1932

Abstract

Sulfonates include diverse natural products and anthropogenic chemicals and are widespread in the environment. Many bacteria can degrade sulfonates and obtain sulfur, carbon, and energy for growth, playing important roles in the biogeochemical sulfur cycle. Cleavage of the inert sulfonate C–S bond involves a variety of enzymes, cofactors, and oxygen-dependent and oxygen-independent catalytic mechanisms. Sulfonate degradation by strictly anaerobic bacteria was recently found to involve C–S bond cleavage through O-sensitive free radical chemistry, catalyzed by glycyl radical enzymes (GREs). The associated discoveries of new enzymes and metabolic pathways for sulfonate metabolism in diverse anaerobic bacteria have enriched our understanding of sulfonate chemistry in the anaerobic biosphere. An anaerobic environment of particular interest is the human gut microbiome, where sulfonate degradation by sulfate- and sulfite-reducing bacteria (SSRB) produces HS, a process linked to certain chronic diseases and conditions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-080120-024103
2021-06-20
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/biochem/90/1/annurev-biochem-080120-024103.html?itemId=/content/journals/10.1146/annurev-biochem-080120-024103&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Walsh CT 2020. The Chemical Biology of Sulfur Cambridge, UK: R. Soc. Chem.
  2. 2. 
    Kertesz MA. 2000. Riding the sulfur cycle—metabolism of sulfonates and sulfate esters in gram-negative bacteria. FEMS Microbiol. Rev. 24:135–75
    [Google Scholar]
  3. 3. 
    Seitz A, Leadbetter E 1995. Microbial assimilation and dissimilation of sulfonate sulfur. Geochemical Transformations of Sedimentary Sulfur MA Vairavamurthy, MAA Schoonen, TI Eglinton, GW Luther, B Manowitz 365–76 Washington, DC: ACS Publ.
    [Google Scholar]
  4. 4. 
    Cook AM, Laue H, Junker F. 1998. Microbial desulfonation. FEMS Microbiol. Rev. 22:399–419
    [Google Scholar]
  5. 5. 
    Cook AM, Smits THM, Denger K 2008. Sulfonates and organotrophic sulfite metabolism. Microbial Sulfur Metabolism C Dahl, CG Friedrich 170–83 New York: Springer
    [Google Scholar]
  6. 6. 
    Westheimer FH. 1987. Why nature chose phosphates. Science 235:1173–78
    [Google Scholar]
  7. 7. 
    Huxtable R. 1992. Physiological actions of taurine. Physiol. Rev. 72:101–63
    [Google Scholar]
  8. 8. 
    Tiedemann F, Gmelin L. 1827. Einige neue Bestandtheile der Galle des Ochsen. Ann. Phys. 85:326–37
    [Google Scholar]
  9. 9. 
    Fellman JH, Roth ES, Avedovech NA, McCarthy KD. 1980. The metabolism of taurine to isethionate. Arch. Biochem. Biophys. 204:560–67
    [Google Scholar]
  10. 10. 
    Benson A, Daniel H, Wiser R 1959. A sulfolipid in plants. PNAS 45:1582–87
    [Google Scholar]
  11. 11. 
    Goddard-Borger ED, Williams SJ. 2017. Sulfoquinovose in the biosphere: occurrence, metabolism and functions. Biochem. J. 474:827–49
    [Google Scholar]
  12. 12. 
    Celik E, Maczka M, Bergen N, Brinkhoff T, Schulz S, Dickschat JS. 2017. Metabolism of 2,3-dihydroxypropane-1-sulfonate by marine bacteria. Org. Biomol. Chem. 15:2919–22
    [Google Scholar]
  13. 13. 
    Moran MA, Durham BP. 2019. Sulfur metabolites in the pelagic ocean. Nat. Rev. Microbiol. 17:665–78
    [Google Scholar]
  14. 14. 
    Durham BP, Boysen AK, Carlson LT, Groussman RD, Heal KR et al. 2019. Sulfonate-based networks between eukaryotic phytoplankton and heterotrophic bacteria in the surface ocean. Nat. Microbiol. 4:1706–15
    [Google Scholar]
  15. 15. 
    Cook AM, Denger K. 2002. Dissimilation of the C2 sulfonates. Arch. Microbiol. 179:1–6
    [Google Scholar]
  16. 16. 
    Cook AM, Denger K, Smits THM. 2006. Dissimilation of C3-sulfonates. Arch. Microbiol. 185:83–90
    [Google Scholar]
  17. 17. 
    Uria-Nickelsen MR, Leadbetter ER, Godchaux W. 1994. Comparative aspects of utilization of sulfonate and other sulfur sources by Escherichia coli K12. Arch. Microbiol. 161:434–38
    [Google Scholar]
  18. 18. 
    van der Ploeg JR, Eichhorn E, Leisinger T 2001. Sulfonate-sulfur metabolism and its regulation in Escherichia coli. Arch. Microbiol. 176:1–8
    [Google Scholar]
  19. 19. 
    Cook AM, Denger K. 2006. Metabolism of taurine in microorganisms: a primer in molecular biodiversity?. Adv. Exp. Med. Biol. 583:3–13
    [Google Scholar]
  20. 20. 
    Eichhorn E, van der Ploeg JR, Kertesz MA, Leisinger T. 1997. Characterization of α-ketoglutarate-dependent taurine dioxygenase from Escherichia coli. J. Biol. Chem. 272:23031–36
    [Google Scholar]
  21. 21. 
    Price JC, Barr EW, Glass TE, Krebs C, Bollinger JM Jr. 2003. Evidence for hydrogen abstraction from C1 of taurine by the high-spin Fe (IV) intermediate detected during oxygen activation by taurine: α-ketoglutarate dioxygenase (TauD). J. Am. Chem. Soc. 125:13008–9
    [Google Scholar]
  22. 22. 
    Hogan DA, Auchtung TA, Hausinger RP. 1999. Cloning and characterization of a sulfonate/α-ketoglutarate dioxygenase from Saccharomyces cerevisiae. J. Bacteriol. 181:5876–79
    [Google Scholar]
  23. 23. 
    Eichhorn E, van der Ploeg JR, Leisinger T. 1999. Characterization of a two-component alkanesulfonate monooxygenase from Escherichia coli. J. Biol. Chem. 274:26639–46
    [Google Scholar]
  24. 24. 
    Ellis HR. 2011. Mechanism for sulfur acquisition by the alkanesulfonate monooxygenase system. Bioorg. Chem. 39:178–84
    [Google Scholar]
  25. 25. 
    Li L, Liu X, Yang W, Xu F, Wang W et al. 2008. Crystal structure of long-chain alkane monooxygenase (LadA) in complex with coenzyme FMN: unveiling the long-chain alkane hydroxylase. J. Mol. Biol. 376:453–65
    [Google Scholar]
  26. 26. 
    Soule J, Gnann AD, Gonzalez R, Parker MJ, McKenna KC et al. 2020. Structure and function of the two-component flavin-dependent methanesulfinate monooxygenase within bacterial sulfur assimilation. Biochem. Biophys. Res. Commun. 522:107–12
    [Google Scholar]
  27. 27. 
    Kelly DP, Murrell JC. 1999. Microbial metabolism of methanesulfonic acid. Arch. Microbiol. 172:341–48
    [Google Scholar]
  28. 28. 
    Ruff J, Denger K, Cook AM. 2003. Sulphoacetaldehyde acetyltransferase yields acetyl phosphate: purification from Alcaligenes defragrans and gene clusters in taurine degradation. Biochem. J. 369:275–85
    [Google Scholar]
  29. 29. 
    Kondo H, Anada H, Osawa K, Ishimoto M. 1971. Formation of sulfoacetaldehyde from taurine in bacterial extracts. J. Biochem. 69:621–23
    [Google Scholar]
  30. 30. 
    Weinitschke S, Sharma PI, Stingl U, Cook AM, Smits THM. 2010. Gene clusters involved in isethionate degradation by terrestrial and marine bacteria. Appl. Environ. Microbiol. 76:618–21
    [Google Scholar]
  31. 31. 
    Denger K, Cook AM. 2001. Ethanedisulfonate is degraded via sulfoacetaldehyde in Ralstonia sp. strain EDS1. Arch. Microbiol. 176:89–95
    [Google Scholar]
  32. 32. 
    Weinitschke S, Hollemeyer K, Kusian B, Bowien B, Smits THM, Cook AM. 2010. Sulfoacetate is degraded via a novel pathway involving sulfoacetyl-CoA and sulfoacetaldehyde in Cupriavidus necator H16. J. Biol. Chem. 285:35249–54
    [Google Scholar]
  33. 33. 
    Brüggemann C, Denger K, Cook AM, Ruff J. 2004. Enzymes and genes of taurine and isethionate dissimilation in Paracoccus denitrificans. Microbiology 150:Part 4805–16
    [Google Scholar]
  34. 34. 
    Denger K, Ruff J, Schleheck D, Cook AM. 2004. Rhodococcus opacus expresses the xsc gene to utilize taurine as a carbon source or as a nitrogen source but not as a sulfur source. Microbiology 150:Part 61859–67
    [Google Scholar]
  35. 35. 
    Tong Y, Wei Y, Hu Y, Ang EL, Zhao H, Zhang Y. 2019. A pathway for isethionate dissimilation in Bacillus krulwichiae. Appl. Environ. Microbiol. 85:e00793–19
    [Google Scholar]
  36. 36. 
    Chien C-C, Godchaux W III, Leadbetter ER. 1995. Sulfonate-sulfur can be assimilated for fermentative growth. FEMS Microbiol. Lett. 129:189–93
    [Google Scholar]
  37. 37. 
    Chien C, Leadbetter ER, Godchaux W. 1997. Taurine-sulfur assimilation and taurine-pyruvate aminotransferase activity in anaerobic bacteria. Appl. Environ. Microbiol. 63:3021–24
    [Google Scholar]
  38. 38. 
    Lie TJ, Pitta T, Leadbetter ER, Godchaux W 3rd, Leadbetter JR 1996. Sulfonates: novel electron acceptors in anaerobic respiration. Arch. Microbiol. 166:204–10
    [Google Scholar]
  39. 39. 
    Lie TJ, Godchaux W, Leadbetter ER. 1999. Sulfonates as terminal electron acceptors for growth of sulfite-reducing bacteria (Desulfitobacterium spp.) and sulfate-reducing bacteria: effects of inhibitors of sulfidogenesis. Appl. Environ. Microbiol. 65:4611–17
    [Google Scholar]
  40. 40. 
    Laue H, Denger K, Cook AM. 1997. Taurine reduction in anaerobic respiration of Bilophila wadsworthia RZATAU. Appl. Environ. Microbiol. 63:2016–21
    [Google Scholar]
  41. 41. 
    Rey FE, Gonzalez MD, Cheng J, Wu M, Ahern PP, Gordon JI 2013. Metabolic niche of a prominent sulfate-reducing human gut bacterium. PNAS 110:13582–87
    [Google Scholar]
  42. 42. 
    Ridlon JM, Wolf PG, Gaskins HR. 2016. Taurocholic acid metabolism by gut microbes and colon cancer. Gut Microbes 7:201–15
    [Google Scholar]
  43. 43. 
    Denger K, Cook AM. 1997. Assimilation of sulfur from alkyl- and arylsulfonates by Clostridium spp. Arch. Microbiol. 167:177–81
    [Google Scholar]
  44. 44. 
    Denger K, Stackebrandt E, Cook AM. 1999. Desulfonispora thiosulfatigenes gen. nov., sp. nov., a taurine-fermenting, thiosulfate-producing anaerobic bacterium. Int. J. Syst. Bacteriol. 49:1599–603
    [Google Scholar]
  45. 45. 
    Laue H, Friedrich M, Ruff J, Cook AM. 2001. Dissimilatory sulfite reductase (desulfoviridin) of the taurine-degrading, non-sulfate-reducing bacterium Bilophila wadsworthia RZATAU contains a fused DsrB-DsrD subunit. J. Bacteriol. 183:1727–33
    [Google Scholar]
  46. 46. 
    Santos AA, Venceslau SS, Grein F, Leavitt WD, Dahl C et al. 2015. A protein trisulfide couples dissimilatory sulfate reduction to energy conservation. Science 350:1541–45
    [Google Scholar]
  47. 47. 
    Oliveira TF, Vonrhein C, Matias PM, Venceslau SS, Pereira IA, Archer M. 2008. The crystal structure of Desulfovibrio vulgaris dissimilatory sulfite reductase bound to DsrC provides novel insights into the mechanism of sulfate respiration. J. Biol. Chem. 283:34141–49
    [Google Scholar]
  48. 48. 
    Xing M, Wei Y, Zhou Y, Zhang J, Lin L et al. 2019. Radical-mediated C-S bond cleavage in C2 sulfonate degradation by anaerobic bacteria. Nat. Commun. 10:1609
    [Google Scholar]
  49. 49. 
    Peck SC, Denger K, Burrichter A, Irwin SM, Balskus EP, Schleheck D 2019. A glycyl radical enzyme enables hydrogen sulfide production by the human intestinal bacterium Bilophila wadsworthia. PNAS 116:3171–76
    [Google Scholar]
  50. 50. 
    Backman LRF, Funk MA, Dawson CD, Drennan CL. 2017. New tricks for the glycyl radical enzyme family. Crit. Rev. Biochem. Mol. Biol. 52:674–95
    [Google Scholar]
  51. 51. 
    Knappe J, Wagner AV. 1995. Glycyl free radical in pyruvate formate-lyase: synthesis, structure characteristics, and involvement in catalysis. Methods Enzymol. 258:343–62
    [Google Scholar]
  52. 52. 
    Knappe J, Neugebauer FA, Blaschkowski HP, Ganzler M 1984. Post-translational activation introduces a free radical into pyruvate formate-lyase. PNAS 81:1332–35
    [Google Scholar]
  53. 53. 
    Shisler KA, Broderick JB. 2014. Glycyl radical activating enzymes: structure, mechanism, and substrate interactions. Arch. Biochem. Biophys. 546:64–71
    [Google Scholar]
  54. 54. 
    Sofia HJ, Chen G, Hetzler BG, Reyes-Spindola JF, Miller NE. 2001. Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods. Nucleic Acids Res 29:1097–106
    [Google Scholar]
  55. 55. 
    Horitani M, Shisler K, Broderick WE, Hutcheson RU, Duschene KS et al. 2016. Radical SAM catalysis via an organometallic intermediate with an Fe-[5′-C]-deoxyadenosyl bond. Science 352:822–25
    [Google Scholar]
  56. 56. 
    Heßlinger C, Fairhurst SA, Sawers G. 1998. Novel keto acid formate-lyase and propionate kinase enzymes are components of an anaerobic pathway in Escherichia coli that degrades L-threonine to propionate. Mol. Microbiol. 27:477–92
    [Google Scholar]
  57. 57. 
    Fontecave M, Mulliez E, Logan DT. 2002. Deoxyribonucleotide synthesis in anaerobic microorganisms: the class III ribonucleotide reductase. Prog. Nucleic Acid Res. Mol. Biol. 72:95–127
    [Google Scholar]
  58. 58. 
    Leuthner B, Leutwein C, Schulz H, Hörth P, Haehnel W et al. 1998. Biochemical and genetic characterization of benzylsuccinate synthase from Thauera aromatica: a new glycyl radical enzyme catalysing the first step in anaerobic toluene metabolism. Mol. Microbiol. 28:615–28
    [Google Scholar]
  59. 59. 
    Acosta-González A, Rosselló-Móra R, Marqués S. 2013. Diversity of benzylsuccinate synthase-like (bssA) genes in hydrocarbon-polluted marine sediments suggests substrate-dependent clustering. Appl. Environ. Microbiol. 79:3667–76
    [Google Scholar]
  60. 60. 
    Martins BM, Blaser M, Feliks M, Ullmann GM, Buckel W, Selmer T. 2011. Structural basis for a Kolbe-type decarboxylation catalyzed by a glycyl radical enzyme. J. Am. Chem. Soc. 133:14666–74
    [Google Scholar]
  61. 61. 
    Selmer T, Andrei PI. 2001. p-Hydroxyphenylacetate decarboxylase from Clostridium difficile. A novel glycyl radical enzyme catalysing the formation of p-cresol. Eur. J. Biochem. 268:1363–72
    [Google Scholar]
  62. 62. 
    Liu D, Wei Y, Liu X, Zhou Y, Jiang L et al. 2018. Indoleacetate decarboxylase is a glycyl radical enzyme catalysing the formation of malodorant skatole. Nat. Commun. 9:4224
    [Google Scholar]
  63. 63. 
    Beller HR, Rodrigues AV, Zargar K, Wu Y-W, Saini AK et al. 2018. Discovery of enzymes for toluene synthesis from anoxic microbial communities. Nat. Chem. Biol. 14:451–57
    [Google Scholar]
  64. 64. 
    O'Brien JR, Raynaud C, Croux C, Girbal L, Soucaille P, Lanzilotta WN. 2004. Insight into the mechanism of the B12-independent glycerol dehydratase from Clostridium butyricum: preliminary biochemical and structural characterization. Biochemistry 43:4635–45
    [Google Scholar]
  65. 65. 
    LaMattina JW, Keul ND, Reitzer P, Kapoor S, Galzerani F et al. 2016. 1,2-Propanediol dehydration in Roseburia inulinivorans: structural basis for substrate and enantiomer selectivity. J. Biol. Chem. 291:15515–26
    [Google Scholar]
  66. 66. 
    Bodea S, Funk MA, Balskus EP, Drennan CL. 2016. Molecular basis of C-N bond cleavage by the glycyl radical enzyme choline trimethylamine-lyase. Cell Chem. Biol. 23:1206–16
    [Google Scholar]
  67. 67. 
    Levin BJ, Huang YY, Peck SC, Wei Y, Martínez-Del Campo A et al. 2017. A prominent glycyl radical enzyme in human gut microbiomes metabolizes trans-4-hydroxy-l-proline. Science 355:eaai8386
    [Google Scholar]
  68. 68. 
    Zallot R, Oberg N, Gerlt JA. 2019. The EFI web resource for genomic enzymology tools: leveraging protein, genome, and metagenome databases to discover novel enzymes and metabolic pathways. Biochemistry 58:4169–82
    [Google Scholar]
  69. 69. 
    Vey JL, Yang J, Li M, Broderick WE, Broderick JB, Drennan CL 2008. Structural basis for glycyl radical formation by pyruvate formate-lyase activating enzyme. PNAS 105:16137–41
    [Google Scholar]
  70. 70. 
    Gerlt JA, Bouvier JT, Davidson DB, Imker HJ, Sadkhin B et al. 2015. Enzyme Function Initiative-Enzyme Similarity Tool (EFI-EST): a web tool for generating protein sequence similarity networks. Biochim. Biophys. Acta Proteins Proteom. 1854:1019–37
    [Google Scholar]
  71. 71. 
    Zarzycki J, Erbilgin O, Kerfeld CA. 2015. Bioinformatic characterization of glycyl radical enzyme-associated bacterial microcompartments. Appl. Environ. Microbiol. 81:8315–29
    [Google Scholar]
  72. 72. 
    Feliks M, Ullmann GM. 2012. Glycerol dehydratation by the B12-independent enzyme may not involve the migration of a hydroxyl group: a computational study. J. Phys. Chem. B 116:7076–87
    [Google Scholar]
  73. 73. 
    Levin BJ, Balskus EP. 2018. Characterization of 1,2-propanediol dehydratases reveals distinct mechanisms for B12-dependent and glycyl radical enzymes. Biochemistry 57:3222–26
    [Google Scholar]
  74. 74. 
    Lie TJ, Leadbetter JR, Leadbetter ER. 1998. Metabolism of sulfonic acids and other organosulfur compounds by sulfate-reducing bacteria. Geomicrobiol. J. 15:135–49
    [Google Scholar]
  75. 75. 
    Vairavamurthy A, Zhou W, Eglinton T, Manowitz B. 1994. Sulfonates: a novel class of organic sulfur compounds in marine sediments. Geochim. Cosmochim. Acta 58:4681–87
    [Google Scholar]
  76. 76. 
    Laue H, Cook AM. 2000. Biochemical and molecular characterization of taurine:pyruvate aminotransferase from the anaerobe Bilophila wadsworthia. Eur. J. Biochem. 267:6841–48
    [Google Scholar]
  77. 77. 
    Xing M, Wei Y, Hua G, Li M, Nanjaraj Urs AN et al. 2019. A gene cluster for taurine sulfur assimilation in an anaerobic human gut bacterium. Biochem. J. 476:2271–79
    [Google Scholar]
  78. 78. 
    Styp von Rekowski K, Denger K, Cook AM. 2005. Isethionate as a product from taurine during nitrogen-limited growth of Klebsiella oxytoca TauN1. Arch. Microbiol. 183:325–30
    [Google Scholar]
  79. 79. 
    Krejčik Z, Hollemeyer K, Smits THM, Cook AM. 2010. Isethionate formation from taurine in Chromohalobacter salexigens: purification of sulfoacetaldehyde reductase. Microbiology 156:Part 51547–55
    [Google Scholar]
  80. 80. 
    Weinitschke S, von Rekowski KS, Denger K, Cook AM. 2005. Sulfoacetaldehyde is excreted quantitatively by Acinetobacter calcoaceticus SW1 during growth with taurine as sole source of nitrogen. Microbiology 151:Part 41285–90
    [Google Scholar]
  81. 81. 
    Denger K, Weinitschke S, Hollemeyer K, Cook AM. 2004. Sulfoacetate generated by Rhodopseudomonas palustris from taurine. Arch. Microbiol. 182:254–58
    [Google Scholar]
  82. 82. 
    Zhou Y, Wei Y, Lin L, Xu T, Ang EL et al. 2019. Biochemical and structural investigation of sulfoacetaldehyde reductase from Klebsiella oxytoca. Biochem. J. 476:733–46
    [Google Scholar]
  83. 83. 
    Li M, Wei Y, Yin J, Lin L, Zhou Y et al. 2019. Biochemical and structural investigation of taurine:2-oxoglutarate aminotransferase from Bifidobacterium kashiwanohense. Biochem. J. 476:1605–19
    [Google Scholar]
  84. 84. 
    Carbonero F, Benefiel AC, Alizadeh-Ghamsari AH, Gaskins HR. 2012. Microbial pathways in colonic sulfur metabolism and links with health and disease. Front. Physiol. 3:448
    [Google Scholar]
  85. 85. 
    Allen-Vercoe E, Strauss J, Chadee K. 2011. Fusobacterium nucleatum: an emerging gut pathogen?. Gut Microbes 2:294–98
    [Google Scholar]
  86. 86. 
    Paul BD, Snyder SH. 2012. H2S signalling through protein sulfhydration and beyond. Nat. Rev. Mol. Cell Biol. 13:499–507
    [Google Scholar]
  87. 87. 
    Yang G, Wu L, Jiang B, Yang W, Qi J et al. 2008. H2S as a physiologic vasorelaxant: Hypertension in mice with deletion of cystathionine γ-lyase. Science 322:587–90
    [Google Scholar]
  88. 88. 
    Vandiver MS, Paul BD, Xu RS, Karuppagounder S, Rao F et al. 2013. Sulfhydration mediates neuroprotective actions of parkin. Nat. Commun. 4:1626
    [Google Scholar]
  89. 89. 
    Paul BD, Sbodio JI, Xu RS, Vandiver MS, Cha JY et al. 2014. Cystathionine γ-lyase deficiency mediates neurodegeneration in Huntington's disease. Nature 509:96–100
    [Google Scholar]
  90. 90. 
    Li SS, Yang GD. 2015. Hydrogen sulfide maintains mitochondrial DNA replication via demethylation of TFAM. Antioxid. Redox Signal. 23:630–42
    [Google Scholar]
  91. 91. 
    Yang GD, Zhao KX, Ju YJ, Mani S, Cao QH et al. 2013. Hydrogen sulfide protects against cellular senescence via S-sulfhydration of Keap1 and activation of Nrf2. Antioxid. Redox Signal. 18:1906–19
    [Google Scholar]
  92. 92. 
    Sen N, Paul BD, Gadalla MM, Mustafa AK, Sen T et al. 2012. Hydrogen sulfide-linked sulfhydration of NF-κB mediates its antiapoptotic actions. Mol. Cell 45:13–24
    [Google Scholar]
  93. 93. 
    Paul BD, Snyder SH. 2015. H2S: a novel gasotransmitter that signals by sulfhydration. Trends Biochem. Sci. 40:687–700
    [Google Scholar]
  94. 94. 
    Mustafa AK, Sikka G, Gazi SK, Steppan J, Jung SM et al. 2011. Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels. Circ. Res. 109:1259–68
    [Google Scholar]
  95. 95. 
    Krishnan N, Fu CX, Pappin DJ, Tonks NK. 2011. H2S-induced sulfhydration of the phosphatase PTP1B and its role in the endoplasmic reticulum stress response. Sci. Signal. 4:ra86
    [Google Scholar]
  96. 96. 
    Mir S, Sen T, Sen N. 2014. Cytokine-induced GAPDH sulfhydration affects PSD95 degradation and memory. Mol. Cell 56:786–95
    [Google Scholar]
  97. 97. 
    Whiteman M, Winyard PG. 2011. Hydrogen sulfide and inflammation: the good, the bad, the ugly and the promising. Expert Rev. Clin. Pharmacol. 4:13–32
    [Google Scholar]
  98. 98. 
    Attene-Ramos MS, Wagner ED, Plewa MJ, Gaskins HR. 2006. Evidence that hydrogen sulfide is a genotoxic agent. Mol. Cancer Res. 4:9–14
    [Google Scholar]
  99. 99. 
    Attene-Ramos MS, Nava GM, Muellner MG, Wagner ED, Plewa MJ, Gaskins HR. 2010. DNA damage and toxicogenomic analyses of hydrogen sulfide in human intestinal epithelial FHs 74 Int cells. Environ. Mol. Mutagen. 51:304–14
    [Google Scholar]
  100. 100. 
    Ijssennagger N, van der Meer R, van Mil SW. 2016. Sulfide as a mucus barrier-breaker in inflammatory bowel disease?. Trends Mol. Med. 22:190–99
    [Google Scholar]
  101. 101. 
    Babidge W, Millard S, Roediger W. 1998. Sulfides impair short chain fatty acid β-oxidation at acyl-CoA dehydrogenase level in colonocytes: implications for ulcerative colitis. Mol. Cell. Biochem. 181:117–24
    [Google Scholar]
  102. 102. 
    Litvak Y, Byndloss MX, Bäumler AJ. 2018. Colonocyte metabolism shapes the gut microbiota. Science 362:eaat9076
    [Google Scholar]
  103. 103. 
    Winter SE, Thiennimitr P, Winter MG, Butler BP, Huseby DL et al. 2010. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 467:426–29
    [Google Scholar]
  104. 104. 
    Baron EJ. 1997. Bilophila wadsworthia: a unique gram-negative anaerobic rod. Anaerobe 3:83–86
    [Google Scholar]
  105. 105. 
    Schumacher U, Lutz F, Werner H. 1996. Taurine and taurine conjugated bile acids enhance growth of Bilophila wadsworthia. Paper presented at 21st International Congress on Microbial Ecology and Disease Paris: Oct. 28–30
  106. 106. 
    Da Silva SM, Venceslau SS, Fernandes CL, Valente FM, Pereira IA 2008. Hydrogen as an energy source for the human pathogen Bilophila wadsworthia. Antonie Van Leeuwenhoek 93:381–90
    [Google Scholar]
  107. 107. 
    Burrichter A, Denger K, Franchini P, Huhn T, Müller N et al. 2018. Anaerobic degradation of the plant sugar sulfoquinovose concomitant with H2S production: Escherichia coli K-12 and Desulfovibrio sp. strain DF1 as co-culture model. Front. Microbiol. 9:2792
    [Google Scholar]
  108. 108. 
    Liu J, Wei Y, Lin L, Teng L, Yin J et al. 2020. Two radical-dependent mechanisms for anaerobic degradation of the globally abundant organosulfur compound dihydroxypropanesulfonate. PNAS 117:15599–608
    [Google Scholar]
  109. 109. 
    Loubinoux J, Bronowicki J-P, Pereira IA, Mougenel J-L, Le Faou AE 2002. Sulfate-reducing bacteria in human feces and their association with inflammatory bowel diseases. FEMS Microbiol. Ecol. 40:107–12
    [Google Scholar]
  110. 110. 
    Roy AB, Hewlins MJ, Ellis AJ, Harwood JL, White GF. 2003. Glycolytic breakdown of sulfoquinovose in bacteria: a missing link in the sulfur cycle. Appl. Environ. Microbiol. 69:6434–41
    [Google Scholar]
  111. 111. 
    Denger K, Weiss M, Felux A-K, Schneider A, Mayer C et al. 2014. Sulphoglycolysis in Escherichia coli K-12 closes a gap in the biogeochemical sulphur cycle. Nature 507:114–17
    [Google Scholar]
  112. 112. 
    Felux A-K, Spiteller D, Klebensberger J, Schleheck D 2015. Entner–Doudoroff pathway for sulfoquinovose degradation in Pseudomonas putida SQ1. PNAS 112:E4298–305
    [Google Scholar]
  113. 113. 
    Li J, Epa R, Scott NE, Skoneczny D, Sharma M et al. 2020. A sulfoglycolytic Entner-Doudoroff pathway in Rhizobium leguminosarum bv. trifolii SRDI565. Appl. Environ. Microbiol. 86:e00750–20
    [Google Scholar]
  114. 114. 
    Liu Y, Wei Y, Zhou Y, Ang EL, Zhao H, Zhang Y. 2020. A transaldolase-dependent sulfoglycolysis pathway in Bacillus megaterium DSM 1804. Biochem. Biophys. Res. Commun. 533:1109–14
    [Google Scholar]
  115. 115. 
    Frommeyer B, Fiedler AW, Oehler SR, Hanson BT, Loy A et al. 2020. Environmental and intestinal phylum Firmicutes bacteria metabolize the plant sugar sulfoquinovose via a 6-deoxy-6-sulfofructose transaldolase pathway. iScience 23:101510
    [Google Scholar]
  116. 116. 
    Denger K, Huhn T, Hollemeyer K, Schleheck D, Cook AM. 2012. Sulfoquinovose degraded by pure cultures of bacteria with release of C3-organosulfonates: complete degradation in two-member communities. FEMS Microbiol. Lett. 328:39–45
    [Google Scholar]
  117. 117. 
    Denger K, Smits THM, Cook AM. 2006. l-Cysteate sulpho-lyase, a widespread pyridoxal 5′-phosphate-coupled desulphonative enzyme purified from Silicibacter pomeroyi DSS-3T. Biochem. J. 394:Part 3657–64
    [Google Scholar]
  118. 118. 
    Rein U, Gueta R, Denger K, Ruff J, Hollemeyer K, Cook AM. 2005. Dissimilation of cysteate via 3-sulfolactate sulfo-lyase and a sulfate exporter in Paracoccus pantotrophus NKNCYSA. Microbiology 151:Part 3737–47
    [Google Scholar]
  119. 119. 
    Denger K, Cook AM. 2010. Racemase activity effected by two dehydrogenases in sulfolactate degradation by Chromohalobacter salexigens: purification of (S)-sulfolactate dehydrogenase. Microbiology 156:Part 3967–74
    [Google Scholar]
  120. 120. 
    Mayer J, Huhn T, Habeck M, Denger K, Hollemeyer K, Cook AM. 2010. 2,3-Dihydroxypropane-1-sulfonate degraded by Cupriavidus pinatubonensis JMP134: purification of dihydroxypropanesulfonate 3-dehydrogenase. Microbiology 156:Part 51556–64
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-080120-024103
Loading
/content/journals/10.1146/annurev-biochem-080120-024103
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error