1932

Abstract

Chromatin is a mighty consumer of cellular energy generated by metabolism. Metabolic status is efficiently coordinated with transcription and translation, which also feed back to regulate metabolism. Conversely, suppression of energy utilization by chromatin processes may serve to preserve energy resources for cell survival. Most of the reactions involved in chromatin modification require metabolites as their cofactors or coenzymes. Therefore, the metabolic status of the cell can influence the spectra of posttranslational histone modifications and the structure, density and location of nucleosomes, impacting epigenetic processes. Thus, transcription, translation, and DNA/RNA biogenesis adapt to cellular metabolism. In addition to dysfunctions of metabolic enzymes, imbalances between metabolism and chromatin activities trigger metabolic disease and life span alteration. Here, we review the synthesis of the metabolites and the relationships between metabolism and chromatin function. Furthermore, we discuss how the chromatin response feeds back to metabolic regulation in biological processes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-062917-012634
2018-06-20
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/biochem/87/1/annurev-biochem-062917-012634.html?itemId=/content/journals/10.1146/annurev-biochem-062917-012634&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Fuchs G. 2011. Alternative pathways of carbon dioxide fixation: insights into the early evolution of life?. Annu. Rev. Microbiol. 65:631–58
    [Google Scholar]
  2. 2.  DeBerardinis RJ, Thompson CB 2012. Cellular metabolism and disease: What do metabolic outliers teach us?. Cell 148:1132–44
    [Google Scholar]
  3. 3.  López-Otín C, Galluzzi L, Freije JM, Madeo F, Kroemer G 2016. Metabolic control of longevity. Cell 166:802–21
    [Google Scholar]
  4. 4.  Buttgereit F, Brand MD 1995. A hierarchy of ATP-consuming processes in mammalian cells. Biochem. J. 312:Pt. 1163–67
    [Google Scholar]
  5. 5.  Li S, Swanson SK, Gogol M, Florens L, Washburn MP et al. 2015. Serine and SAM responsive complex SESAME regulates histone modification crosstalk by sensing cellular metabolism. Mol. Cell 60:408–21
    [Google Scholar]
  6. 6.  McGhee JD, Felsenfeld G 1980. Nucleosome structure. Annu. Rev. Biochem. 49:1115–56
    [Google Scholar]
  7. 7.  Kornberg RD, Lorch Y 1992. Chromatin structure and transcription. Annu. Rev. Cell Biol. 8:563–87
    [Google Scholar]
  8. 8.  Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ 1997. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389:251–60
    [Google Scholar]
  9. 9.  Suganuma T, Workman JL 2011. Signals and combinatorial functions of histone modifications. Annu. Rev. Biochem. 80:473–99
    [Google Scholar]
  10. 10.  Juan LJ, Utley RT, Adams CC, Vettese-Dadey M, Workman JL 1994. Differential repression of transcription factor binding by histone H1 is regulated by the core histone amino termini. EMBO J 13:6031–40
    [Google Scholar]
  11. 11.  Vettese-Dadey M, Grant PA, Hebbes TR, Crane- Robinson C, Allis CD, Workman JL 1996. Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro. EMBO J 15:2508–18
    [Google Scholar]
  12. 12.  Clapier CR, Cairns BR 2009. The biology of chromatin remodeling complexes. Annu. Rev. Biochem. 78:273–304
    [Google Scholar]
  13. 13.  Swinstead EE, Paakinaho V, Presman DM, Hager GL 2016. Pioneer factors and ATP-dependent chromatin remodeling factors interact dynamically. A new perspective: Multiple transcription factors can effect chromatin pioneer functions through dynamic interactions with ATP-dependent chromatin remodeling factors. Bioessays 38:1150–57
    [Google Scholar]
  14. 14.  Dutta A, Abmayr SM, Workman JL 2016. Diverse activities of histone acylations connect metabolism to chromatin function. Mol. Cell 63:547–52
    [Google Scholar]
  15. 15.  Suganuma T, Workman JL 2008. Crosstalk among histone modifications. Cell 135:604–7
    [Google Scholar]
  16. 16.  Kim JH, Saraf A, Florens L, Washburn M, Workman JL 2010. Gcn5 regulates the dissociation of SWI/SNF from chromatin by acetylation of Swi2/Snf2. Genes Dev 24:2766–71
    [Google Scholar]
  17. 17.  Bennett RL, Licht JD 2018. Targeting epigenetics in cancer. Annu. Rev. Pharmacol. Toxicol. 58:187–207
    [Google Scholar]
  18. 18.  Saxonov S, Berg P, Brutlag DL 2006. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. PNAS 103:1412–17
    [Google Scholar]
  19. 19.  Merlo A, Herman JG, Mao L, Lee DJ, Gabrielson E et al. 1995. 5′ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat. Med. 1:686–92
    [Google Scholar]
  20. 20.  Smallwood A, Esteve PO, Pradhan S, Carey M 2007. Functional cooperation between HP1 and DNMT1 mediates gene silencing. Genes Dev 21:1169–78
    [Google Scholar]
  21. 21.  Das C, Tyler JK, Churchill ME 2010. The histone shuffle: histone chaperones in an energetic dance. Trends Biochem. Sci. 35:476–89
    [Google Scholar]
  22. 22.  Burgess RJ, Zhang Z 2013. Histone chaperones in nucleosome assembly and human disease. Nat. Struct. Mol. Biol. 20:14–22
    [Google Scholar]
  23. 23.  Venkatesh S, Workman JL 2015. Histone exchange, chromatin structure and the regulation of transcription. Nat. Rev. Mol. Cell Biol. 16:178–89
    [Google Scholar]
  24. 24.  Lorch Y, Maier-Davis B, Kornberg RD 2006. Chromatin remodeling by nucleosome disassembly in vitro. PNAS 103:3090–93
    [Google Scholar]
  25. 25.  Rhee HS, Pugh BF 2012. Genome-wide structure and organization of eukaryotic pre-initiation complexes. Nature 483:295–301
    [Google Scholar]
  26. 26.  Yen K, Vinayachandran V, Pugh BF 2013. SWR-C and INO80 chromatin remodelers recognize nucleosome-free regions near +1 nucleosomes. Cell 154:1246–56
    [Google Scholar]
  27. 27.  Urahama T, Harada A, Maehara K, Horikoshi N, Sato K et al. 2016. Histone H3.5 forms an unstable nucleosome and accumulates around transcription start sites in human testis. Epigenetics Chromatin 9:2
    [Google Scholar]
  28. 28.  Mayes K, Qiu Z, Alhazmi A, Landry JW 2014. ATP-dependent chromatin remodeling complexes as novel targets for cancer therapy. Adv. Cancer Res. 121:183–233
    [Google Scholar]
  29. 29.  Locasale JW. 2013. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat. Rev. Cancer 13:572–83
    [Google Scholar]
  30. 30.  Shuvalov O, Petukhov A, Daks A, Fedorova O, Vasileva E, Barlev NA 2017. One-carbon metabolism and nucleotide biosynthesis as attractive targets for anticancer therapy. Oncotarget 8:23955–77
    [Google Scholar]
  31. 31.  Yang M, Vousden KH 2016. Serine and one-carbon metabolism in cancer. Nat. Rev. Cancer 16:650–62
    [Google Scholar]
  32. 32.  Maddocks OD, Berkers CR, Mason SM, Zheng L, Blyth K et al. 2013. Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature 493:542–46
    [Google Scholar]
  33. 33.  Locasale JW, Grassian AR, Melman T, Lyssiotis CA, Mattaini KR et al. 2011. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat. Genet. 43:869–74
    [Google Scholar]
  34. 34.  Possemato R, Marks KM, Shaul YD, Pacold ME, Kim D et al. 2011. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476:346–50
    [Google Scholar]
  35. 35.  Chaneton B, Hillmann P, Zheng L, Martin AC, Maddocks OD et al. 2012. Serine is a natural ligand and allosteric activator of pyruvate kinase M2. Nature 491:458–62
    [Google Scholar]
  36. 36.  Jain M, Nilsson R, Sharma S, Madhusudhan N, Kitami T et al. 2012. Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 336:1040–44
    [Google Scholar]
  37. 37.  Labuschagne CF, van den Broek NJ, Mackay GM, Vousden KH, Maddocks OD 2014. Serine, but not glycine, supports one-carbon metabolism and proliferation of cancer cells. Cell Rep 7:1248–58
    [Google Scholar]
  38. 38.  Maddocks OD, Labuschagne CF, Adams PD, Vousden KH 2016. Serine metabolism supports the methionine cycle and DNA/RNA methylation through de novo ATP synthesis in cancer cells. Mol. Cell 61:210–21
    [Google Scholar]
  39. 39.  van der Knaap JA, Kumar BR, Moshkin YM, Langenberg K, Krijgsveld J et al. 2005. GMP synthetase stimulates histone H2B deubiquitylation by the epigenetic silencer USP7. Mol. Cell 17:695–707
    [Google Scholar]
  40. 40.  Reddy BA, van der Knaap JA, Bot AG, Mohd-Sarip A, Dekkers DH et al. 2014. Nucleotide biosynthetic enzyme GMP synthase is a TRIM21-controlled relay of p53 stabilization. Mol. Cell 53:458–70
    [Google Scholar]
  41. 41.  Kubbutat MH, Jones SN, Vousden KH 1997. Regulation of p53 stability by Mdm2. Nature 387:299–303
    [Google Scholar]
  42. 42.  Keller KE, Doctor ZM, Dwyer ZW, Lee YS 2014. SAICAR induces protein kinase activity of PKM2 that is necessary for sustained proliferative signaling of cancer cells. Mol. Cell 53:700–9
    [Google Scholar]
  43. 43.  Keller KE, Tan IS, Lee YS 2012. SAICAR stimulates pyruvate kinase isoform M2 and promotes cancer cell survival in glucose-limited conditions. Science 338:1069–72
    [Google Scholar]
  44. 44.  Etchegaray JP, Mostoslavsky R 2016. Interplay between metabolism and epigenetics: a nuclear adaptation to environmental changes. Mol. Cell 62:695–711
    [Google Scholar]
  45. 45.  van der Knaap JA, Verrijzer CP 2016. Undercover: gene control by metabolites and metabolic enzymes. Genes Dev 30:2345–69
    [Google Scholar]
  46. 46.  Cai L, Sutter BM, Li B, Tu BP 2011. Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol. Cell 42:426–37
    [Google Scholar]
  47. 47.  Suganuma T, Workman JL 2016. Histone modification as a reflection of metabolism. Cell Cycle 15:481–82
    [Google Scholar]
  48. 48.  Shi L, Tu BP 2015. Acetyl-CoA and the regulation of metabolism: mechanisms and consequences. Curr. Opin. Cell Biol. 33:125–31
    [Google Scholar]
  49. 49.  Sutendra G, Kinnaird A, Dromparis P, Paulin R, Stenson TH et al. 2014. A nuclear pyruvate dehydrogenase complex is important for the generation of acetyl-CoA and histone acetylation. Cell 158:84–97
    [Google Scholar]
  50. 50.  Venkatesh S, Smolle M, Li H, Gogol MM, Saint M et al. 2012. Set2 methylation of histone H3 lysine 36 suppresses histone exchange on transcribed genes. Nature 489:452–55
    [Google Scholar]
  51. 51.  Shyh-Chang N, Locasale JW, Lyssiotis CA, Zheng Y, Teo RY et al. 2013. Influence of threonine metabolism on S-adenosylmethionine and histone methylation. Science 339:222–26
    [Google Scholar]
  52. 52.  Tehlivets O. 2011. Homocysteine as a risk factor for atherosclerosis: Is its conversion to S-adenosyl-L-homocysteine the key to deregulated lipid metabolism?. J. Lipids 2011:702853
    [Google Scholar]
  53. 53.  Ye C, Sutter BM, Wang Y, Kuang Z, Tu BP 2017. A metabolic function for phospholipid and histone methylation. Mol. Cell 66:180–93.e8
    [Google Scholar]
  54. 54.  Stipanuk MH, Ueki I 2011. Dealing with methionine/homocysteine sulfur: cysteine metabolism to taurine and inorganic sulfur. J. Inherit. Metab. Dis. 34:17–32
    [Google Scholar]
  55. 55.  Han S, Schroeder EA, Silva-Garcia CG, Hebestreit K, Mair WB, Brunet A 2017. Mono-unsaturated fatty acids link H3K4me3 modifiers to C. elegans lifespan. Nature 544:185–90
    [Google Scholar]
  56. 56.  Yang W, Xia Y, Hawke D, Li X, Liang J et al. 2012. PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell 150:685–96
    [Google Scholar]
  57. 57.  Metzger E, Yin N, Wissmann M, Kunowska N, Fischer K et al. 2008. Phosphorylation of histone H3 at threonine 11 establishes a novel chromatin mark for transcriptional regulation. Nat. Cell Biol. 10:53–60
    [Google Scholar]
  58. 58.  Boukouris AE, Zervopoulos SD, Michelakis ED 2016. Metabolic enzymes moonlighting in the nucleus: metabolic regulation of gene transcription. Trends Biochem. Sci. 41:712–30
    [Google Scholar]
  59. 59.  Fjeld CC, Birdsong WT, Goodman RH 2003. Differential binding of NAD+ and NADH allows the transcriptional corepressor carboxyl-terminal binding protein to serve as a metabolic sensor. PNAS 100:9202–7
    [Google Scholar]
  60. 60.  Chinnadurai G. 2002. CtBP, an unconventional transcriptional corepressor in development and oncogenesis. Mol. Cell 9:213–24
    [Google Scholar]
  61. 61.  Rutter J, Reick M, Wu LC, McKnight SL 2001. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 293:510–14
    [Google Scholar]
  62. 62.  Bonfiglio JJ, Fontana P, Zhang Q, Colby T, Gibbs-Seymour I et al. 2017. Serine ADP-ribosylation depends on HPF1. Mol. Cell 65:932–40.e6
    [Google Scholar]
  63. 63.  Gibbs-Seymour I, Fontana P, Rack JGM, Ahel I 2016. HPF1/C4orf27 is a PARP-1-interacting protein that regulates PARP-1 ADP-ribosylation activity. Mol. Cell 62:432–42
    [Google Scholar]
  64. 64.  Le May N, Iltis I, Ame JC, Zhovmer A, Biard D et al. 2012. Poly (ADP-ribose) glycohydrolase regulates retinoic acid receptor-mediated gene expression. Mol. Cell 48:785–98
    [Google Scholar]
  65. 65.  Krishnakumar R, Kraus WL 2010. PARP-1 regulates chromatin structure and transcription through a KDM5B-dependent pathway. Mol. Cell 39:736–49
    [Google Scholar]
  66. 66.  Bilan V, Leutert M, Nanni P, Panse C, Hottiger MO 2017. Combining higher-energy collision dissociation and electron-transfer/higher-energy collision dissociation fragmentation in a product-dependent manner confidently assigns proteomewide ADP-ribose acceptor sites. Anal. Chem. 89:1523–30
    [Google Scholar]
  67. 67.  Leung AK. 2017. SERious surprises for ADP-ribosylation specificity: HPF1 switches PARP1 specificity to Ser residues. Mol. Cell 65:777–78
    [Google Scholar]
  68. 68.  Moazed D. 2001. Enzymatic activities of Sir2 and chromatin silencing. Curr. Opin. Cell Biol. 13:232–38
    [Google Scholar]
  69. 69.  Dang W, Steffen KK, Perry R, Dorsey JA, Johnson FB et al. 2009. Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature 459:802–7
    [Google Scholar]
  70. 70.  Michishita E, McCord RA, Berber E, Kioi M, Padilla-Nash H et al. 2008. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 452:492–96
    [Google Scholar]
  71. 71.  Yang B, Zwaans BM, Eckersdorff M, Lombard DB 2009. The sirtuin SIRT6 deacetylates H3 K56Ac in vivo to promote genomic stability. Cell Cycle 8:2662–63
    [Google Scholar]
  72. 72.  Zhong L, D'Urso A, Toiber D, Sebastian C, Henry RE et al. 2010. The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1α. Cell 140:280–93
    [Google Scholar]
  73. 73.  Jiang H, Khan S, Wang Y, Charron G, He B et al. 2013. SIRT6 regulates TNF-α secretion through hydrolysis of long-chain fatty acyl lysine. Nature 496:110–13
    [Google Scholar]
  74. 74.  Feldman JL, Baeza J, Denu JM 2013. Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins. J. Biol. Chem. 288:31350–56
    [Google Scholar]
  75. 75.  Warner JR. 1999. The economics of ribosome biosynthesis in yeast. Trends Biochem. Sci. 24:437–40
    [Google Scholar]
  76. 76.  Rolfe DF, Brown GC 1997. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol. Rev. 77:731–58
    [Google Scholar]
  77. 77.  Grummt I. 2013. The nucleolus-guardian of cellular homeostasis and genome integrity. Chromosoma 122:487–97
    [Google Scholar]
  78. 78.  Torigoe SE, Patel A, Khuong MT, Bowman GD, Kadonaga JT 2013. ATP-dependent chromatin assembly is functionally distinct from chromatin remodeling. eLife 2:e00863
    [Google Scholar]
  79. 79.  Gerhold CB, Gasser SM 2014. INO80 and SWR complexes: relating structure to function in chromatin remodeling. Trends Cell Biol 24:619–31
    [Google Scholar]
  80. 80.  Tosi A, Haas C, Herzog F, Gilmozzi A, Berninghausen O et al. 2013. Structure and subunit topology of the INO80 chromatin remodeler and its nucleosome complex. Cell 154:1207–19
    [Google Scholar]
  81. 81.  Nguyen VQ, Ranjan A, Stengel F, Wei D, Aebersold R et al. 2013. Molecular architecture of the ATP-dependent chromatin-remodeling complex SWR1. Cell 154:1220–31
    [Google Scholar]
  82. 82.  Papamichos-Chronakis M, Watanabe S, Rando OJ, Peterson CL 2011. Global regulation of H2A.Z localization by the INO80 chromatin-remodeling enzyme is essential for genome integrity. Cell 144:200–13
    [Google Scholar]
  83. 83.  Li B, Pattenden SG, Lee D, Gutierrez J, Chen J et al. 2005. Preferential occupancy of histone variant H2AZ at inactive promoters influences local histone modifications and chromatin remodeling. PNAS 102:18385–90
    [Google Scholar]
  84. 84.  Wu Q, Madany P, Dobson JR, Schnabl JM, Sharma S et al. 2016. The BRG1 chromatin remodeling enzyme links cancer cell metabolism and proliferation. Oncotarget 7:38270–81
    [Google Scholar]
  85. 85.  Sharp JA, Fouts ET, Krawitz DC, Kaufman PD 2001. Yeast histone deposition protein Asf1p requires Hir proteins and PCNA for heterochromatic silencing. Curr. Biol. 11:463–73
    [Google Scholar]
  86. 86.  Tagami H, Ray-Gallet D, Almouzni G, Nakatani Y 2004. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 116:51–61
    [Google Scholar]
  87. 87.  Krawitz DC, Kama T, Kaufman PD 2002. Chromatin assembly factor I mutants defective for PCNA binding require Asf1/Hir proteins for silencing. Mol. Cell. Biol. 22:614–25
    [Google Scholar]
  88. 88.  Zhang R, Poustovoitov MV, Ye X, Santos HA, Chen W et al. 2005. Formation of MacroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. Dev. Cell 8:19–30
    [Google Scholar]
  89. 89.  Wright RH, Lioutas A, Le Dily F, Soronellas D, Pohl A et al. 2016. ADP-ribose-derived nuclear ATP synthesis by NUDIX5 is required for chromatin remodeling. Science 352:1221–25
    [Google Scholar]
  90. 90.  Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR et al. 2004. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119:941–53
    [Google Scholar]
  91. 91.  Forneris F, Binda C, Battaglioli E, Mattevi A 2008. LSD1: oxidative chemistry for multifaceted functions in chromatin regulation. Trends Biochem. Sci. 33:181–89
    [Google Scholar]
  92. 92.  Kaelin WG Jr, McKnight SL. 2013. Influence of metabolism on epigenetics and disease. Cell 153:56–69
    [Google Scholar]
  93. 93.  Mishanina TV, Kohen A 2015. Synthesis and application of isotopically labeled flavin nucleotides. J. Label. Compd. Radiopharm. 58:370–75
    [Google Scholar]
  94. 94.  Tsukada Y, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH et al. 2006. Histone demethylation by a family of JmjC domain-containing proteins. Nature 439:811–16
    [Google Scholar]
  95. 95.  Kuppuraj G, Kruise D, Yura K 2014. Conformational behavior of flavin adenine dinucleotide: conserved stereochemistry in bound and free states. J. Phys. Chem. B 118:13486–97
    [Google Scholar]
  96. 96.  Hino S, Sakamoto A, Nagaoka K, Anan K, Wang Y et al. 2012. FAD-dependent lysine-specific demethylase-1 regulates cellular energy expenditure. Nat. Commun. 3:758
    [Google Scholar]
  97. 97.  Zeng X, Jedrychowski MP, Chen Y, Serag S, Lavery GG et al. 2016. Lysine-specific demethylase 1 promotes brown adipose tissue thermogenesis via repressing glucocorticoid activation. Genes Dev 30:1822–36
    [Google Scholar]
  98. 98.  Periasamy M, Herrera JL, Reis FCG 2017. Skeletal muscle thermogenesis and its role in whole body energy metabolism. Diabetes Metab. J. 41:327–36
    [Google Scholar]
  99. 99.  Klose RJ, Kallin EM, Zhang Y 2006. JmjC-domain-containing proteins and histone demethylation. Nat. Rev. Genet. 7:715–27
    [Google Scholar]
  100. 100.  Bhutani N, Burns DM, Blau HM 2011. DNA demethylation dynamics. Cell 146:866–72
    [Google Scholar]
  101. 101.  Xiao M, Yang H, Xu W, Ma S, Lin H et al. 2012. Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev 26:1326–38
    [Google Scholar]
  102. 102.  Ohgami RS, Campagna DR, Greer EL, Antiochos B, McDonald A et al. 2005. Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells. Nat. Genet. 37:1264–69
    [Google Scholar]
  103. 103.  Muckenthaler MU, Rivella S, Hentze MW, Galy B 2017. A red carpet for iron metabolism. Cell 168:344–61
    [Google Scholar]
  104. 104.  Yang X, Park SH, Chang HC, Shapiro JS, Vassilopoulos A et al. 2017. Sirtuin 2 regulates cellular iron homeostasis via deacetylation of transcription factor NRF2. J. Clin. Invest. 127:1505–16
    [Google Scholar]
  105. 105.  Niu Y, DesMarais TL, Tong Z, Yao Y, Costa M 2015. Oxidative stress alters global histone modification and DNA methylation. Free Radic. Biol. Med. 82:22–28
    [Google Scholar]
  106. 106.  Butkinaree C, Park K, Hart GW 2010. O-linked β-N-acetylglucosamine (O-GlcNAc): extensive crosstalk with phosphorylation to regulate signaling and transcription in response to nutrients and stress. Biochim. Biophys. Acta 1800:96–106
    [Google Scholar]
  107. 107.  Buse MG. 2006. Hexosamines, insulin resistance, and the complications of diabetes: current status. Am. J. Physiol. Endocrinol. Metab. 290:E1–8
    [Google Scholar]
  108. 108.  Fong JJ, Nguyen BL, Bridger R, Medrano EE, Wells L et al. 2012. β-N-acetylglucosamine (O-GlcNAc) is a novel regulator of mitosis-specific phosphorylations on histone H3. J. Biol. Chem. 287:12195–203
    [Google Scholar]
  109. 109.  Lee JS, Zhang Z 2016. O-linked N-acetylglucosamine transferase (OGT) interacts with the histone chaperone HIRA complex and regulates nucleosome assembly and cellular senescence. PNAS 113:E3213–20
    [Google Scholar]
  110. 110.  Vella P, Scelfo A, Jammula S, Chiacchiera F, Williams K et al. 2013. Tet proteins connect the O-linked N-acetylglucosamine transferase Ogt to chromatin in embryonic stem cells. Mol. Cell 49:645–56
    [Google Scholar]
  111. 111.  Chen Q, Chen Y, Bian C, Fujiki R, Yu X 2013. TET2 promotes histone O-GlcNAcylation during gene transcription. Nature 493:561–64
    [Google Scholar]
  112. 112.  Deplus R, Delatte B, Schwinn MK, Defrance M, Mendez J et al. 2013. TET2 and TET3 regulate GlcNAcylation and H3K4 methylation through OGT and SET1/COMPASS. EMBO J 32:645–55
    [Google Scholar]
  113. 113.  Lazarus MB, Jiang J, Kapuria V, Bhuiyan T, Janetzko J et al. 2013. HCF-1 is cleaved in the active site of O-GlcNAc transferase. Science 342:1235–39
    [Google Scholar]
  114. 114.  Sen P, Shah PP, Nativio R, Berger SL 2016. Epigenetic mechanisms of longevity and aging. Cell 166:822–39
    [Google Scholar]
  115. 115.  Hu Z, Chen K, Xia Z, Chavez M, Pal S et al. 2014. Nucleosome loss leads to global transcriptional up-regulation and genomic instability during yeast aging. Genes Dev 28:396–408
    [Google Scholar]
  116. 116.  Cournil A, Kirkwood TB 2001. If you would live long, choose your parents well. Trends Genet 17:233–35
    [Google Scholar]
  117. 117.  Ruggiero C, Metter EJ, Melenovsky V, Cherubini A, Najjar SS et al. 2008. High basal metabolic rate is a risk factor for mortality: the Baltimore Longitudinal Study of Aging. J. Gerontol. A 63:698–706
    [Google Scholar]
  118. 118.  Bordone L, Guarente L 2005. Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat. Rev. Mol. Cell Biol. 6:298–305
    [Google Scholar]
  119. 119.  Kaeberlein M, Burtner CR, Kennedy BK 2007. Recent developments in yeast aging. PLOS Genet 3:e84
    [Google Scholar]
  120. 120.  Sinclair DA, Guarente L 1997. Extrachromosomal rDNA circles—a cause of aging in yeast. Cell 91:1033–42
    [Google Scholar]
  121. 121.  Sen P, Dang W, Donahue G, Dai J, Dorsey J et al. 2015. H3K36 methylation promotes longevity by enhancing transcriptional fidelity. Genes Dev 29:1362–76
    [Google Scholar]
  122. 122.  Feser J, Tyler J 2011. Chromatin structure as a mediator of aging. FEBS Lett 585:2041–48
    [Google Scholar]
  123. 123.  Peleg S, Feller C, Forne I, Schiller E, Sevin DC et al. 2016. Life span extension by targeting a link between metabolism and histone acetylation in Drosophila. EMBO Rep 17:455–69
    [Google Scholar]
  124. 124.  Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson CB 2009. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324:1076–80
    [Google Scholar]
  125. 125.  Grienenberger A, Miotto B, Sagnier T, Cavalli G, Schramke V et al. 2002. The MYST domain acetyltransferase Chameau functions in epigenetic mechanisms of transcriptional repression. Curr. Biol. 12:762–66
    [Google Scholar]
  126. 126.  Fabrizio P, Hoon S, Shamalnasab M, Galbani A, Wei M et al. 2010. Genome-wide screen in Saccharomyces cerevisiae identifies vacuolar protein sorting, autophagy, biosynthetic, and tRNA methylation genes involved in life span regulation. PLOS Genet 6:e1001024
    [Google Scholar]
  127. 127.  Burtner CR, Murakami CJ, Kennedy BK, Kaeberlein M 2009. A molecular mechanism of chronological aging in yeast. Cell Cycle 8:1256–70
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-062917-012634
Loading
/content/journals/10.1146/annurev-biochem-062917-012634
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error