1932

Abstract

With the recent transformative developments in single-cell genomics and, in particular, single-cell gene expression analysis, it is now possible to study tissues at the single-cell level, rather than having to rely on data from bulk measurements. Here we review the rapid developments in single-cell RNA sequencing (scRNA-seq) protocols that have the potential for unbiased identification and profiling of all cell types within a tissue or organism. In addition, novel approaches for spatial profiling of gene expression allow us to map individual cells and cell types back into the three-dimensional context of organs. The combination of in-depth single-cell and spatial gene expression data will reveal tissue architecture in unprecedented detail, generating a wealth of biological knowledge and a better understanding of many diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biodatasci-080917-013452
2018-07-20
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/biodatasci/1/1/annurev-biodatasci-080917-013452.html?itemId=/content/journals/10.1146/annurev-biodatasci-080917-013452&mimeType=html&fmt=ahah

Literature Cited

  1. 1. GTEx Consort. 2013. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45:6580–85
    [Google Scholar]
  2. 2.  Bandura DR, Baranov VI, Ornatsky OI, Antonov A, Kinach R et al. 2009. Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal. Chem. 81:166813–22
    [Google Scholar]
  3. 3.  Tang F, Barbacioru C, Wang Y, Nordman E, Lee C et al. 2009. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 6:5377–82
    [Google Scholar]
  4. 4.  Navin N, Kendall J, Troge J, Andrews P, Rodgers L et al. 2011. Tumour evolution inferred by single-cell sequencing. Nature 472:734190–94
    [Google Scholar]
  5. 5.  Kurimoto K, Yabuta Y, Ohinata Y, Ono Y, Uno KD et al. 2006. An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis. Nucleic Acids Res 34:5e42
    [Google Scholar]
  6. 6.  Kurimoto K, Yabuta Y, Ohinata Y, Saitou M 2007. Global single-cell cDNA amplification to provide a template for representative high-density oligonucleotide microarray analysis. Nat. Protoc. 2:3739–52
    [Google Scholar]
  7. 7.  Mohammadi S, Zuckerman N, Goldsmith A, Grama A 2017. A critical survey of deconvolution methods for separating cell types in complex tissues. Proc. IEEE. 105:2340–66
    [Google Scholar]
  8. 8.  Venet D, Pecasse F, Maenhaut C, Bersini H 2001. Separation of samples into their constituents using gene expression data. Bioinformatics 17:Suppl. 1S279–87
    [Google Scholar]
  9. 9.  Lu P, Nakorchevskiy A, Marcotte EM 2003. Expression deconvolution: a reinterpretation of DNA microarray data reveals dynamic changes in cell populations. PNAS 100:1810370–75
    [Google Scholar]
  10. 10.  Wang M, Master SR, Chodosh LA 2006. Computational expression deconvolution in a complex mammalian organ. BMC Bioinform 7:328
    [Google Scholar]
  11. 11.  Shen-Orr SS, Tibshirani R, Khatri P, Bodian DL, Staedtler F et al. 2010. Cell type–specific gene expression differences in complex tissues. Nat. Methods 7:4287–89
    [Google Scholar]
  12. 12.  Altboum Z, Steuerman Y, David E, Barnett-Itzhaki Z, Valadarsky L et al. 2014. Digital cell quantification identifies global immune cell dynamics during influenza infection. Mol. Syst. Biol. 10:720
    [Google Scholar]
  13. 13.  Newman AM, Liu CL, Green MR, Gentles AJ, Feng W et al. 2015. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12:5453–57
    [Google Scholar]
  14. 14.  Gentles AJ, Newman AM, Liu CL, Bratman SV, Feng W et al. 2015. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat. Med. 21:8938–45
    [Google Scholar]
  15. 15.  Shen-Orr SS, Gaujoux R 2013. Computational deconvolution: extracting cell type-specific information from heterogeneous samples. Curr. Opin. Immunol. 25:5571–78
    [Google Scholar]
  16. 16.  Kivioja T, Vähärautio A, Karlsson K, Bonke M, Enge M et al. 2011. Counting absolute numbers of molecules using unique molecular identifiers. Nat. Methods 9:172–74
    [Google Scholar]
  17. 17.  Hashimshony T, Wagner F, Sher N, Yanai I 2012. CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell Rep 2:3666–73
    [Google Scholar]
  18. 18.  Ramsköld D, Luo S, Wang Y-C, Li R, Deng Q et al. 2012. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat. Biotechnol. 30:8777–82
    [Google Scholar]
  19. 19.  Stegle O, Teichmann SA, Marioni JC 2015. Computational and analytical challenges in single-cell transcriptomics. Nat. Rev. Genet. 16:3133–45
    [Google Scholar]
  20. 20.  Stubbington MJT, Lönnberg T, Proserpio V, Clare S, Speak AO et al. 2016. T cell fate and clonality inference from single-cell transcriptomes. Nat. Methods 13:4329–32
    [Google Scholar]
  21. 21.  Lindeman I, Emerton G, Sollid LM, Teichmann S 2017. BraCeR: reconstruction of B-cell receptor sequences and clonality inference from single-cell RNA-sequencing. bioRxiv 185504. https://doi.org/10.1101/185504
    [Crossref]
  22. 22.  Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K et al. 2015. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161:51202–14
    [Google Scholar]
  23. 23.  Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A et al. 2015. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161:51187–201
    [Google Scholar]
  24. 24.  Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW et al. 2017. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8:14049
    [Google Scholar]
  25. 25.  Gierahn TM, Wadsworth MH2nd, Hughes TK, Bryson BD, Butler A et al. 2017. Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput. Nat. Methods 14:4395–98
    [Google Scholar]
  26. 26.  Arvanti E, Claasen M 2017. Sensitive detection of rare disease-associated cell subsets via representation learning. Nat. Commun. 8:14825
    [Google Scholar]
  27. 27.  Cao J, Packer JS, Ramani V, Cusanovich DA, Huynh C et al. 2017. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 357:6352661–67
    [Google Scholar]
  28. 28.  Rosenberg AB, Roco C, Muscat RA, Kuchina A, Mukherjee S et al. 2017. Scaling single cell transcriptomics through split pool barcoding. bioRxiv 105163. https://doi.org/10.1101/105163
    [Crossref]
  29. 29.  Amini S, Pushkarev D, Christiansen L, Kostem E, Royce T et al. 2014. Haplotype-resolved whole-genome sequencing by contiguity-preserving transposition and combinatorial indexing. Nat. Genet. 46:121343–49
    [Google Scholar]
  30. 30.  Engström PG, Steijger T, Sipos B, Grant GR, Kahles A et al. 2013. Systematic evaluation of spliced alignment programs for RNA-seq data. Nat. Methods 10:121185–91
    [Google Scholar]
  31. 31.  Everaert C, Luypaert M, Maag JLV, Cheng QX, Dinger ME et al. 2017. Benchmarking of RNA-sequencing analysis workflows using whole-transcriptome RT-qPCR expression data. Sci. Rep. 7:11559
    [Google Scholar]
  32. 32.  Teng M, Love MI, Davis CA, Djebali S, Dobin A et al. 2016. A benchmark for RNA-seq quantification pipelines. Genome Biol 17:74
    [Google Scholar]
  33. 33.  Bray NL, Pimentel H, Melsted P, Pachter L 2016. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34:5525–27
    [Google Scholar]
  34. 34.  Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C 2017. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14:4417–19
    [Google Scholar]
  35. 35.  Tung P-Y, Blischak JD, Hsiao CJ, Knowles DA, Burnett JE et al. 2017. Batch effects and the effective design of single-cell gene expression studies. Sci. Rep. 7:39921
    [Google Scholar]
  36. 36.  Haghverdi L, Lun ATL, Morgan MD, Marioni JC 2017. Correcting batch effects in single-cell RNA sequencing data by matching mutual nearest neighbours. bioRxiv 165118. https://doi.org/10.1101/165118
    [Crossref]
  37. 37.  Buttner M, Miao Z, Wolf A, Teichmann SA, Theis FJ 2017. Assessment of batch-correction methods for scRNA-seq data with a new test metric. bioRxiv 200345. https://doi.org/10.1101/200345
    [Crossref]
  38. 38.  Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S et al. 2014. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32:4381–86
    [Google Scholar]
  39. 39.  Satija R, Farrell JA, Gennert D, Schier AF, Regev A 2015. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33:5495–502
    [Google Scholar]
  40. 40.  Wolf FA, Angerer P, Theis FJ 2018. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol 19:115
    [Google Scholar]
  41. 41.  Soneson C, Robinson MD 2018. Bias, robustness and scalability in single-cell differential expression analysis. Nat. Methods 15:225–61
    [Google Scholar]
  42. 42.  Svensson V, Natarajan KN, Ly L-H, Miragaia RJ, Labalette C et al. 2017. Power analysis of single-cell RNA-sequencing experiments. Nat. Methods 14:4381–87
    [Google Scholar]
  43. 43.  Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-Adkins A et al. 2017. Comparative analysis of single-cell RNA sequencing methods. Mol. Cell 65:4631–43.e4
    [Google Scholar]
  44. 44.  Tang F, Barbacioru C, Bao S, Lee C, Nordman E et al. 2010. Tracing the derivation of embryonic stem cells from the inner cell mass by single-cell RNA-Seq analysis. Cell Stem Cell 6:5468–78
    [Google Scholar]
  45. 45.  Yan L, Yang M, Guo H, Yang L, Wu J et al. 2013. Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat. Struct. Mol. Biol. 20:91131–39
    [Google Scholar]
  46. 46.  Xue Z, Huang K, Cai C, Cai L, Jiang C-Y et al. 2013. Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature 500:7464593–97
    [Google Scholar]
  47. 47.  Petropoulos S, Edsgärd D, Reinius B, Deng Q, Panula SP et al. 2016. Single-cell RNA-Seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell 165:41012–26
    [Google Scholar]
  48. 48.  Qiu X, Mao Q, Tang Y, Wang L, Chawla R et al. 2017. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14:979–82
    [Google Scholar]
  49. 49.  Bendall SC, Davis KL, Amir E-AD, Tadmor MD, Simonds EF et al. 2014. Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell 157:3714–25
    [Google Scholar]
  50. 50.  Shin J, Berg DA, Zhu Y, Shin JY, Song J et al. 2015. Single-cell RNA-seq with Waterfall reveals molecular cascades underlying adult neurogenesis. Cell Stem Cell 17:3360–72
    [Google Scholar]
  51. 51.  Marco E, Karp RL, Guo G, Robson P, Hart AH et al. 2014. Bifurcation analysis of single-cell gene expression data reveals epigenetic landscape. PNAS 111:52E5643–50
    [Google Scholar]
  52. 52.  Setty M, Tadmor MD, Reich-Zeliger S, Angel O, Salame TM et al. 2016. Wishbone identifies bifurcating developmental trajectories from single-cell data. Nat. Biotechnol. 34:6637–45
    [Google Scholar]
  53. 53.  Haghverdi L, Büttner M, Wolf FA, Buettner F, Theis FJ 2016. Diffusion pseudotime robustly reconstructs lineage branching. Nat. Methods 13:10845–48
    [Google Scholar]
  54. 54.  Macaulay IC, Svensson V, Labalette C, Ferreira L, Hamey F et al. 2016. Single-cell RNA-sequencing reveals a continuous spectrum of differentiation in hematopoietic cells. Cell Rep 14:4966–77
    [Google Scholar]
  55. 55.  Lönnberg T, Svensson V, James KR, Fernandez-Ruiz D, Sebina I et al. 2017. Single-cell RNA-seq and computational analysis using temporal mixture modelling resolves TH1/TFH fate bifurcation in malaria. Sci. Immunol. 2:9eaal2192
    [Google Scholar]
  56. 56.  Boukouvalas A, Hensman J, Rattray M 2017. BGP: branched Gaussian processes for identifying gene-specific branching dynamics in single cell data. bioRxiv 166868. http://doi:10.1101/166868
  57. 57.  Penfold CA, Sybirna A, Reid J, Huang Y, Wernisch L et al. 2017. Nonparametric Bayesian inference of transcriptional branching and recombination identifies regulators of early human germ cell development. bioRxiv 167684. http://doi:10.1101/167684
  58. 58.  Saelens W, Cannoodt R, Todorov H, Saeys Y 2018. A comparison of single-cell trajectory inference methods: towards more accurate and robust tools. bioRxiv 276907. http://doi:10.1101/276907
  59. 59.  Svensson V, Vento-Tormo R, Teichmann SA 2018. Exponential scaling of single-cell RNA-seq in the last decade. Nat Protoc 13:4599–604
    [Google Scholar]
  60. 60.  Dixit A, Parnas O, Li B, Chen J, Fulco CP et al. 2016. Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167:71853–66.e17
    [Google Scholar]
  61. 61.  Adamson B, Norman TM, Jost M, Cho MY, Nuñez JK et al. 2016. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 167:71867–82.e21
    [Google Scholar]
  62. 62.  Jaitin DA, Weiner A, Yofe I, Lara-Astiaso D, Keren-Shaul H et al. 2016. Dissecting immune circuits by linking CRISPR-pooled screens with single-cell RNA-seq. Cell 167:71883–96.e15
    [Google Scholar]
  63. 63.  Datlinger P, Rendeiro AF, Schmidl C, Krausgruber T, Traxler P et al. 2017. Pooled CRISPR screening with single-cell transcriptome readout. Nat. Methods 14:3297–301
    [Google Scholar]
  64. 64.  Guo G, Huss M, Tong GQ, Wang C, Li Sun L et al. 2010. Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Dev. Cell 18:4675–85
    [Google Scholar]
  65. 65.  Pollen AA, Nowakowski TJ, Shuga J, Wang X, Leyrat AA et al. 2014. Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat. Biotechnol. 32:101053–58
    [Google Scholar]
  66. 66.  Chen J, Suo S, Tam PPL, Han J-DJ, Peng G, Jing N 2017. Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq. Nat. Protoc. 12:3566–80
    [Google Scholar]
  67. 67.  Butler AE, Matveyenko AV, Kirakossian D, Park J, Gurlo T, Butler PC 2016. Recovery of high-quality RNA from laser capture microdissected human and rodent pancreas. J. Histotechnol. 39:259–65
    [Google Scholar]
  68. 68.  Peng G, Suo S, Chen J, Chen W, Liu C et al. 2016. Spatial transcriptome for the molecular annotation of lineage fates and cell identity in mid-gastrula mouse embryo. Dev. Cell 36:6681–97
    [Google Scholar]
  69. 69.  Okamura-Oho Y, Shimokawa K, Takemoto S, Hirakiyama A, Nakamura S et al. 2012. Transcriptome tomography for brain analysis in the web-accessible anatomical space. PLOS ONE 7:9e45373
    [Google Scholar]
  70. 70.  Femino AM, Fay FS, Fogarty K, Singer RH 1998. Visualization of single RNA transcripts in situ. Science 280:5363585–90
    [Google Scholar]
  71. 71.  Raj A, van den Bogaard P, Rifkin SA, van Oudenaarden A, Tyagi S 2008. Imaging individual mRNA molecules using multiple singly labeled probes. Nat. Methods 5:10877–79
    [Google Scholar]
  72. 72.  Shaffer SM, Wu M-T, Levesque MJ, Raj A 2013. Turbo FISH: A method for rapid single molecule RNA FISH. PLOS ONE 8:9e75120
    [Google Scholar]
  73. 73.  Lubeck E, Coskun AF, Zhiyentayev T, Ahmad M, Cai L 2014. Single-cell in situ RNA profiling by sequential hybridization. Nat. Methods 11:4360–61
    [Google Scholar]
  74. 74.  Lubeck E, Cai L 2012. Single-cell systems biology by super-resolution imaging and combinatorial labeling. Nat. Methods 9:7743–48
    [Google Scholar]
  75. 75.  Levsky JM, Shenoy SM, Pezo RC, Singer RH 2002. Single-cell gene expression profiling. Science 297:5582836–40
    [Google Scholar]
  76. 76.  Levesque MJ, Raj A 2013. Single-chromosome transcriptional profiling reveals chromosomal gene expression regulation. Nat. Methods 10:3246–48
    [Google Scholar]
  77. 77.  Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X 2015. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348:6233aaa6090
    [Google Scholar]
  78. 78.  Moon TK 2005. Error Correction Coding: Mathematical Methods and Algorithms Hoboken, NJ: Wiley
  79. 79.  Moffitt JR, Hao J, Wang G, Chen KH, Babcock HP, Zhuang X 2016. High-throughput single-cell gene-expression profiling with multiplexed error-robust fluorescence in situ hybridization. PNAS 113:3911046–51
    [Google Scholar]
  80. 80.  Shah S, Lubeck E, Schwarzkopf M, He T-F, Greenbaum A et al. 2016. Single-molecule RNA detection at depth by hybridization chain reaction and tissue hydrogel embedding and clearing. Development 143:152862–67
    [Google Scholar]
  81. 81.  Choi HMT, Chang JY, Trinh LA, Padilla JE, Fraser SE, Pierce NA 2010. Programmable in situ amplification for multiplexed imaging of mRNA expression. Nat. Biotechnol. 28:111208–12
    [Google Scholar]
  82. 82.  Shah S, Lubeck E, Zhou W, Cai L 2016. In situ transcription profiling of single cells reveals spatial organization of cells in the mouse hippocampus. Neuron 92:2342–57
    [Google Scholar]
  83. 83.  Cembrowski MS, Spruston N 2017. Integrating results across methodologies is essential for producing robust neuronal taxonomies. Neuron 94:4747–51.e1
    [Google Scholar]
  84. 84.  Lee JH, Daugharthy ER, Scheiman J, Kalhor R, Ferrante TC et al. 2015. Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues. Nat. Protoc. 10:3442–58
    [Google Scholar]
  85. 85.  Ke R, Mignardi M, Pacureanu A, Svedlund J, Botling J et al. 2013. In situ sequencing for RNA analysis in preserved tissue and cells. Nat. Methods 10:9857–60
    [Google Scholar]
  86. 86.  Ståhl PL, Salmén F, Vickovic S, Lundmark A, Navarro JF et al. 2016. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353:629478–82
    [Google Scholar]
  87. 87.  Achim K, Pettit J-B, Saraiva LR, Gavriouchkina D, Larsson T et al. 2015. High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin. Nat. Biotechnol. 33:5503–9
    [Google Scholar]
  88. 88.  Junker JP, Noël ES, Guryev V, Peterson KA, Shah G et al. 2014. Genome-wide RNA tomography in the zebrafish embryo. Cell 159:3662–75
    [Google Scholar]
  89. 89.  Svensson V, Teichmann SA, Stegle O 2017. SpatialDE: identification of spatially variable genes. bioRxiv 143321. http://doi:10.1101/143321
  90. 90.  van den Brink SC, Sage F, Vértesy Á, Spanjaard B, Peterson-Maduro J et al. 2017. Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations. Nat. Methods 14:10935–36
    [Google Scholar]
  91. 91.  Lovatt D, Ruble BK, Lee J, Dueck H, Kim TK et al. 2014. Transcriptome in vivo analysis (TIVA) of spatially defined single cells in live tissue. Nat. Methods 11:2190–96
    [Google Scholar]
  92. 92.  Skylaki S, Hilsenbeck O, Schroeder T 2016. Challenges in long-term imaging and quantification of single-cell dynamics. Nat. Biotechnol. 34:111137–44
    [Google Scholar]
  93. 93.  Kiselev VY, Kirschner K, Schaub MT, Andrews T, Yiu A et al. 2017. SC3: consensus clustering of single-cell RNA-seq data. Nat. Methods 14:5483–86
    [Google Scholar]
  94. 94.  Wang B, Zhu J, Pierson E, Ramazzotti D, Batzoglou S 2017. Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning. Nat. Methods 14:4414–16
    [Google Scholar]
  95. 95.  Qiu X, Hill A, Packer J, Lin D, Ma Y-A, Trapnell C 2017. Single-cell mRNA quantification and differential analysis with Census. Nat. Methods 14:3309–15
    [Google Scholar]
  96. 96.  Jiang L, Chen H, Pinello L, Yuan G-C 2016. GiniClust: detecting rare cell types from single-cell gene expression data with Gini index. Genome Biol. 17:1144
    [Google Scholar]
  97. 97.  Kharchenko PV, Silberstein L, Scadden DT 2014. Bayesian approach to single-cell differential expression analysis. Nat. Methods 11:7740–42
    [Google Scholar]
  98. 98.  Grindberg RV, Yee-Greenbaum JL, McConnell MJ, Novotny M, O'Shaughnessy AL et al. 2013. RNA-sequencing from single nuclei. PNAS 110:4919802–7
    [Google Scholar]
  99. 99.  Lacar B, Linker SB, Jaeger BN, Krishnaswami S, Barron J et al. 2016. Nuclear RNA-seq of single neurons reveals molecular signatures of activation. Nat. Commun. 7:11022
    [Google Scholar]
  100. 100.  Habib N, Li Y, Heidenreich M, Swiech L, Avraham-Davidi I et al. 2016. Div-Seq: single-nucleus RNA-Seq reveals dynamics of rare adult newborn neurons. Science 353:6302925–28
    [Google Scholar]
  101. 101.  Lake BB, Chen S, Sos BC, Fan J, Kaeser GE et al. 2018. Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain. Nat. Biotechnol. 36:170–80
    [Google Scholar]
  102. 102.  Habib N, Avraham-Davidi I, Basu A, Burks T, Shekhar K et al. 2017. Massively parallel single-nucleus RNA-seq with DroNc-seq. Nat. Methods 14:10955–58
    [Google Scholar]
  103. 103.  Regev A, Teichmann S, Lander ES, Amit I, Benoist C et al. 2017. The Human Cell Atlas. bioRxiv 121202. http://doi:10.1101/121202
  104. 104.  Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F et al. 2014. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343:6172776–79
    [Google Scholar]
  105. 105.  Zeisel A, Muñoz-Manchado AB, Codeluppi S, Lönnerberg P, La Manno G et al. 2015. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347:62261138–42
    [Google Scholar]
  106. 106.  Muraro MJ, Dharmadhikari G, Grün D, Groen N, Dielen T et al. 2016. A single-cell transcriptome atlas of the human pancreas. Cell Syst 3:4385–94.e3
    [Google Scholar]
  107. 107.  Segerstolpe Å, Palasantza A, Eliasson P, Andersson E-M, Andréasson A-C et al. 2016. Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes. Cell Metab 24:4593–607
    [Google Scholar]
  108. 108.  Xin Y, Kim J, Okamoto H, Ni M, Wei Y et al. 2016. RNA sequencing of single human islet cells reveals type 2 diabetes genes. Cell Metab 24:4608–15
    [Google Scholar]
  109. 109.  Villani A-C, Satija R, Reynolds G, Sarkizova S, Shekhar K et al. 2017. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356:6335eaah4573
    [Google Scholar]
  110. 110.  Wyss-Coray T, Darmanis S, Muris Consortium T 2017. Transcriptomic characterization of 20 organs and tissues from mouse at single cell resolution creates a Tabula Muris. bioRxiv 237446. https://doi.org/10.1101/237446
    [Crossref]
  111. 111.  Han X, Wang R, Zhou Y, Fei L, Sun H et al. 2018. Mapping the mouse cell atlas by Microwell-seq. Cell 172:51091–107.e17
    [Google Scholar]
  112. 112.  Islam S, Kjällquist U, Moliner A, Zajac P, Fan J-B et al. 2011. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res. 21:71160–67
    [Google Scholar]
  113. 113.  Islam S, Zeisel A, Joost S, La Manno G, Zajac P et al. 2014. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat. Methods 11:2163–66
    [Google Scholar]
  114. 114.  Picelli S, Björklund ÅK, Faridani OR, Sagasser S, Winberg G, Sandberg R 2013. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat. Methods 10:111096–98
    [Google Scholar]
  115. 115.  Sasagawa Y, Nikaido I, Hayashi T, Danno H, Uno KD et al. 2013. Quartz-Seq: a highly reproducible and sensitive single-cell RNA-Seq reveals non-genetic gene expression heterogeneity. Genome Biol 14:4R31
    [Google Scholar]
  116. 116.  Sasagawa Y, Danno H, Takada H, Ebisawa M, Hayashi T et al. 2017. Quartz-Seq2: a high-throughput single-cell RNA-sequencing method that effectively uses limited sequence reads. bioRxiv 159384. http://doi:10.1101/159384
  117. 117.  Hashimshony T, Senderovich N, Avital G, Klochendler A, de Leeuw Y et al. 2016. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq. Genome Biol 17:77
    [Google Scholar]
  118. 118.  Fan HC, Fu GK, Fodor SPA 2015. Combinatorial labeling of single cells for gene expression cytometry. Science 347:62221258367
    [Google Scholar]
  119. 119.  Hochgerner H, Lönnerberg P, Hodge R, Mikes J, Heskol A et al. 2017. STRT-seq-2i: dual-index 5′ single cell and nucleus RNA-seq on an addressable microwell array. Sci. Rep. 7:16327
    [Google Scholar]
  120. 120.  Bose S, Wan Z, Carr A, Rizvi AH, Vieira G et al. 2015. Scalable microfluidics for single-cell RNA printing and sequencing. Genome Biol 16:120
    [Google Scholar]
  121. 121.  Yuan J, Sims PA 2016. An automated Microwell platform for large-scale single cell RNA-Seq. Sci. Rep. 6:33883
    [Google Scholar]
  122. 122.  Brady G, Barbara M, Iscove NN 1990. Representative in vitro cDNA amplification from individual hemopoietic cells and colonies. Methods Mol. Cell. Biol. 2:17–25
    [Google Scholar]
  123. 123.  Tietjen I, Rihel JM, Cao Y, Koentges G, Zakhary L, Dulac C 2003. Single-cell transcriptional analysis of neuronal progenitors. Neuron 38:2161–75
    [Google Scholar]
  124. 124.  Chiang M-K, Melton DA 2003. Single-cell transcript analysis of pancreas development. Dev. Cell 4:3383–93
    [Google Scholar]
  125. 125.  Schmidt WM, Mueller MW 1999. CapSelect: a highly sensitive method for 5′ CAP- dependent enrichment of full-length cDNA in PCR-mediated analysis of mRNAs. Nucleic Acids Res 27:21e31
    [Google Scholar]
  126. 126.  Zhu YY, Machleder EM, Chenchik A, Li R, Siebert PD 2001. Reverse transcriptase template switching: a SMART approach for full-length cDNA library construction. Biotechniques 30:4892–97
    [Google Scholar]
  127. 127.  Gubler U, Hoffman BJ 1983. A simple and very efficient method for generating cDNA libraries. Gene 25:2–3263–69
    [Google Scholar]
  128. 128.  Okayama H, Berg P 1982. High-efficiency cloning of full-length cDNA. Mol. Cell. Biol. 2:2161–70
    [Google Scholar]
/content/journals/10.1146/annurev-biodatasci-080917-013452
Loading
/content/journals/10.1146/annurev-biodatasci-080917-013452
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error