al. 2012. Earliest evidence for cheese making in the sixth millennium BC in northern Europe. Nature 493:7433522–25
    [Google Scholar]
  157. 157.  Mathieson I, Lazaridis I, Rohland N, Mallick S, Patterson N et al. 2015. Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528:7583499–503
    [Google Scholar]
  158. 158.  Copley MS, Berstan R, Dudd SN, Docherty G, Mukherjee AJ et al. 2003. Direct chemical evidence for widespread dairying in prehistoric Britain. PNAS 100:41524–29
    [Google Scholar]
  159. 159.  Cerling TE, Wang Y, Quade J 1993. Expansion of C4 ecosystems as an indicator of global ecological change in the late Miocene. Nature 361:6410344–45
    [Google Scholar]
  160. 160.  Freeman KH, Colarusso LA 2001. Molecular and isotopic records of C4 grassland expansion in the late Miocene. Geochim. Cosmochim. Acta 65:91439–54
    [Google Scholar]
  161. 161.  Brocks JJ, Logan GA, Buick R, Summons RE 1999. Archean molecular fossils and the early rise of eukaryotes. Science 285:54301033–36
    [Google Scholar]
  162. 162.  Summons RE, Jahnke LL, Hope JM, Logan GA 1999. 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400:6744554–57
    [Google Scholar]
  163. 163.  Love GD, Grosjean E, Stalvies C, Fike DA, Grotzinger JP et al. 2009. Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature 457:7230718–21
    [Google Scholar]
  164. 164.  Brassell SC, Eglinton G, Marlowe IT, Pflaumann U, Sarnthein M 1986. Molecular stratigraphy: a new tool for climatic assessment. Nature 320:6058129–33
    [Google Scholar]
  165. 165.  Sluijs A, Schouten S, Pagani M, Woltering M, Brinkhuis H et al. 2006. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum. Nature 441:7093610–13
    [Google Scholar]
  166. 166.  Olalde I, Brace S, Allentoft ME, Armit I, Kristiansen K et al. 2018. The Beaker phenomenon and the genomic transformation of northwest Europe. Nature 555:190–96
    [Google Scholar]
  167. 167.  Gawad C, Koh W, Quake SR 2016. Single-cell genome sequencing: current state of the science. Nat. Rev. Genet. 17:3175–88
    [Google Scholar]
  168. 168.  Schroeter ER, DeHart CJ, Cleland TP, Zheng W, Thomas PM et al. 2017. Expansion for the Brachylophosaurus canadensis collagen i sequence and additional evidence of the preservation of Cretaceous protein. J. Proteome Res. 16:2920–32
    [Google Scholar]
  169. 169.  Parker GJ, Leppert T, Anex DS, Hilmer JK, Matsunami N et al. 2016. Demonstration of protein-based human identification using the hair shaft proteome. PLOS ONE 11:9e0160653
    [Google Scholar]
  170. 170.  Zanolli C, Hourset M, Esclassan R, Mollereau C 2017. Neanderthal and Denisova tooth protein variants in present-day humans. PLOS ONE 12:9e0183802
    [Google Scholar]
  171. 171.  Madsen O, Scally M, Douady CJ, Kao DJ, DeBry RW et al. 2001. Parallel adaptive radiations in two major clades of placental mammals. Nature 409:6820610–14
    [Google Scholar]
  172. 172.  Vajda V, Pucetaite M, McLoughlin S, Engdahl A, Heimdal J, Uvdal P 2017. Molecular signatures of fossil leaves provide unexpected new evidence for extinct plant relationships. Nat. Ecol. Evol. 1:81093–99
    [Google Scholar]
  173. 173.  Hochberg GKA, Thornton JW 2017. Reconstructing ancient proteins to understand the causes of structure and function. Annu. Rev. Biophys. 46:247–69
    [Google Scholar]
  174. 174.  Randall RN, Radford CE, Roof KA, Natarajan DK, Gaucher EA 2016. An experimental phylogeny to benchmark ancestral sequence reconstruction. Nat. Commun. 7:12847
    [Google Scholar]
  175. 175.  Römpler H, Rohland N, Lalueza-Fox C, Willerslev E, Kuznetsova T et al. 2006. Nuclear gene indicates coat-color polymorphism in mammoths. Science 313:578362
    [Google Scholar]
  176. 176.  Pearson A. 2014. Lipidomics for geochemistry. Treatise on Geochemistry H Holland, K Turekian 291–336 Oxford, UK: Elsevier
    [Google Scholar]
  177. 177.  Pinhasi R, Fernandes D, Sirak K, Novak M, Connell S et al. 2015. Optimal ancient DNA yields from the inner ear part of the human petrous bone. PLOS ONE 10:6e0129102
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-062917-012002
Loading
/content/journals/10.1146/annurev-biochem-062917-012002
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error