1932

Abstract

Shotgun metatranscriptomics (MTX) is an increasingly practical way to survey microbial community gene function and regulation at scale. This review begins by summarizing the motivations for community transcriptomics and the history of the field. We then explore the principles, best practices, and challenges of contemporary MTX workflows: beginning with laboratory methods for isolation and sequencing of community RNA, followed by informatics methods for quantifying RNA features, and finally statistical methods for detecting differential expression in a community context. In thesecond half of the review, we survey important biological findings from the MTX literature, drawing examples from the human microbiome, other (nonhuman) host-associated microbiomes, and the environment. Across these examples, MTX methods prove invaluable for probing microbe–microbe and host–microbe interactions, the dynamics of energy harvest and chemical cycling, and responses to environmental stresses. We conclude with a review of open challenges in the MTX field, including making assays and analyses more robust, accessible, and adaptable to new technologies; deciphering roles for millions of uncharacterized microbial transcripts; and solving applied problems such as biomarker discovery and development of microbial therapeutics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biodatasci-031121-103035
2021-07-20
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/biodatasci/4/1/annurev-biodatasci-031121-103035.html?itemId=/content/journals/10.1146/annurev-biodatasci-031121-103035&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF et al. 1995. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512
    [Google Scholar]
  2. 2. 
    Chu S, DeRisi J, Eisen M, Mulholland J, Botstein D et al. 1998. The transcriptional program of sporulation in budding yeast. Science 282:699–705
    [Google Scholar]
  3. 3. 
    Quince C, Walker AW, Simpson JT, Loman NJ, Segata N. 2017. Shotgun metagenomics, from sampling to analysis. Nat. Biotechnol. 35:833–44
    [Google Scholar]
  4. 4. 
    Bashiardes S, Zilberman-Schapira G, Elinav E. 2016. Use of metatranscriptomics in microbiome research. Bioinform. Biol. Insights 10:19–25
    [Google Scholar]
  5. 5. 
    Franzosa EA, Hsu T, Sirota-Madi A, Shafquat A, Abu-Ali G et al. 2015. Sequencing and beyond: integrating molecular ‘omics’ for microbial community profiling. Nat. Rev. Microbiol. 13:360–72
    [Google Scholar]
  6. 6. 
    Schirmer M, Franzosa EA, Lloyd-Price J, McIver LJ, Schwager R et al. 2018. Dynamics of metatranscription in the inflammatory bowel disease gut microbiome. Nat. Microbiol. 3:337–46
    [Google Scholar]
  7. 7. 
    Heintz-Buschart A, May P, Laczny CC, Lebrun LA, Bellora C et al. 2016. Integrated multi-omics of the human gut microbiome in a case study of familial type 1 diabetes. Nat. Microbiol. 2:16180
    [Google Scholar]
  8. 8. 
    McNulty NP, Yatsunenko T, Hsiao A, Faith JJ, Muegge BD et al. 2011. The impact of a consortium of fermented milk strains on the gut microbiome of gnotobiotic mice and monozygotic twins. Sci. Transl. Med. 3:106ra06
    [Google Scholar]
  9. 9. 
    Franzosa EA, Morgan XC, Segata N, Waldron L, Reyes J et al. 2014. Relating the metatranscriptome and metagenome of the human gut. PNAS 111:E2329–38
    [Google Scholar]
  10. 10. 
    Mason OU, Hazen TC, Borglin S, Chain PS, Dubinsky EA et al. 2012. Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill. ISME J 6:1715–27
    [Google Scholar]
  11. 11. 
    Segata N, Izard J, Waldron L, Gevers D, Miropolsky L et al. 2011. Metagenomic biomarker discovery and explanation. Genome Biol 12:R60
    [Google Scholar]
  12. 12. 
    Abu-Ali GS, Mehta RS, Lloyd-Price J, Mallick H, Branck T et al. 2018. Metatranscriptome of human faecal microbial communities in a cohort of adult men. Nat. Microbiol. 3:356–66
    [Google Scholar]
  13. 13. 
    Human Microbiome Proj. Consort 2012. Structure, function and diversity of the healthy human microbiome. Nature 486:207–14
    [Google Scholar]
  14. 14. 
    Pérez-Losada M, Castro-Nallar E, Bendall ML, Freishtat RJ, Crandall KA. 2015. Dual transcriptomic profiling of host and microbiota during health and disease in pediatric asthma. PLOS ONE 10:e0131819
    [Google Scholar]
  15. 15. 
    Qin J, Li R, Raes J, Arumugam M, Burgdorf KS et al. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65
    [Google Scholar]
  16. 16. 
    Lloyd-Price J, Mahurkar A, Rahnavard G, Crabtree J, Orvis J et al. 2017. Strains, functions and dynamics in the expanded Human Microbiome Project. Nature 550:61–66
    [Google Scholar]
  17. 17. 
    Cardoso F, van't Veer LJ, Bogaerts J, Slaets L, Viale G et al. 2016. 70-gene signature as an aid to treatment decisions in early-stage breast cancer. N. Engl. J. Med. 375:717–29
    [Google Scholar]
  18. 18. 
    Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB et al. 2011. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Investig. 121:2750–67
    [Google Scholar]
  19. 19. 
    Gifford SM, Sharma S, Rinta-Kanto JM, Moran MA. 2011. Quantitative analysis of a deeply sequenced marine microbial metatranscriptome. ISME J 5:461–72
    [Google Scholar]
  20. 20. 
    Moran MA, Satinsky B, Gifford SM, Luo H, Rivers A et al. 2013. Sizing up metatranscriptomics. ISME J 7:237–43
    [Google Scholar]
  21. 21. 
    Staubach F, Baines JF, Künzel S, Bik EM, Petrov DA. 2013. Host species and environmental effects on bacterial communities associated with Drosophila in the laboratory and in the natural environment. PLOS ONE 8:e70749
    [Google Scholar]
  22. 22. 
    Gómez P, Buckling A. 2011. Bacteria-phage antagonistic coevolution in soil. Science 332:106–9
    [Google Scholar]
  23. 23. 
    Palková Z. 2004. Multicellular microorganisms: laboratory versus nature. EMBO Rep 5:470–76
    [Google Scholar]
  24. 24. 
    Bao G, Wang M, Doak TG, Ye Y. 2015. Strand-specific community RNA-seq reveals prevalent and dynamic antisense transcription in human gut microbiota. Front. Microbiol. 6:896
    [Google Scholar]
  25. 25. 
    Shi Y, Tyson GW, DeLong EF. 2009. Metatranscriptomics reveals unique microbial small RNAs in the ocean's water column. Nature 459:266–69
    [Google Scholar]
  26. 26. 
    Simmons CW, Reddy AP, D'Haeseleer P, Khudyakov J, Billis K et al. 2014. Metatranscriptomic analysis of lignocellulolytic microbial communities involved in high-solids decomposition of rice straw. Biotechnol. Biofuels 7:495
    [Google Scholar]
  27. 27. 
    Singh DP, Prabha R, Gupta VK, Verma MK. 2018. Metatranscriptome analysis deciphers multifunctional genes and enzymes linked with the degradation of aromatic compounds and pesticides in the wheat rhizosphere. Front. Microbiol. 9:1331
    [Google Scholar]
  28. 28. 
    Ishii S, Suzuki S, Tenney A, Nealson KH, Bretschger O. 2018. Comparative metatranscriptomics reveals extracellular electron transfer pathways conferring microbial adaptivity to surface redox potential changes. ISME J 12:2844–63
    [Google Scholar]
  29. 29. 
    Mann E, Wetzels SU, Wagner M, Zebeli Q, Schmitz-Esser S. 2018. Metatranscriptome sequencing reveals insights into the gene expression and functional potential of rumen wall bacteria. Front. Microbiol. 9:43
    [Google Scholar]
  30. 30. 
    Salazar G, Paoli L, Alberti A, Huerta-Cepas J, Ruscheweyh HJ et al. 2019. Gene expression changes and community turnover differentially shape the global ocean metatranscriptome. Cell 179:1068–83.e21
    [Google Scholar]
  31. 31. 
    Peng J, Wegner CE, Bei Q, Liu P, Liesack W. 2018. Metatranscriptomics reveals a differential temperature effect on the structural and functional organization of the anaerobic food web in rice field soil. Microbiome 6:169
    [Google Scholar]
  32. 32. 
    Giannoukos G, Ciulla DM, Huang K, Haas BJ, Izard J et al. 2012. Efficient and robust RNA-seq process for cultured bacteria and complex community transcriptomes. Genome Biol 13:R23
    [Google Scholar]
  33. 33. 
    Mallick H, Ma S, Franzosa EA, Vatanen T, Morgan XC, Huttenhower C. 2017. Experimental design and quantitative analysis of microbial community multiomics. Genome Biol 18:228
    [Google Scholar]
  34. 34. 
    Joice R, Yasuda K, Shafquat A, Morgan XC, Huttenhower C. 2014. Determining microbial products and identifying molecular targets in the human microbiome. Cell Metab 20:731–41
    [Google Scholar]
  35. 35. 
    Zhou J. 2003. Microarrays for bacterial detection and microbial community analysis. Curr. Opin. Microbiol. 6:288–94
    [Google Scholar]
  36. 36. 
    Mäder U, Nicolas P, Richard H, Bessières P, Aymerich S. 2011. Comprehensive identification and quantification of microbial transcriptomes by genome-wide unbiased methods. Curr. Opin. Biotechnol. 22:32–41
    [Google Scholar]
  37. 37. 
    Siezen RJ, Wilson G, Todt T. 2010. Prokaryotic whole-transcriptome analysis: deep sequencing and tiling arrays. Microb. Biotechnol. 3:125–30
    [Google Scholar]
  38. 38. 
    Sorek R, Cossart P. 2010. Prokaryotic transcriptomics: a new view on regulation, physiology and pathogenicity. Nat. Rev. Genet. 11:9–16
    [Google Scholar]
  39. 39. 
    Abdelrahman YM, Rose LA, Belland RJ. 2011. Developmental expression of non-coding RNAs in Chlamydia trachomatis during normal and persistent growth. Nucleic Acids Res 39:1843–54
    [Google Scholar]
  40. 40. 
    Kumar R, Shah P, Swiatlo E, Burgess SC, Lawrence ML, Nanduri B. 2010. Identification of novel non-coding small RNAs from Streptococcus pneumoniae TIGR4 using high-resolution genome tiling arrays. BMC Genom 11:350
    [Google Scholar]
  41. 41. 
    Thomassen GO, Weel-Sneve R, Rowe AD, Booth JA, Lindvall JM et al. 2010. Tiling array analysis of UV treated Escherichia coli predicts novel differentially expressed small peptides. PLOS ONE 5:e15356
    [Google Scholar]
  42. 42. 
    Yergeau E, Lawrence JR, Waiser MJ, Korber DR, Greer CW. 2010. Metatranscriptomic analysis of the response of river biofilms to pharmaceutical products, using anonymous DNA microarrays. Appl. Environ. Microbiol. 76:5432–39
    [Google Scholar]
  43. 43. 
    Georg J, Voss B, Scholz I, Mitschke J, Wilde A, Hess WR. 2009. Evidence for a major role of antisense RNAs in cyanobacterial gene regulation. Mol. Syst. Biol. 5:305
    [Google Scholar]
  44. 44. 
    Parro V, Moreno-Paz M, González-Toril E. 2007. Analysis of environmental transcriptomes by DNA microarrays. Environ. Microbiol. 9:453–64
    [Google Scholar]
  45. 45. 
    Poretsky RS, Bano N, Buchan A, LeCleir G, Kleikemper J et al. 2005. Analysis of microbial gene transcripts in environmental samples. Appl. Environ. Microbiol. 71:4121–26
    [Google Scholar]
  46. 46. 
    Botero LM, D'Imperio S, Burr M, McDermott TR, Young M, Hassett DJ 2005. Poly(A) polymerase modification and reverse transcriptase PCR amplification of environmental RNA. Appl. Environ. Microbiol. 71:1267–75
    [Google Scholar]
  47. 47. 
    Leininger S, Urich T, Schloter M, Schwark L, Qi J et al. 2006. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806–9
    [Google Scholar]
  48. 48. 
    Urich T, Lanzén A, Qi J, Huson DH, Schleper C, Schuster SC. 2008. Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. PLOS ONE 3:e2527
    [Google Scholar]
  49. 49. 
    Frias-Lopez J, Shi Y, Tyson GW, Coleman ML, Schuster SC et al. 2008. Microbial community gene expression in ocean surface waters. PNAS 105:3805–10
    [Google Scholar]
  50. 50. 
    Gilbert JA, Field D, Huang Y, Edwards R, Li W et al. 2008. Detection of large numbers of novel sequences in the metatranscriptomes of complex marine microbial communities. PLOS ONE 3:e3042
    [Google Scholar]
  51. 51. 
    Marchetti A, Schruth DM, Durkin CA, Parker MS, Kodner RB et al. 2012. Comparative metatranscriptomics identifies molecular bases for the physiological responses of phytoplankton to varying iron availability. PNAS 109:E317–25
    [Google Scholar]
  52. 52. 
    Schwab C, Berry D, Rauch I, Rennisch I, Ramesmayer J et al. 2014. Longitudinal study of murine microbiota activity and interactions with the host during acute inflammation and recovery. ISME J 8:1101–14
    [Google Scholar]
  53. 53. 
    Ngugi DK, Miyake S, Cahill M, Vinu M, Hackmann TJ et al. 2017. Genomic diversification of giant enteric symbionts reflects host dietary lifestyles. PNAS 114:E7592–601
    [Google Scholar]
  54. 54. 
    Lopez-Fernandez M, Broman E, Simone D, Bertilsson S, Dopson M. 2019. Statistical analysis of community RNA transcripts between organic carbon and geogas-fed continental deep biosphere groundwaters. mBio 10:4e01470–19
    [Google Scholar]
  55. 55. 
    Beitel CW, Froenicke L, Lang JM, Korf IF, Michelmore RW et al. 2014. Strain- and plasmid-level deconvolution of a synthetic metagenome by sequencing proximity ligation products. PeerJ 2:e415
    [Google Scholar]
  56. 56. 
    Bronzato Badial A, Sherman D, Stone A, Gopakumar A, Wilson V et al. 2018. Nanopore sequencing as a surveillance tool for plant pathogens in plant and insect tissues. Plant Dis 102:1648–52
    [Google Scholar]
  57. 57. 
    Petrova OE, Garcia-Alcalde F, Zampaloni C, Sauer K. 2017. Comparative evaluation of rRNA depletion procedures for the improved analysis of bacterial biofilm and mixed pathogen culture transcriptomes. Sci. Rep. 7:41114
    [Google Scholar]
  58. 58. 
    Calgaro M, Romualdi C, Waldron L, Risso D, Vitulo N. 2020. Assessment of statistical methods from single cell, bulk RNA-seq, and metagenomics applied to microbiome data. Genome Biol 21:191
    [Google Scholar]
  59. 59. 
    Deutscher MP. 2006. Degradation of RNA in bacteria: comparison of mRNA and stable RNA. Nucleic Acids Res 34:659–66
    [Google Scholar]
  60. 60. 
    Shulman LM, Hindiyeh M, Muhsen K, Cohen D, Mendelson E, Sofer D. 2012. Evaluation of four different systems for extraction of RNA from stool suspensions using MS-2 coliphage as an exogenous control for RT-PCR inhibition. PLOS ONE 7:e39455
    [Google Scholar]
  61. 61. 
    Zoetendal EG, Booijink CC, Klaassens ES, Heilig HG, Kleerebezem M et al. 2006. Isolation of RNA from bacterial samples of the human gastrointestinal tract. Nat. Protoc. 1:954–59
    [Google Scholar]
  62. 62. 
    Reck M, Tomasch J, Deng Z, Jarek M, Husemann P, Wagner-Döbler I. 2015. Stool metatranscriptomics: a technical guideline for mRNA stabilisation and isolation. BMC Genom 16:494
    [Google Scholar]
  63. 63. 
    Peano C, Pietrelli A, Consolandi C, Rossi E, Petiti L et al. 2013. An efficient rRNA removal method for RNA sequencing in GC-rich bacteria. Microb. Inform. Exp. 3:1
    [Google Scholar]
  64. 64. 
    He S, Wurtzel O, Singh K, Froula JL, Yilmaz S et al. 2010. Validation of two ribosomal RNA removal methods for microbial metatranscriptomics. Nat. Methods 7:807–12
    [Google Scholar]
  65. 65. 
    Sultan M, Amstislavskiy V, Risch T, Schuette M, Dökel S et al. 2014. Influence of RNA extraction methods and library selection schemes on RNA-seq data. BMC Genom 15:675
    [Google Scholar]
  66. 66. 
    Pang X, Zhou D, Song Y, Pei D, Wang J et al. 2004. Bacterial mRNA purification by magnetic capture-hybridization method. Microbiol. Immunol. 48:91–96
    [Google Scholar]
  67. 67. 
    Stewart FJ, Ottesen EA, DeLong EF. 2010. Development and quantitative analyses of a universal rRNA-subtraction protocol for microbial metatranscriptomics. ISME J 4:896–907
    [Google Scholar]
  68. 68. 
    Stark R, Grzelak M, Hadfield J. 2019. RNA sequencing: the teenage years. Nat. Rev. Genet. 20:631–56
    [Google Scholar]
  69. 69. 
    Nowicki EM, Shroff R, Singleton JA, Renaud DE, Wallace D et al. 2018. Microbiota and metatranscriptome changes accompanying the onset of gingivitis. mBio 9:2e00575–18
    [Google Scholar]
  70. 70. 
    Deng ZL, Gottschick C, Bhuju S, Masur C, Abels C, Wagner-Döbler I. 2018. Metatranscriptome analysis of the vaginal microbiota reveals potential mechanisms for protection against metronidazole in bacterial vaginosis. mSphere 3:3e00262–18
    [Google Scholar]
  71. 71. 
    Lloyd-Price J, Arze C, Ananthakrishnan AN, Schirmer M, Avila-Pacheco J et al. 2019. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569:655–62
    [Google Scholar]
  72. 72. 
    Hao L, Michaelsen TY, Singleton CM, Dottorini G, Kirkegaard RH et al. 2020. Novel syntrophic bacteria in full-scale anaerobic digesters revealed by genome-centric metatranscriptomics. ISME J 14:906–18
    [Google Scholar]
  73. 73. 
    Pollard MO, Gurdasani D, Mentzer AJ, Porter T, Sandhu MS. 2018. Long reads: their purpose and place. Hum. Mol. Genet. 27:R234–41
    [Google Scholar]
  74. 74. 
    Amarasinghe SL, Su S, Dong X, Zappia L, Ritchie ME, Gouil Q. 2020. Opportunities and challenges in long-read sequencing data analysis. Genome Biol 21:30
    [Google Scholar]
  75. 75. 
    Leimena MM, Ramiro-Garcia J, Davids M, van den Bogert B, Smidt H et al. 2013. A comprehensive metatranscriptome analysis pipeline and its validation using human small intestine microbiota datasets. BMC Genom 14:530
    [Google Scholar]
  76. 76. 
    Martinez X, Pozuelo M, Pascal V, Campos D, Gut I et al. 2016. MetaTrans: an open-source pipeline for metatranscriptomics. Sci. Rep. 6:26447
    [Google Scholar]
  77. 77. 
    Narayanasamy S, Jarosz Y, Muller EE, Heintz-Buschart A, Herold M et al. 2016. IMP: a pipeline for reproducible reference-independent integrated metagenomic and metatranscriptomic analyses. Genome Biol 17:260
    [Google Scholar]
  78. 78. 
    Ni Y, Li J, Panagiotou G. 2016. COMAN: a web server for comprehensive metatranscriptomics analysis. BMC Genom 17:622
    [Google Scholar]
  79. 79. 
    Westreich ST, Treiber ML, Mills DA, Korf I, Lemay DG. 2018. SAMSA2: a standalone metatranscriptome analysis pipeline. BMC Bioinform 19:175
    [Google Scholar]
  80. 80. 
    Franzosa EA, McIver LJ, Rahnavard G, Thompson LR, Schirmer M et al. 2018. Species-level functional profiling of metagenomes and metatranscriptomes. Nat. Methods 15:962–68
    [Google Scholar]
  81. 81. 
    Tamames J, Puente-Sánchez F. 2018. SqueezeMeta, a highly portable, fully automatic metagenomic analysis pipeline. Front. Microbiol. 9:3349
    [Google Scholar]
  82. 82. 
    Shakya M, Lo CC, Chain PSG. 2019. Advances and challenges in metatranscriptomic analysis. Front. Genet. 10:904
    [Google Scholar]
  83. 83. 
    Niu SY, Yang J, McDermaid A, Zhao J, Kang Y, Ma Q. 2018. Bioinformatics tools for quantitative and functional metagenome and metatranscriptome data analysis in microbes. Brief. Bioinform. 19:1415–29
    [Google Scholar]
  84. 84. 
    Kim J, Kim MS, Koh AY, Xie Y, Zhan X. 2016. FMAP: functional mapping and analysis pipeline for metagenomics and metatranscriptomics studies. BMC Bioinform. 17:420
    [Google Scholar]
  85. 85. 
    Leung HC, Yiu SM, Parkinson J, Chin FY. 2013. IDBA-MT: de novo assembler for metatranscriptomic data generated from next-generation sequencing technology. J. Comput. Biol. 20:540–50
    [Google Scholar]
  86. 86. 
    Leung HC, Yiu SM, Chin FY. 2015. IDBA-MTP: a hybrid metatranscriptomic assembler based on protein information. J. Comput. Biol. 22:367–76
    [Google Scholar]
  87. 87. 
    Ye Y, Tang H. 2016. Utilizing de Bruijn graph of metagenome assembly for metatranscriptome analysis. Bioinformatics 32:1001–8
    [Google Scholar]
  88. 88. 
    Love MI, Huber W, Anders S 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550
    [Google Scholar]
  89. 89. 
    Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–40
    [Google Scholar]
  90. 90. 
    Altelaar AF, Munoz J, Heck AJ. 2013. Next-generation proteomics: towards an integrative view of proteome dynamics. Nat. Rev. Genet. 14:35–48
    [Google Scholar]
  91. 91. 
    Lo CC, Chain PS. 2014. Rapid evaluation and quality control of next generation sequencing data with FaQCs. BMC Bioinform 15:366
    [Google Scholar]
  92. 92. 
    Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–20
    [Google Scholar]
  93. 93. 
    Kopylova E, Noé L, Touzet H. 2012. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28:3211–17
    [Google Scholar]
  94. 94. 
    Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–69
    [Google Scholar]
  95. 95. 
    Martin JA, Wang Z. 2011. Next-generation transcriptome assembly. Nat. Rev. Genet. 12:671–82
    [Google Scholar]
  96. 96. 
    Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9:357–59
    [Google Scholar]
  97. 97. 
    Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–60
    [Google Scholar]
  98. 98. 
    Buchfink B, Xie C, Huson DH. 2015. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12:59–60
    [Google Scholar]
  99. 99. 
    Steinegger M, Söding J. 2017. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35:1026–28
    [Google Scholar]
  100. 100. 
    O'Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D et al. 2016. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res 44:D733–45
    [Google Scholar]
  101. 101. 
    Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J et al. 2016. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44:D279–85
    [Google Scholar]
  102. 102. 
    Gene Ontol. Consort 2015. Gene Ontology Consortium: going forward. Nucleic Acids Res. 43:D1049–56
    [Google Scholar]
  103. 103. 
    Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. 2016. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44:D457–62
    [Google Scholar]
  104. 104. 
    Galperin MY, Makarova KS, Wolf YI, Koonin EV. 2015. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res 43:D261–69
    [Google Scholar]
  105. 105. 
    UniProt Consort 2015. UniProt: a hub for protein information. Nucleic Acids Res 43:D204–12
    [Google Scholar]
  106. 106. 
    Truong DT, Franzosa EA, Tickle TL, Scholz M, Weingart G et al. 2015. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat. Methods 12:902–3
    [Google Scholar]
  107. 107. 
    Wood DE, Salzberg SL. 2014. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol 15:R46
    [Google Scholar]
  108. 108. 
    Milanese A, Mende DR, Paoli L, Salazar G, Ruscheweyh HJ et al. 2019. Microbial abundance, activity and population genomic profiling with mOTUs2. Nat. Commun. 10:1014
    [Google Scholar]
  109. 109. 
    Cabral DJ, Penumutchu S, Reinhart EM, Zhang C, Korry BJ et al. 2019. Microbial metabolism modulates antibiotic susceptibility within the murine gut microbiome. Cell Metab 30:800–23.e7
    [Google Scholar]
  110. 110. 
    Serrano MG, Parikh HI, Brooks JP, Edwards DJ, Arodz TJ et al. 2019. Racioethnic diversity in the dynamics of the vaginal microbiome during pregnancy. Nat. Med. 25:1001–11
    [Google Scholar]
  111. 111. 
    Cabral DJ, Wurster JI, Korry BJ, Penumutchu S, Belenky P. 2020. Consumption of a Western-style diet modulates the response of the murine gut microbiome to ciprofloxacin. mSystems 5:4e00317–20
    [Google Scholar]
  112. 112. 
    Bairoch A. 2000. The ENZYME database in 2000. Nucleic Acids Res 28:304–5
    [Google Scholar]
  113. 113. 
    Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY et al. 2014. Pfam: the protein families database. Nucleic Acids Res 42:D222–30
    [Google Scholar]
  114. 114. 
    Ashburner M, Ball CA, Blake JA, Botstein D, Butler H et al. 2000. Gene ontology: tool for the unification of biology. Nat. Genet. 25:25–29
    [Google Scholar]
  115. 115. 
    Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M. 2014. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42:D199–205
    [Google Scholar]
  116. 116. 
    Ugarte A, Vicedomini R, Bernardes J, Carbone A. 2018. A multi-source domain annotation pipeline for quantitative metagenomic and metatranscriptomic functional profiling. Microbiome 6:149
    [Google Scholar]
  117. 117. 
    Pachter L. 2011. Models for transcript quantification from RNA-Seq. arXiv:1104.3889 [q-bio.GN]
  118. 118. 
    Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang HY et al. 2005. The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res 33:5691–702
    [Google Scholar]
  119. 119. 
    Suzek BE, Huang H, McGarvey P, Mazumder R, Wu CH. 2007. UniRef: comprehensive and non-redundant UniProt reference clusters. Bioinformatics 23:1282–88
    [Google Scholar]
  120. 120. 
    Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19:455–77
    [Google Scholar]
  121. 121. 
    Li D, Liu CM, Luo R, Sadakane K, Lam TW. 2015. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31:1674–76
    [Google Scholar]
  122. 122. 
    Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29:644–52
    [Google Scholar]
  123. 123. 
    Peng Y, Leung HC, Yiu SM, Lv MJ, Zhu XG, Chin FY. 2013. IDBA-tran: a more robust de novo de Bruijn graph assembler for transcriptomes with uneven expression levels. Bioinformatics 29:i326–34
    [Google Scholar]
  124. 124. 
    Bushmanova E, Antipov D, Lapidus A, Prjibelski AD. 2019. rnaSPAdes: a de novo transcriptome assembler and its application to RNA-Seq data. GigaScience 8:9giz100
    [Google Scholar]
  125. 125. 
    Celaj A, Markle J, Danska J, Parkinson J. 2014. Comparison of assembly algorithms for improving rate of metatranscriptomic functional annotation. Microbiome 2:39
    [Google Scholar]
  126. 126. 
    Schulz MH, Zerbino DR, Vingron M, Birney E. 2012. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 28:1086–92
    [Google Scholar]
  127. 127. 
    Robertson G, Schein J, Chiu R, Corbett R, Field M et al. 2010. De novo assembly and analysis of RNA-seq data. Nat. Methods 7:909–12
    [Google Scholar]
  128. 128. 
    Dillies MA, Rau A, Aubert J, Hennequet-Antier C, Jeanmougin M et al. 2013. A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief. Bioinform. 14:671–83
    [Google Scholar]
  129. 129. 
    Lin Y, Golovnina K, Chen ZX, Lee HN, Negron YL et al. 2016. Comparison of normalization and differential expression analyses using RNA-Seq data from 726 individual Drosophila melanogaster. BMC Genom 17:28
    [Google Scholar]
  130. 130. 
    Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L. 2013. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat. Biotechnol. 31:46–53
    [Google Scholar]
  131. 131. 
    Ritchie ME, Phipson B, Wu D, Hu Y, Law CW et al. 2015. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47
    [Google Scholar]
  132. 132. 
    Tarazona S, Furió-Tarí P, Turrà D, Pietro AD, Nueda MJ et al. 2015. Data quality aware analysis of differential expression in RNA-seq with NOISeq R/Bioc package. Nucleic Acids Res 43:e140
    [Google Scholar]
  133. 133. 
    Klingenberg H, Meinicke P. 2017. How to normalize metatranscriptomic count data for differential expression analysis. PeerJ 5:e3859
    [Google Scholar]
  134. 134. 
    Turnbaugh PJ, Quince C, Faith JJ, McHardy AC, Yatsunenko T et al. 2010. Organismal, genetic, and transcriptional variation in the deeply sequenced gut microbiomes of identical twins. PNAS 107:7503–8
    [Google Scholar]
  135. 135. 
    Nouaille S, Even S, Charlier C, Le Loir Y, Cocaign-Bousquet M, Loubière P 2009. Transcriptomic response of Lactococcus lactis in mixed culture with Staphylococcus aureus. Appl. Environ. Microbiol. 75:4473–82
    [Google Scholar]
  136. 136. 
    Rey FE, Faith JJ, Bain J, Muehlbauer MJ, Stevens RD et al. 2010. Dissecting the in vivo metabolic potential of two human gut acetogens. J. Biol. Chem. 285:22082–90
    [Google Scholar]
  137. 137. 
    Ryan D, Jenniches L, Reichardt S, Barquist L, Westermann AJ. 2020. A high-resolution transcriptome map identifies small RNA regulation of metabolism in the gut microbe Bacteroides thetaiotaomicron. Nat. Commun. 11:3557
    [Google Scholar]
  138. 138. 
    Zhang T, Breitbart M, Lee WH, Run JQ, Wei CL et al. 2006. RNA viral community in human feces: prevalence of plant pathogenic viruses. PLOS Biol 4:e3
    [Google Scholar]
  139. 139. 
    Culley AI, Lang AS, Suttle CA. 2006. Metagenomic analysis of coastal RNA virus communities. Science 312:1795–98
    [Google Scholar]
  140. 140. 
    Zhang X, Deeke SA, Ning Z, Starr AE, Butcher J et al. 2018. Metaproteomics reveals associations between microbiome and intestinal extracellular vesicle proteins in pediatric inflammatory bowel disease. Nat. Commun. 9:2873
    [Google Scholar]
  141. 141. 
    Daniel SG, Ball CL, Besselsen DG, Doetschman T, Hurwitz BL. 2017. Functional changes in the gut microbiome contribute to transforming growth factor β-deficient colon cancer. mSystems 2:5e00065–17
    [Google Scholar]
  142. 142. 
    Dutilh BE, Backus L, van Hijum SA, Tjalsma H. 2013. Screening metatranscriptomes for toxin genes as functional drivers of human colorectal cancer. Best Pract. Res. Clin. Gastroenterol. 27:85–99
    [Google Scholar]
  143. 143. 
    Yan Y, Drew DA, Markowitz A, Lloyd-Price J, Abu-Ali G et al. 2020. Structure of the mucosal and stool microbiome in Lynch syndrome. Cell Host Microbe 27:585–600.e4
    [Google Scholar]
  144. 144. 
    Peters BA, Wilson M, Moran U, Pavlick A, Izsak A et al. 2019. Relating the gut metagenome and metatranscriptome to immunotherapy responses in melanoma patients. Genome Med 11:61
    [Google Scholar]
  145. 145. 
    Poore GD, Kopylova E, Zhu Q, Carpenter C, Fraraccio S et al. 2020. Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature 579:567–74
    [Google Scholar]
  146. 146. 
    Maurice CF, Haiser HJ, Turnbaugh PJ. 2013. Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell 152:39–50
    [Google Scholar]
  147. 147. 
    Nguyen LH, Ma W, Wang DD, Cao Y, Mallick H et al. 2020. Association between sulfur-metabolizing bacterial communities in stool and risk of distal colorectal cancer in men. Gastroenterology 158:1313–25
    [Google Scholar]
  148. 148. 
    David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE et al. 2014. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–63
    [Google Scholar]
  149. 149. 
    Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. 2009. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci. Transl. Med. 1:6ra14
    [Google Scholar]
  150. 150. 
    Solbiati J, Frias-Lopez J. 2018. Metatranscriptome of the oral microbiome in health and disease. J. Dent. Res. 97:492–500
    [Google Scholar]
  151. 151. 
    Peterson SN, Meissner T, Su AI, Snesrud E, Ong AC et al. 2014. Functional expression of dental plaque microbiota. Front. Cell. Infect. Microbiol. 4:108
    [Google Scholar]
  152. 152. 
    Simón-Soro A, Guillen-Navarro M, Mira A 2014. Metatranscriptomics reveals overall active bacterial composition in caries lesions. J. Oral Microbiol. 6:25443
    [Google Scholar]
  153. 153. 
    Yost S, Duran-Pinedo AE, Teles R, Krishnan K, Frias-Lopez J. 2015. Functional signatures of oral dysbiosis during periodontitis progression revealed by microbial metatranscriptome analysis. Genome Med 7:27
    [Google Scholar]
  154. 154. 
    Benítez-Páez A, Belda-Ferre P, Simón-Soro A, Mira A 2014. Microbiota diversity and gene expression dynamics in human oral biofilms. BMC Genom 15:311
    [Google Scholar]
  155. 155. 
    Lamont RJ, Koo H, Hajishengallis G 2018. The oral microbiota: dynamic communities and host interactions. Nat. Rev. Microbiol. 16:745–59
    [Google Scholar]
  156. 156. 
    Duran-Pinedo AE, Chen T, Teles R, Starr JR, Wang X et al. 2014. Community-wide transcriptome of the oral microbiome in subjects with and without periodontitis. ISME J 8:1659–72
    [Google Scholar]
  157. 157. 
    Liu Y, Shetty AC, Schwartz JA, Bradford LL, Xu W et al. 2015. New signaling pathways govern the host response to C. albicans infection in various niches. Genome Res 25:679–89
    [Google Scholar]
  158. 158. 
    Yost S, Stashenko P, Choi Y, Kukuruzinska M, Genco CA et al. 2018. Increased virulence of the oral microbiome in oral squamous cell carcinoma revealed by metatranscriptome analyses. Int. J. Oral Sci. 10:32
    [Google Scholar]
  159. 159. 
    Ahn SH, Chun S, Park C, Lee JH, Lee SW, Lee TH. 2017. Transcriptome profiling analysis of senescent gingival fibroblasts in response to Fusobacterium nucleatum infection. PLOS ONE 12:e0188755
    [Google Scholar]
  160. 160. 
    Duran-Pinedo AE, Yost S, Frias-Lopez J. 2015. Small RNA transcriptome of the oral microbiome during periodontitis progression. Appl. Environ. Microbiol. 81:6688–99
    [Google Scholar]
  161. 161. 
    Oh J, Byrd AL, Deming C, Conlan S, Kong HH, Segre JA. 2014. Biogeography and individuality shape function in the human skin metagenome. Nature 514:59–64
    [Google Scholar]
  162. 162. 
    Naik S, Bouladoux N, Wilhelm C, Molloy MJ, Salcedo R et al. 2012. Compartmentalized control of skin immunity by resident commensals. Science 337:1115–19
    [Google Scholar]
  163. 163. 
    Kang D, Shi B, Erfe MC, Craft N, Li H. 2015. Vitamin B12 modulates the transcriptome of the skin microbiota in acne pathogenesis. Sci. Transl. Med. 7:293ra103
    [Google Scholar]
  164. 164. 
    Iwase T, Uehara Y, Shinji H, Tajima A, Seo H et al. 2010. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature 465:346–49
    [Google Scholar]
  165. 165. 
    Lai Y, Di Nardo A, Nakatsuji T, Leichtle A, Yang Y et al. 2009. Commensal bacteria regulate Toll-like receptor 3-dependent inflammation after skin injury. Nat. Med. 15:1377–82
    [Google Scholar]
  166. 166. 
    Choi M, Seo IC, Kim DH, Choi J-W, Park JM, Oh JW. 2019. Microbiome profile of psoriasis and atopic dermatitis using transcriptome analysis. J. Allergy Clin. Immunol. 143:2AB434
    [Google Scholar]
  167. 167. 
    Kaddurah-Daouk R, Baillie RA, Zhu H, Zeng ZB, Wiest MM et al. 2011. Enteric microbiome metabolites correlate with response to simvastatin treatment. PLOS ONE 6:e25482
    [Google Scholar]
  168. 168. 
    Yuan S, Cohen DB, Ravel J, Abdo Z, Forney LJ. 2012. Evaluation of methods for the extraction and purification of DNA from the human microbiome. PLOS ONE 7:e33865
    [Google Scholar]
  169. 169. 
    Ma B, France MT, Crabtree J, Holm JB, Humphrys MS et al. 2020. A comprehensive non-redundant gene catalog reveals extensive within-community intraspecies diversity in the human vagina. Nat. Commun. 11:940
    [Google Scholar]
  170. 170. 
    Tachedjian G, O'Hanlon DE, Ravel J 2018. The implausible “in vivo” role of hydrogen peroxide as an antimicrobial factor produced by vaginal microbiota. Microbiome 6:29
    [Google Scholar]
  171. 171. 
    O'Connell CM, Brochu H, Girardi J, Harrell E, Jones A et al. 2019. Simultaneous profiling of sexually transmitted bacterial pathogens, microbiome, and concordant host response in cervical samples using whole transcriptome sequencing analysis. Microb. Cell 6:177–83
    [Google Scholar]
  172. 172. 
    Macklaim JM, Fernandes AD, Di Bella JM, Hammond JA, Reid G, Gloor GB 2013. Comparative meta-RNA-seq of the vaginal microbiota and differential expression by Lactobacillus iners in health and dysbiosis. Microbiome 1:12
    [Google Scholar]
  173. 173. 
    Jiang Y, Xiong X, Danska J, Parkinson J. 2016. Metatranscriptomic analysis of diverse microbial communities reveals core metabolic pathways and microbiome-specific functionality. Microbiome 4:2
    [Google Scholar]
  174. 174. 
    Ferrer M, Beloqui A, Timmis KN, Golyshin PN. 2009. Metagenomics for mining new genetic resources of microbial communities. J. Mol. Microbiol. Biotechnol. 16:109–23
    [Google Scholar]
  175. 175. 
    Rashamuse K, Magomani V, Ronneburg T, Brady D. 2009. A novel family VIII carboxylesterase derived from a leachate metagenome library exhibits promiscuous β-lactamase activity on nitrocefin. Appl. Microbiol. Biotechnol. 83:491–500
    [Google Scholar]
  176. 176. 
    Lehembre F, Doillon D, David E, Perrotto S, Baude J et al. 2013. Soil metatranscriptomics for mining eukaryotic heavy metal resistance genes. Environ. Microbiol. 15:2829–40
    [Google Scholar]
  177. 177. 
    Warnecke F, Hess M. 2009. A perspective: metatranscriptomics as a tool for the discovery of novel biocatalysts. J. Biotechnol. 142:91–95
    [Google Scholar]
  178. 178. 
    Baldrian P, Kolařík M, Stursová M, Kopecký J, Valášková V et al. 2012. Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J 6:248–58
    [Google Scholar]
  179. 179. 
    Peterson BF, Scharf ME. 2016. Metatranscriptome analysis reveals bacterial symbiont contributions to lower termite physiology and potential immune functions. BMC Genom 17:772
    [Google Scholar]
  180. 180. 
    Xiong X, Frank DN, Robertson CE, Hung SS, Markle J et al. 2012. Generation and analysis of a mouse intestinal metatranscriptome through Illumina based RNA-sequencing. PLOS ONE 7:e36009
    [Google Scholar]
  181. 181. 
    Marcelino VR, Wille M, Hurt AC, González-Acuña D, Klaassen M et al. 2019. Meta-transcriptomics reveals a diverse antibiotic resistance gene pool in avian microbiomes. BMC Biol 17:31
    [Google Scholar]
  182. 182. 
    Milani C, Alessandri G, Mancabelli L, Mangifesta M, Lugli GA et al. 2020. Multi-omics approaches to decipher the impact of diet and host physiology on the mammalian gut microbiome. Appl. Environ. Microbiol. 86:23e01864–20
    [Google Scholar]
  183. 183. 
    Wang F, Wan Y, Yin K, Wei Y, Wang B et al. 2019. Lower circulating branched-chain amino acid concentrations among vegetarians are associated with changes in gut microbial composition and function. Mol. Nutr. Food Res. 63:e1900612
    [Google Scholar]
  184. 184. 
    Davids M, Hugenholtz F, Martins dos Santos V, Smidt H, Kleerebezem M, Schaap PJ. 2016. Functional profiling of unfamiliar microbial communities using a validated de novo assembly metatranscriptome pipeline. PLOS ONE 11:e0146423
    [Google Scholar]
  185. 185. 
    Ilott NE, Bollrath J, Danne C, Schiering C, Shale M et al. 2016. Defining the microbial transcriptional response to colitis through integrated host and microbiome profiling. ISME J 10:2389–404
    [Google Scholar]
  186. 186. 
    Nichols RG, Zhang J, Cai J, Murray IA, Koo I et al. 2019. Metatranscriptomic analysis of the mouse gut microbiome response to the persistent organic pollutant 2,3,7,8-tetrachlorodibenzofuran. Metabolites 10:11
    [Google Scholar]
  187. 187. 
    Versluis D, D'Andrea MM, Ramiro Garcia J, Leimena MM, Hugenholtz F et al. 2015. Mining microbial metatranscriptomes for expression of antibiotic resistance genes under natural conditions. Sci. Rep. 5:11981
    [Google Scholar]
  188. 188. 
    Chung YW, Gwak HJ, Moon S, Rho M, Ryu JH. 2020. Functional dynamics of bacterial species in the mouse gut microbiome revealed by metagenomic and metatranscriptomic analyses. PLOS ONE 15:e0227886
    [Google Scholar]
  189. 189. 
    Hugenholtz F, Davids M, Schwarz J, Müller M, Tomé D et al. 2018. Metatranscriptome analysis of the microbial fermentation of dietary milk proteins in the murine gut. PLOS ONE 13:e0194066
    [Google Scholar]
  190. 190. 
    Bikel S, Valdez-Lara A, Cornejo-Granados F, Rico K, Canizales-Quinteros S et al. 2015. Combining metagenomics, metatranscriptomics and viromics to explore novel microbial interactions: towards a systems-level understanding of human microbiome. Comput. Struct. Biotechnol. J. 13:390–401
    [Google Scholar]
  191. 191. 
    Wang Y, Hu Y, Liu F, Cao J, Lv N et al. 2020. Integrated metagenomic and metatranscriptomic profiling reveals differentially expressed resistomes in human, chicken, and pig gut microbiomes. Environ. Int. 138:105649
    [Google Scholar]
  192. 192. 
    Korry BJ, Cabral DJ, Belenky P. 2020. Metatranscriptomics reveals antibiotic-induced resistance gene expression in the murine gut microbiota. Front. Microbiol. 11:322
    [Google Scholar]
  193. 193. 
    Westreich ST, Ardeshir A, Alkan Z, Kable ME, Korf I, Lemay DG. 2019. Fecal metatranscriptomics of macaques with idiopathic chronic diarrhea reveals altered mucin degradation and fucose utilization. Microbiome 7:41
    [Google Scholar]
  194. 194. 
    Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL et al. 2012. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol 13:R79
    [Google Scholar]
  195. 195. 
    Golomb BL, Hirao LA, Dandekar S, Marco ML. 2016. Gene expression of Lactobacillus plantarum and the commensal microbiota in the ileum of healthy and early SIV-infected rhesus macaques. Sci. Rep. 6:24723
    [Google Scholar]
  196. 196. 
    Poroyko V, White JR, Wang M, Donovan S, Alverdy J et al. 2010. Gut microbial gene expression in mother-fed and formula-fed piglets. PLOS ONE 5:e12459
    [Google Scholar]
  197. 197. 
    Shi W, Moon CD, Leahy SC, Kang D, Froula J et al. 2014. Methane yield phenotypes linked to differential gene expression in the sheep rumen microbiome. Genome Res 24:1517–25
    [Google Scholar]
  198. 198. 
    Kamke J, Kittelmann S, Soni P, Li Y, Tavendale M et al. 2016. Rumen metagenome and metatranscriptome analyses of low methane yield sheep reveals a Sharpea-enriched microbiome characterised by lactic acid formation and utilisation. Microbiome 4:56
    [Google Scholar]
  199. 199. 
    Poulsen M, Schwab C, Jensen BB, Engberg RM, Spang A et al. 2013. Methylotrophic methanogenic Thermoplasmata implicated in reduced methane emissions from bovine rumen. Nat. Commun. 4:1428
    [Google Scholar]
  200. 200. 
    Morrison KE, Jašarević E, Howard CD, Bale TL. 2020. It's the fiber, not the fat: significant effects of dietary challenge on the gut microbiome. Microbiome 8:15
    [Google Scholar]
  201. 201. 
    Haenen D, Zhang J, Souza da Silva C, Bosch G, van der Meer IM et al. 2013. A diet high in resistant starch modulates microbiota composition, SCFA concentrations, and gene expression in pig intestine. J. Nutr. 143:274–83
    [Google Scholar]
  202. 202. 
    Makki K, Deehan EC, Walter J, Bäckhed F. 2018. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 23:705–15
    [Google Scholar]
  203. 203. 
    Wu S, Ren Y, Peng C, Hao Y, Xiong F et al. 2015. Metatranscriptomic discovery of plant biomass-degrading capacity from grass carp intestinal microbiomes. FEMS Microbiol. Ecol. 91:fiv107
    [Google Scholar]
  204. 204. 
    Parris DJ, Morgan MM, Stewart FJ. 2019. Feeding rapidly alters microbiome composition and gene transcription in the clownfish gut. Appl. Environ. Microbiol. 85:3e02479–18
    [Google Scholar]
  205. 205. 
    Dennison NJ, Jupatanakul N, Dimopoulos G. 2014. The mosquito microbiota influences vector competence for human pathogens. Curr. Opin. Insect. Sci. 3:6–13
    [Google Scholar]
  206. 206. 
    Hughes GL, Dodson BL, Johnson RM, Murdock CC, Tsujimoto H et al. 2014. Native microbiome impedes vertical transmission of Wolbachia in Anopheles mosquitoes. PNAS 111:12498–503
    [Google Scholar]
  207. 207. 
    Shi W, Xie S, Chen X, Sun S, Zhou X et al. 2013. Comparative genomic analysis of the microbiome of herbivorous insects reveals eco-environmental adaptations: biotechnology applications. PLOS Genet 9:e1003131
    [Google Scholar]
  208. 208. 
    Jing TZ, Qi FH, Wang ZY. 2020. Most dominant roles of insect gut bacteria: digestion, detoxification, or essential nutrient provision?. Microbiome 8:38
    [Google Scholar]
  209. 209. 
    He S, Ivanova N, Kirton E, Allgaier M, Bergin C et al. 2013. Comparative metagenomic and metatranscriptomic analysis of hindgut paunch microbiota in wood- and dung-feeding higher termites. PLOS ONE 8:e61126
    [Google Scholar]
  210. 210. 
    Batovska J, Mee PT, Lynch SE, Sawbridge TI, Rodoni BC. 2019. Sensitivity and specificity of metatranscriptomics as an arbovirus surveillance tool. Sci. Rep. 9:19398
    [Google Scholar]
  211. 211. 
    Galen SC, Borner J, Williamson JL, Witt CC, Perkins SL. 2020. Metatranscriptomics yields new genomic resources and sensitive detection of infections for diverse blood parasites. Mol. Ecol. Resour. 20:14–28
    [Google Scholar]
  212. 212. 
    He B, Jin S, Cao J, Mi L, Wang J 2019. Metatranscriptomics of the Hu sheep rumen microbiome reveals novel cellulases. Biotechnol. Biofuels 12:153
    [Google Scholar]
  213. 213. 
    Li F, Guan LL. 2017. Metatranscriptomic profiling reveals linkages between the active rumen microbiome and feed efficiency in beef cattle. Appl. Environ. Microbiol. 83:9e00061-17
    [Google Scholar]
  214. 214. 
    Shi M, Neville P, Nicholson J, Eden JS, Imrie A, Holmes EC. 2017. High-resolution metatranscriptomics reveals the ecological dynamics of mosquito-associated RNA viruses in Western Australia. J. Virol. 91:17e00680-17
    [Google Scholar]
  215. 215. 
    Pei Y, Tao C, Ling Z, Yu Z, Ji J et al. 2020. Exploring novel Cr(VI) remediation genes for Cr(VI)-contaminated industrial wastewater treatment by comparative metatranscriptomics and metagenomics. Sci. Total Environ. 742:140435
    [Google Scholar]
  216. 216. 
    Hua ZS, Han YJ, Chen LX, Liu J, Hu M et al. 2015. Ecological roles of dominant and rare prokaryotes in acid mine drainage revealed by metagenomics and metatranscriptomics. ISME J 9:1280–94
    [Google Scholar]
  217. 217. 
    Singleton CM, McCalley CK, Woodcroft BJ, Boyd JA, Evans PN et al. 2018. Methanotrophy across a natural permafrost thaw environment. ISME J 12:2544–58
    [Google Scholar]
  218. 218. 
    Liu Z, Klümper U, Liu Y, Yang Y, Wei Q et al. 2019. Metagenomic and metatranscriptomic analyses reveal activity and hosts of antibiotic resistance genes in activated sludge. Environ. Int. 129:208–20
    [Google Scholar]
  219. 219. 
    Galand PE, Pereira O, Hochart C, Auguet JC, Debroas D. 2018. A strong link between marine microbial community composition and function challenges the idea of functional redundancy. ISME J 12:2470–78
    [Google Scholar]
  220. 220. 
    Fierer N, Ladau J, Clemente JC, Leff JW, Owens SM et al. 2013. Reconstructing the microbial diversity and function of pre-agricultural tallgrass prairie soils in the United States. Science 342:621–24
    [Google Scholar]
  221. 221. 
    Vorobev A, Dupouy M, Carradec Q, Delmont TO, Annamalé A et al. 2020. Transcriptome reconstruction and functional analysis of eukaryotic marine plankton communities via high-throughput metagenomics and metatranscriptomics. Genome Res 30:647–59
    [Google Scholar]
  222. 222. 
    Poretsky RS, Hewson I, Sun S, Allen AE, Zehr JP, Moran MA. 2009. Comparative day/night metatranscriptomic analysis of microbial communities in the North Pacific subtropical gyre. Environ. Microbiol. 11:1358–75
    [Google Scholar]
  223. 223. 
    Voss C, Fiore-Donno AM, Guerreiro MA, Peršoh D, Bonkowski M. 2019. Metatranscriptomics reveals unsuspected protistan diversity in leaf litter across temperate beech forests, with Amoebozoa the dominating lineage. FEMS Microbiol. Ecol. 95:10fiz142
    [Google Scholar]
  224. 224. 
    Damon C, Lehembre F, Oger-Desfeux C, Luis P, Ranger J et al. 2012. Metatranscriptomics reveals the diversity of genes expressed by eukaryotes in forest soils. PLOS ONE 7:e28967
    [Google Scholar]
  225. 225. 
    Geisen S, Tveit AT, Clark IM, Richter A, Svenning MM et al. 2015. Metatranscriptomic census of active protists in soils. ISME J 9:2178–90
    [Google Scholar]
  226. 226. 
    Broman E, Sjöstedt J, Pinhassi J, Dopson M. 2017. Shifts in coastal sediment oxygenation cause pronounced changes in microbial community composition and associated metabolism. Microbiome 5:96
    [Google Scholar]
  227. 227. 
    Anantharaman K, Breier JA, Sheik CS, Dick GJ 2013. Evidence for hydrogen oxidation and metabolic plasticity in widespread deep-sea sulfur-oxidizing bacteria. PNAS 110:330–35
    [Google Scholar]
  228. 228. 
    Chen LX, Hu M, Huang LN, Hua ZS, Kuang JL et al. 2015. Comparative metagenomic and metatranscriptomic analyses of microbial communities in acid mine drainage. ISME J 9:1579–92
    [Google Scholar]
  229. 229. 
    Amato P, Besaury L, Joly M, Penaud B, Deguillaume L, Delort AM. 2019. Metatranscriptomic exploration of microbial functioning in clouds. Sci. Rep. 9:4383
    [Google Scholar]
  230. 230. 
    Soldatov VE. 1965.. [ On indications for subarachnoid therapy of tuberculous meningitis patients. ]. Probl. Tuberk. 43:50–55
    [Google Scholar]
  231. 231. 
    Hultman J, Waldrop MP, Mackelprang R, David MM, McFarland J et al. 2015. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature 521:208–12
    [Google Scholar]
  232. 232. 
    Galambos D, Anderson RE, Reveillaud J, Huber JA. 2019. Genome-resolved metagenomics and metatranscriptomics reveal niche differentiation in functionally redundant microbial communities at deep-sea hydrothermal vents. Environ. Microbiol. 21:4395–410
    [Google Scholar]
  233. 233. 
    Fortunato CS, Huber JA. 2016. Coupled RNA-SIP and metatranscriptomics of active chemolithoautotrophic communities at a deep-sea hydrothermal vent. ISME J 10:1925–38
    [Google Scholar]
  234. 234. 
    Lesniewski RA, Jain S, Anantharaman K, Schloss PD, Dick GJ. 2012. The metatranscriptome of a deep-sea hydrothermal plume is dominated by water column methanotrophs and lithotrophs. ISME J 6:2257–68
    [Google Scholar]
  235. 235. 
    Mapelli F, Scoma A, Michoud G, Aulenta F, Boon N et al. 2017. Biotechnologies for marine oil spill cleanup: indissoluble ties with microorganisms. Trends Biotechnol 35:860–70
    [Google Scholar]
  236. 236. 
    Yooseph S, Nealson KH, Rusch DB, McCrow JP, Dupont CL et al. 2010. Genomic and functional adaptation in surface ocean planktonic prokaryotes. Nature 468:60–66
    [Google Scholar]
  237. 237. 
    Gonzalez E, Pitre FE, Pagé AP, Marleau J, Guidi Nissim W et al. 2018. Trees, fungi and bacteria: tripartite metatranscriptomics of a root microbiome responding to soil contamination. Microbiome 6:53
    [Google Scholar]
  238. 238. 
    Cerro-Gálvez E, Roscales JL, Jiménez B, Sala MM, Dachs J, Vila-Costa M. 2020. Microbial responses to perfluoroalkyl substances and perfluorooctanesulfonate (PFOS) desulfurization in the Antarctic marine environment. Water Res 171:115434
    [Google Scholar]
  239. 239. 
    Falk N, Reid T, Skoyles A, Grgicak-Mannion A, Drouillard K, Weisener CG. 2019. Microbial metatranscriptomic investigations across contaminant gradients of the Detroit River. Sci. Total Environ. 690:121–31
    [Google Scholar]
  240. 240. 
    Gao B, Bian X, Chi L, Tu P, Ru H, Lu K 2017. Organophosphate diazinon altered quorum sensing, cell motility, stress response, and carbohydrate metabolism of gut microbiome. Toxicol. Sci. 157:354–64
    [Google Scholar]
  241. 241. 
    Jacquiod S, Nunes I, Brejnrod A, Hansen MA, Holm PE et al. 2018. Long-term soil metal exposure impaired temporal variation in microbial metatranscriptomes and enriched active phages. Microbiome 6:223
    [Google Scholar]
  242. 242. 
    Tan S, Cheung S, Ho TY, Liu H. 2019. Metatranscriptomics of the bacterial community in response to atmospheric deposition in the Western North Pacific Ocean. Mar. Genom. 45:57–63
    [Google Scholar]
  243. 243. 
    Zhou N, Jiang Y, Bergquist TR, Lee AJ, Kacsoh BZ et al. 2019. The CAFA challenge reports improved protein function prediction and new functional annotations for hundreds of genes through experimental screens. Genome Biol 20:244
    [Google Scholar]
  244. 244. 
    Anton BP, Chang YC, Brown P, Choi HP, Faller LL et al. 2013. The COMBREX project: design, methodology, and initial results. PLOS Biol 11:e1001638
    [Google Scholar]
  245. 245. 
    Kraus AJ, Brink BG, Siegel TN. 2019. Efficient and specific oligo-based depletion of rRNA. Sci. Rep. 9:12281
    [Google Scholar]
  246. 246. 
    Woyke T, Doud DFR, Schulz F. 2017. The trajectory of microbial single-cell sequencing. Nat. Methods 14:1045–54
    [Google Scholar]
  247. 247. 
    Hawinkel S, Mattiello F, Bijnens L, Thas O. 2019. A broken promise: microbiome differential abundance methods do not control the false discovery rate. Brief. Bioinform. 20:210–21
    [Google Scholar]
  248. 248. 
    Haiser HJ, Gootenberg DB, Chatman K, Sirasani G, Balskus EP, Turnbaugh PJ. 2013. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science 341:295–98
    [Google Scholar]
/content/journals/10.1146/annurev-biodatasci-031121-103035
Loading
/content/journals/10.1146/annurev-biodatasci-031121-103035
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error