1932

Abstract

Mucus selectively controls the transport of molecules, particulate matter, and microorganisms to the underlying epithelial layer. It may be desirable to weaken the mucus barrier to enable effective delivery of drug carriers. Alternatively, the mucus barrier can be strengthened to prevent epithelial interaction with pathogenic microbes or other exogenous materials. The dynamic mucus layer can undergo changes in structure (e.g., pore size) and/or composition (e.g., protein concentrations, mucin glycosylation) in response to stimuli that occur naturally or are purposely administered, thus altering its barrier function. This review outlines mechanisms by which mucus provides a selective barrier and methods to engineer the mucus layer from the perspective of strengthening or weakening its barrier properties. In addition, we discuss strategic design of drug carriers and dosing formulation properties for efficient delivery across the mucus barrier.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-062117-121156
2018-06-04
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/20/1/annurev-bioeng-062117-121156.html?itemId=/content/journals/10.1146/annurev-bioeng-062117-121156&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Taniguchi T, Woodward AM, Magnelli P, McColgan NM, Lehoux S et al. 2017. N-Glycosylation affects the stability and barrier function of the MUC16 mucin. J. Biol. Chem. 292:11079–90
    [Google Scholar]
  2. 2.  Cone R 2005. Mucus. Mucosal Immunology J Mestecky, ME Lamm, PL Ogra, W Strober, J Bienenstock et al.49–72 Amsterdam: Elsevier. , 3rd ed..
    [Google Scholar]
  3. 3.  Carlstedt I, Lindgren H, Sheehan JK, Ulmsten U, Wingerup L 1983. Isolation and characterization of human cervical-mucus glycoproteins. Biochem. J. 211:13–22
    [Google Scholar]
  4. 4.  Thomsson KA, Karlsson H, Hansson GC 2000. Sequencing of sulfated oligosaccharides from mucins by liquid chromatography and electrospray ionization tandem mass spectrometry. Anal. Chem. 72:4543–49
    [Google Scholar]
  5. 5.  Boat TF, Cheng PW, Leigh MW 1994. Biochemistry of mucus. Airway Secretion T Takishima, S Shimura 217–82 New York: Dekker
    [Google Scholar]
  6. 6.  Bergstrom KSB, Kissoon-Singh V, Gibson DL, Ma C, Montero M et al. 2010. Muc2 protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa. PLOS Pathog 6:e1000902
    [Google Scholar]
  7. 7.  Kamada N, Kim Y-G, Sham HP, Vallance BA, Puente JL et al. 2012. Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science 336:1325–29
    [Google Scholar]
  8. 8.  Lai SK, Wang YY, Hida K, Cone R, Hanes J 2009. Nanoparticles reveal that human cervicovaginal mucus is riddled with pores larger than viruses. PNAS 107:598–603
    [Google Scholar]
  9. 9.  Lehr CM, Poelma FGJ, Junginger HE, Tukker JJ 1991. An estimate of turnover time of intestinal mucus gel layer in the rat in situ loop. Int. J. Pharm. 70:235–40
    [Google Scholar]
  10. 10.  Krishnamoorthy R, Mitra AK 1998. Prodrugs for nasal drug delivery. Adv. Drug Deliv. Rev. 29:135–46
    [Google Scholar]
  11. 11.  Illum L 2003. Nasal drug delivery—possibilities, problems and solutions. J. Control. Release 87:187–98
    [Google Scholar]
  12. 12.  Lock JY, Carlson TL, Carrier RL 2018. Mucus models to evaluate drug and particle diffusion. Adv. Drug Deliv. Rev. 124:34–49
    [Google Scholar]
  13. 13.  Groo A-G, Lagarce F 2014. Mucus models to evaluate nanomedicines for diffusion. Drug Discov. Today 19:1097–108
    [Google Scholar]
  14. 14.  Lieleg O, Vladescu I, Ribbeck K 2010. Characterization of particle translocation through mucin hydrogels. Biophys. J. 98:1782–89
    [Google Scholar]
  15. 15.  Celli JP, Turner BS, Afdhal NH, Ewoldt RH, McKinley GH et al. 2007. Rheology of gastric mucin exhibits a pH-dependent sol-gel transition. Biomacromolecules 8:1580–86
    [Google Scholar]
  16. 16.  Suk JS, Lai SK, Wang Y-Y, Ensign LM, Zeitlin PL et al. 2009. The penetration of fresh undiluted sputum expectorated by cystic fibrosis patients by non-adhesive polymer nanoparticles. Biomaterials 30:2591–97
    [Google Scholar]
  17. 17.  Olmsted SS, Padgett JL, Yudin AI, Whaley KJ, Moench TR, Cone RA 2001. Diffusion of macromolecules and virus-like particles in human cervical mucus. Biophys. J. 81:1930–37
    [Google Scholar]
  18. 18.  Yildiz H, Speciner L, Ozdemir C, Cohen D, Carrier R 2015. Food-associated stimuli enhance barrier properties of gastrointestinal mucus. Biomaterials 54:1–8
    [Google Scholar]
  19. 19.  Wolf DP, Sokoloski J, Khan MA, Litt M 1977. Human cervical mucus. III. Isolation and characterization of rheologically active mucin. Fertil. Steril. 28:53–58
    [Google Scholar]
  20. 20.  Serisier DJ, Carroll MP, Shute JK, Young SA 2009. Macrorheology of cystic fibrosis, chronic obstructive pulmonary disease and normal sputum. Respir. Res. 10:63
    [Google Scholar]
  21. 21.  Holmén Larsson JM, Thomsson KA, Rodríguez-Piñeiro AM, Karlsson H, Hansson GC 2013. Studies of mucus in mouse stomach, small intestine, and colon. III. Gastrointestinal Muc5ac and Muc2 mucin O-glycan patterns reveal a regiospecific distribution. Am. J. Physiol. Gastrointest. Liver Physiol. 305:G357–63
    [Google Scholar]
  22. 22.  Ovesen L, Bendtsen F, Tage-Jensen U, Pedersen NT, Gram BR, Rune SJ 1986. Intraluminal pH in the stomach, duodenum, and proximal jejunum in normal subjects and patients with exocrine pancreatic insufficiency. Gastroenterology 90:958–62
    [Google Scholar]
  23. 23.  Bansil R, Turner BS 2006. Mucin structure, aggregation, physiological functions and biomedical applications. Curr. Opin. Colloid Interface Sci. 11:164–70
    [Google Scholar]
  24. 24.  Wolf D, Blasco L, Khan M, Litt M 1977. Human cervical mucus. II. Changes in viscoelasticity during the ovulatory mentrual cycle. Fertil. Steril. 28:47–52
    [Google Scholar]
  25. 25.  Allen A 1978. Structure of gastrointestinal mucus glycoproteins and the viscous and gel-forming properties of mucus. Br. Med. Bull. 34:28–33
    [Google Scholar]
  26. 26.  Murty VLN, Sarosiek J, Slomiany A, Slomiany BL 1984. Effect of lipids and proteins on the viscosity of gastric mucus glycoprotein. Biochem. Biophys. Res. Commun. 121:521–29
    [Google Scholar]
  27. 27.  Macierzanka A, Mackie AR, Bajka BH, Rigby NM, Nau F, Dupont D 2014. Transport of particles in intestinal mucus under simulated infant and adult physiological conditions: impact of mucus structure and extracellular DNA. PLOS ONE 9:e95274
    [Google Scholar]
  28. 28.  Bhaskar KR, Gong DH, Bansil R, Pajevic S, Hamilton JA et al. 1991. Profound increase in viscosity and aggregation of pig gastric mucin at low pH. Am. J. Physiol. Gastrointest. Liver Physiol. 261:G827–32
    [Google Scholar]
  29. 29.  Thim L, Madsen F, Poulsen SS 2002. Effect of trefoil factors on the viscoelastic properties of mucus gels. Eur. J. Clin. Investig. 32:519–27
    [Google Scholar]
  30. 30.  Bastholm SK, Samson MH, Becher N, Hansen LK, Stubbe PR et al. 2017. Trefoil factor peptide 3 is positively correlated with the viscoelastic properties of the cervical mucus plug. Acta Obstet. Gynecol. Scand. 96:47–52
    [Google Scholar]
  31. 31.  Krimi RB, Kotelevets L, Dubuquoy L, Plaisancié P, Walker F et al. 2008. Resistin‐like molecule β regulates intestinal mucous secretion and curtails TNBS‐induced colitis in mice. Inflamm. Bowel Dis. 14:931–41
    [Google Scholar]
  32. 32.  Yu H, He Y, Zhang X, Peng Z, Yang Y et al. 2011. The rat IgGFcγBP and Muc2 C-terminal domains and TFF3 in two intestinal mucus layers bind together by covalent interaction. PLOS ONE 6:e20334
    [Google Scholar]
  33. 33.  Creeth JM, Bridge JL, Horton JR 1979. An interaction between lysozyme and mucus glycoproteins. Implications for density-gradient separations. Biochem. J. 181:717–24
    [Google Scholar]
  34. 34.  Ellison RT, Giehl TJ 1991. Killing of gram-negative bacteria by lactoferrin and lysozyme. J. Clin. Investig. 88:1080–91
    [Google Scholar]
  35. 35.  Actor JK, Hwang S-A, Kruzel ML 2009. Lactoferrin as a natural immune modulator. Curr. Pharm. Des. 15:1956–73
    [Google Scholar]
  36. 36.  Jenssen AO, Harbitz O, Smidsrød O 1978. Viscometric and chemical characterization of sputum from patients with chronic obstructive lung disease. Scand. J. Respir. Dis. 59:141–53
    [Google Scholar]
  37. 37.  Fahrbach KM, Malykhina O, Stieh DJ, Hope TJ 2013. Differential binding of IgG and IgA to mucus of the female reproductive tract. PLOS ONE 8:e76176
    [Google Scholar]
  38. 38.  Wang YY, Kannan A, Nunn KL, Murphy MA, Subramani DB et al. 2014. IgG in cervicovaginal mucus traps HSV and prevents vaginal herpes infections. Mucosal Immunol 7:1036–44
    [Google Scholar]
  39. 39.  Gustafsson JK, Ermund A, Ambort A, Johansson MEV, Nilsson HE et al. 2012. Bicarbonate and functional CFTR channel are required for proper mucin secretion and link cystic fibrosis with its mucus phenotype. J. Exp. Med. 209:1263
    [Google Scholar]
  40. 40.  Duncan GA, Jung J, Joseph A, Thaxton AL, West NE et al. 2016. Microstructural alterations of sputum in cystic fibrosis lung disease. JCI Insight 1:e88198
    [Google Scholar]
  41. 41.  Matsui H, Wagner VE, Hill DB, Schwab UE, Rogers TD et al. 2006. A physical linkage between cystic fibrosis airway surface dehydration and Pseudomonas aeruginosa biofilms. PNAS 103:18131–36
    [Google Scholar]
  42. 42.  Chen S-J, Liu X-W, Liu J-P, Yang X-Y, Lu F-G 2014. Ulcerative colitis as a polymicrobial infection characterized by sustained broken mucus barrier. World J. Gastroenterol. 20:9468–75
    [Google Scholar]
  43. 43.  Pullan RD, Thomas GA, Rhodes M, Newcombe RG, Williams GT et al. 1994. Thickness of adherent mucus gel on colonic mucosa in humans and its relevance to colitis. Gut 35:353–59
    [Google Scholar]
  44. 44.  Braun A, Treede I, Gotthardt D, Tietje A, Zahn A et al. 2009. Alterations of phospholipid concentration and species composition of the intestinal mucus barrier in ulcerative colitis: a clue to pathogenesis. Inflamm. Bowel Dis. 15:1705–20
    [Google Scholar]
  45. 45.  Corfield AP, Myerscough N, Bradfield N, Do Amaral Corfield C, Gough M et al. 1996. Colonic mucins in ulcerative colitis: evidence for loss of sulfation. Glycoconj. J. 13:809–22
    [Google Scholar]
  46. 46.  McElroy SJ, Prince LS, Weitkamp J-H, Reese J, Slaughter JC, Polk DB 2011. Tumor necrosis factor receptor 1–dependent depletion of mucus in immature small intestine: a potential role in neonatal necrotizing enterocolitis. Am. J. Physiol. Gastrointest. Liver Physiol. 301:G656–66
    [Google Scholar]
  47. 47.  Israel E 1994. Neonatal necrotizing enterocolitis, a disease of the immature intestinal mucosal barrier. Acta Paediatr 83:27–32
    [Google Scholar]
  48. 48.  Vieten D, Corfield A, Carroll D, Ramani P, Spicer R 2005. Impaired mucosal regeneration in neonatal necrotising enterocolitis. Pediatr. Surg. Int. 21:153–60
    [Google Scholar]
  49. 49.  Coutinho HB, da Mota HC, Coutinho VB, Robalinho TI, Furtado AF et al. 1998. Absence of lysozyme (muramidase) in the intestinal Paneth cells of newborn infants with necrotising enterocolitis. J. Clin. Pathol. 51:512–14
    [Google Scholar]
  50. 50.  Hills BA 1996. Gastric surfactant and the hydrophobic mucosal barrier. Gut 39:621–24
    [Google Scholar]
  51. 51.  Tytgat GNJ 2011. Etiopathogenetic principles and peptic ulcer disease classification. Dig. Dis. 29:454–58
    [Google Scholar]
  52. 52.  Kerss S, Allen A, Garner A 1982. A simple method for measuring thickness of the mucus gel layer adherent to rat, frog and human gastric mucosa: influence of feeding, prostaglandin, N-acetylcysteine and other agents. Clin. Sci. 63:187–95
    [Google Scholar]
  53. 53.  Pearson JP, Ward R, Allen A, Roberts NB, Taylor WH 1986. Mucus degradation by pepsin. Comparison of mucolytic activity of human pepsin 1 and pepsin 3: implications in peptic ulceration. Gut 27:243–48
    [Google Scholar]
  54. 54.  Lichtenberger L, Wang Z-M, Romero J, Ulloa C, Perez J et al. 1995. Non-steroidal anti-inflammatory drugs (NSAIDs) associate with zwitterionic phospholipids: insight into the mechanism and reversal of NSAID-induced gastrointestinal injury. Nat. Med. 1:154–58
    [Google Scholar]
  55. 55.  Hoegger MJ, Fischer AJ, McMenimen JD, Ostedgaard LS, Tucker AJ et al. 2014. Impaired mucus detachment disrupts mucociliary transport in a piglet model of cystic fibrosis. Science 345:818–22
    [Google Scholar]
  56. 56.  Dische Z, di Sant'Agnese P, Pallavicini C, Youlos J 1959. Composition of mucoprotein fractions from duodenal fluid of patients with cystic fibrosis of the pancreas and from controls. Pediatrics 24:74–91
    [Google Scholar]
  57. 57.  Boat TF, Cheng PW, Iyer RN, Carlson DM, Polony I 1976. Human respiratory tract secretions. Arch. Biochem. Biophys. 177:95–104
    [Google Scholar]
  58. 58.  Potter JL, Matthews LW, Spector S, Lemm J 1967. Studies on pulmonary secretions. II. Osmolality and the ionic environment of pulmonary secretions from patients with cystic fibrosis, bronchiectasis, and laryngectomy. Am. Rev. Respir. Dis. 96:83–87
    [Google Scholar]
  59. 59.  Slomiany A, Murty VLN, Aono M, Snyder CE, Herp A, Slomiany BL 1982. Lipid composition of tracheobronchial secretions from normal individuals and patients with cystic fibrosis. Biochim. Biophysi. Acta 710:106–11
    [Google Scholar]
  60. 60.  Kopito LE, Kosasky HJ, Shwachman H 1973. Water and electrolytes in cervical mucus from patients with cystic fibrosis. Fertil. Steril. 24:512–16
    [Google Scholar]
  61. 61.  Baconnais S, Tirouvanziam R, Zahm J-M, de Bentzmann S, Péault B et al. 1999. Ion composition and rheology of airway liquid from cystic fibrosis fetal tracheal xenografts. Am. J. Respir. Cell Mol. Biol. 20:605–11
    [Google Scholar]
  62. 62.  Schuster BS, Suk JS, Woodworth GF, Hanes J 2013. Nanoparticle diffusion in respiratory mucus from humans without lung disease. Biomaterials 34:3439–46
    [Google Scholar]
  63. 63.  Aslam A, Spicer RD, Corfield AP 1998. Turnover of radioactive mucin precursors in the colon of patients with Hirschsprung's disease correlates with the development of enterocolitis. J. Pediatr. Surg. 33:103–5
    [Google Scholar]
  64. 64.  Teitelbaum DH, Caniano DA, Qualman SJ 1989. The pathophysiology of Hirschsprung's-associated enterocolitis: importance of histologic correlates. J. Pediatr. Surg. 24:1271–77
    [Google Scholar]
  65. 65.  Yildiz HM, Carlson TL, Goldstein AM, Carrier RL 2015. Mucus barriers to microparticles and microbes are altered in Hirschsprung's disease. Macromol. Biosci. 15:712–18
    [Google Scholar]
  66. 66.  Fujimoto T, Puri P 1988. Persistence of enterocolitis following diversion of faecal stream in Hirschsprung's disease. Pediatr. Surg. Int. 3:141–46
    [Google Scholar]
  67. 67.  Stanley RA, Ram SP, Wilkinson RK, Roberton AM 1986. Degradation of pig gastric and colonic mucins by bacteria isolated from the pig colon. Appl. Environ. Microbiol. 51:1104–9
    [Google Scholar]
  68. 68.  Tailford LE, Crost EH, Kavanaugh D, Juge N 2015. Mucin glycan foraging in the human gut microbiome. Front. Genet. 6:81
    [Google Scholar]
  69. 69.  Lewis WG, Robinson LS, Gilbert NM, Perry JC, Lewis AL 2013. Degradation, foraging, and depletion of mucus sialoglycans by the vagina-adapted actinobacterium Gardnerella vaginalis. . J. Biol. Chem. 288:12067–79
    [Google Scholar]
  70. 70.  Olmsted SS, Meyn LA, Rohan LC, Hillier SL 2003. Glycosidase and proteinase activity of anaerobic gram-negative bacteria isolated from women with bacterial vaginosis. Sex. Transm. Dis. 30:257–61
    [Google Scholar]
  71. 71.  Ruas-Madiedo P, Gueimonde M, Fernandez-Garcia M, de los Reyes-Gavilan CG, Margolles A 2008. Mucin degradation by Bifidobacterium strains isolated from the human intestinal microbiota. Appl. Environ. Microbiol. 74:1936–40
    [Google Scholar]
  72. 72.  Celli JP, Turner BS, Afdhal NH, Keates S, Ghiran I et al. 2009. Helicobacter pylori moves through mucus by reducing mucin viscoelasticity. PNAS 106:14321–26
    [Google Scholar]
  73. 73.  Cohen M, Zhang X-Q, Senaati HP, Chen H-W, Varki NM et al. 2013. Influenza A penetrates host mucus by cleaving sialic acids with neuraminidase. Virol. J. 10:321
    [Google Scholar]
  74. 74.  Sircar S, Keener JP, Fogelson AL 2013. The effect of divalent versus monovalent ions on the swelling of mucin-like polyelectrolyte gels: governing equations and equilibrium analysis. J. Chem. Phys. 138:014901
    [Google Scholar]
  75. 75.  Davies HS, Pudney PDA, Georgiades P, Waigh TA, Hodson NW et al. 2014. Reorganisation of the salivary mucin network by dietary components: insights from green tea polyphenols. PLOS ONE 9:e108372
    [Google Scholar]
  76. 76.  Scaldaferri F, Lopetuso LR, Petito V, Cufino V, Bilotta M et al. 2014. Gelatin tannate ameliorates acute colitis in mice by reinforcing mucus layer and modulating gut microbiota composition: emerging role for ‘gut barrier protectors’ in IBD?. United Eur. Gastroenterol. J. 2:113–22
    [Google Scholar]
  77. 77.  Herrmann K, Carroll K 2014. An exclusively human milk diet reduces necrotizing enterocolitis. Breastfeed. Med. 9:184–90
    [Google Scholar]
  78. 78.  Poulsen SS, Kissow H, Hare K, Hartmann B, Thim L 2005. Luminal and parenteral TFF2 and TFF3 dimer and monomer in two models of experimental colitis in the rat. Regul. Pept. 126:163–71
    [Google Scholar]
  79. 79.  Lai SK, Wang Y-Y, Cone R, Wirtz D, Hanes J 2009. Altering mucus rheology to “solidify” human mucus at the nanoscale. PLOS ONE 4:e4294
    [Google Scholar]
  80. 80.  McCool DJ, Forstner JF, Forstner GG 1995. Regulated and unregulated pathways for MUC2 mucin secretion in human colonic LS180 adenocarcinoma cells are distinct. Biochem. J. 312:125–33
    [Google Scholar]
  81. 81.  Epple HJ, Kreusel KM, Hanski C, Schulzke JD, Riecken EO, Fromm M 1997. Differential stimulation of intestinal mucin secretion by cholera toxin and carbachol. Pflüg. Arch. 433:638–47
    [Google Scholar]
  82. 82.  Specian RD, Neutra MR 1980. Mechanism of rapid mucus secretion in goblet cells stimulated by acetylcholine. J. Cell Biol. 85:626–40
    [Google Scholar]
  83. 83.  Mian N, Anderson CE, Pope AJ, Smith AR, Richardson PS et al. 1982. Directional Ca2+ effect on stimulation of mucin secretion from chicken trachea in vitro. Biochem. J. 208:425–33
    [Google Scholar]
  84. 84.  Zalewsky CA, Moody FG, Allen M, Davis EK 1983. Stimulation of canine gastric mucus secretion with intraarterial acetylcholine chloride. Gastroenterology 85:1067–75
    [Google Scholar]
  85. 85.  Trout L, Gatzy JT, Ballard ST 1998. Acetylcholine-induced liquid secretion by bronchial epithelium: role of Cl and HCO3 transport. Am. J. Physiol. Lung Cell. Mol. Physiol. 275:L1095–99
    [Google Scholar]
  86. 86.  McCool DJ, Marcon MA, Forstner JF, Forstner GG 1990. The T84 human colonic adenocarcinoma cell line produces mucin in culture and releases it in response to various secretagogues. Biochem. J. 267:491–500
    [Google Scholar]
  87. 87.  Rubinstein A, Tirosh B 1994. Mucus gel thickness and turnover in the gastrointestinal tract of the rat: response to cholinergic stimulus and implication for mucoadhesion. Pharm. Res. 11:794–99
    [Google Scholar]
  88. 88.  Majewski M, Sarosiek I, Wallner G, Edlavitch SA, Sarosiek J 2014. Stimulation of mucin, mucus, and viscosity during lubiprostone in patients with chronic constipation may potentially lead to increase of lubrication. Clin. Transl. Gastroenterol. 5:e66
    [Google Scholar]
  89. 89.  Barcelo A, Claustre J, Moro F, Chayvialle JA, Cuber JC, Plaisancié P 2000. Mucin secretion is modulated by luminal factors in the isolated vascularly perfused rat colon. Gut 46:218–24
    [Google Scholar]
  90. 90.  Shimotoyodome A, Meguro S, Hase T, Tokimitsu I, Sakata T 2000. Short chain fatty acids but not lactate or succinate stimulate mucus release in the rat colon. Comp. Biochem. Physiol. A 125:525–31
    [Google Scholar]
  91. 91.  Benoit B, Bruno J, Kayal F, Estienne M, Debard C et al. 2015. Saturated and unsaturated fatty acids differently modulate colonic goblet cells in vitro and in rat pups. J. Nutr. 145:1754–62
    [Google Scholar]
  92. 92.  Wlodarska M, Willing BP, Bravo DM, Finlay BB 2015. Phytonutrient diet supplementation promotes beneficial clostridia species and intestinal mucus secretion resulting in protection against enteric infection. Sci. Rep. 5:9253
    [Google Scholar]
  93. 93.  Benoit B, Laugerette F, Plaisancié P, Géloën A, Bodennec J et al. 2015. Increasing fat content from 20 to 45 wt% in a complex diet induces lower endotoxemia in parallel with an increased number of intestinal goblet cells in mice. Nutr. Res. 35:346–56
    [Google Scholar]
  94. 94.  Saxena A, Baliga MS, Ponemone V, Kaur K, Larsen B et al. 2013. Mucus and adiponectin deficiency: role in chronic inflammation–induced colon cancer. Int. J. Colorectal Dis. 28:1267–79
    [Google Scholar]
  95. 95.  Plaisancie P, Ducroc R, Homsi ME, Tsocas A, Guilmeau S et al. 2006. Luminal leptin activates mucin-secreting goblet cells in the large bowel. Am. J. Physiol. Gastrointest. Liver Physiol. 290:G805–12
    [Google Scholar]
  96. 96.  van Es JH, van Gijn ME, Riccio O, van den Born M, Vooijs M et al. 2005. Notch/γ-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 435:959–63
    [Google Scholar]
  97. 97.  Monk JM, Lepp D, Zhang CP, Wu W, Zarepoor L et al. 2016. Diets enriched with cranberry beans alter the microbiota and mitigate colitis severity and associated inflammation. J. Nutr. Biochem. 28:129–39
    [Google Scholar]
  98. 98.  Servin AL 2004. Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. Fed. Eur. Microbiol. Soc. Microbiol. Rev. 28:405–40
    [Google Scholar]
  99. 99.  Jones SE, Versalovic J 2009. Probiotic Lactobacillus reuteri biofilms produce antimicrobial and anti-inflammatory factors. BMC Microbiol 9:35
    [Google Scholar]
  100. 100.  Da Silva S, Robbe-Masselot C, Ait-Belgnaoui A, Mancuso A, Mercade-Loubière M et al. 2014. Stress disrupts intestinal mucus barrier in rats via mucin O-glycosylation shift: prevention by a probiotic treatment. Am. J. Physiol. Gastrointest. Liver Physiol. 307:G420–29
    [Google Scholar]
  101. 101.  Caplan MS, Miller-Catchpole R, Kaup S, Russell T et al. 1999. Bifidobacterial supplementation reduces the incidence of necrotizing enterocolitis in a neonatal rat model. Gastroenterology 117:577–83
    [Google Scholar]
  102. 102.  Mack DR, Ahrne S, Hyde L, Wei S, Hollingsworth MA 2003. Extracellular MUC3 mucin secretion follows adherence of Lactobacillus strains to intestinal epithelial cells in vitro. Gut 52:827–33
    [Google Scholar]
  103. 103.  Toumi R, Abdelouhab K, Rafa H, Soufli I, Raissi-Kerboua D et al. 2013. Beneficial role of the probiotic mixture Ultrabiotique on maintaining the integrity of intestinal mucosal barrier in DSS-induced experimental colitis. Immunopharmacol. Immunotoxicol. 35:403–9
    [Google Scholar]
  104. 104.  Klu YAK, Chen J 2016. Influence of probiotics, included in peanut butter, on the fate of selected Salmonella and Listeria strains under simulated gastrointestinal conditions. J. Appl. Microbiol. 120:1052–60
    [Google Scholar]
  105. 105.  Ocaña VS, Pesce de Ruiz Holgado AA, Nader-Macías ME 1999. Selection of vaginal H2O2-generating Lactobacillus species for probiotic use. Curr. Microbiol. 38:279–84
    [Google Scholar]
  106. 106.  Müller C, Leithner K, Hauptstein S, Hintzen F, Salvenmoser W, Bernkop-Schnürch A 2013. Preparation and characterization of mucus-penetrating papain/poly(acrylic acid) nanoparticles for oral drug delivery applications. Interdiscip. Forum Nanoscale Sci. Technol. 15:1–13
    [Google Scholar]
  107. 107.  Shak S, Capon DJ, Hellmiss R, Marsters SA, Baker CL 1990. Recombinant human DNase I reduces the viscosity of cystic fibrosis sputum. PNAS 87:9188–92
    [Google Scholar]
  108. 108.  Suk JS, Lai SK, Boylan NJ, Dawson MR, Boyle MP, Hanes J 2011. Rapid transport of muco-inert nanoparticles in cystic fibrosis sputum treated with N-acetyl cysteine. Nanomedicine 6:365–75
    [Google Scholar]
  109. 109.  Rubin BK 2007. Mucolytics, expectorants, and mucokinetic medications. Respir. Care 52:859–65
    [Google Scholar]
  110. 110.  Seagrave J, Albrecht HH, Hill DB, Rogers DF, Solomon G 2012. Effects of guaifenesin, N-acetylcysteine, and ambroxol on MUC5AC and mucociliary transport in primary differentiated human tracheal-bronchial cells. Respir. Res. 13:606–14
    [Google Scholar]
  111. 111.  Rogers DF 2007. Mucoactive agents for airway mucus hypersecretory diseases. Respir. Care 52:1176–93
    [Google Scholar]
  112. 112.  Morgenroth K 1985. Morphology of the bronchial lining layer and its alteration in IRDS, ARDS and COLD. Eur. J. Respir. Dis. 142:7–18
    [Google Scholar]
  113. 113.  Hooper C, Calvert J 2008. The role for S-carboxymethylcysteine (carbocisteine) in the management of chronic obstructive pulmonary disease. Int. J. Chronic Obstr. Pulm. Dis. 3:659–69
    [Google Scholar]
  114. 114.  Braga PC, Allegra L, Rampoldi C, Ornaghi A, Beghi G 1990. Long-lasting effects on rheology and clearance of bronchial mucus after short-term administration of high doses of carbocysteine-lysine to patients with chronic bronchitis. Respiration 57:353–58
    [Google Scholar]
  115. 115.  Girod S, Galabert C, Pierrot D, Boissonnade MM, Zahm JM et al. 1991. Role of phospholipid lining on respiratory mucus clearance by cough. J. Appl. Physiol. 71:2262–66
    [Google Scholar]
  116. 116.  Tam PY, Verdugo P 1981. Control of mucus hydration as a Donnan equilibrium process. Nature 292:340–42
    [Google Scholar]
  117. 117.  Verdugo P 2012. Supramolecular dynamics of mucus. Cold Spring Harb. Perspect. Med. 2:a009597
    [Google Scholar]
  118. 118.  Chen EYT, Yang N, Quinton PM, Chin W-C 2010. A new role for bicarbonate in mucus formation. Am. J. Physiol. Lung Cell. Mol. Physiol. 299:L542–49
    [Google Scholar]
  119. 119.  Chassaing B, Koren O, Goodrich JK, Poole AC, Srinivasan S et al. 2015. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 519:92–96
    [Google Scholar]
  120. 120.  Qin X, Deitch EA 2015. Dissolution of lipids from mucus: a possible mechanism for prompt disruption of gut barrier function by alcohol. Toxicol. Lett. 232:356–62
    [Google Scholar]
  121. 121.  Lai SK, Wang Y-Y, Hida K, Cone R, Hanes J 2010. Nanoparticles reveal that human cervicovaginal mucus is riddled with pores larger than viruses. PNAS 107:598–603
    [Google Scholar]
  122. 122.  Lai SK, Suk JS, Pace A, Wang Y-Y, Yang M et al. 2011. Drug carrier nanoparticles that penetrate human chronic rhinosinusitis mucus. Biomaterials 32:6285–90
    [Google Scholar]
  123. 123.  Yildiz HM, McKelvey CA, Marsac PJ, Carrier RL 2015. Size selectivity of intestinal mucus to diffusing particulates is dependent on surface chemistry and exposure to lipids. J. Drug Target. 23:768–74
    [Google Scholar]
  124. 124.  Friedl H, Dünnhaupt S, Hintzen F, Waldner C, Parikh S et al. 2013. Development and evaluation of a novel mucus diffusion test system approved by self‐nanoemulsifying drug delivery systems. J. Pharm. Sci. 102:4406–13
    [Google Scholar]
  125. 125.  Peppas NA, Buri PA 1985. Surface, interfacial and molecular aspects of polymer bioadhesion on soft tissues. J. Control. Release 2:257–75
    [Google Scholar]
  126. 126.  Lee JW, Park JH, Robinson JR 2000. Bioadhesive‐based dosage forms: the next generation. J. Pharm. Sci. 89:850–66
    [Google Scholar]
  127. 127.  Shaikh R, Singh TR, Garland M, Woolfson A, Donnelly R 2011. Mucoadhesive drug delivery systems. J. Pharm. Bioallied Sci. 3:89–100
    [Google Scholar]
  128. 128.  Foster SN, Pearson JP, Hutton DA, Allen A, Dettmar PW 1994. Interaction of polyacrylates with porcine pepsin and the gastric mucus barrier: a mechanism for mucosal protection. Clin. Sci. 87:719–26
    [Google Scholar]
  129. 129.  Akiyama Y, Nagahara N, Kashihara T, Hirai S, Toguchi H 1995. In vitro and in vivo evaluation of mucoadhesive microspheres prepared for the gastrointestinal tract using polyglycerol esters of fatty acids and a poly(acrylic acid) derivative. Off. J. Am. Assoc. Pharm. Sci. 12:397–405
    [Google Scholar]
  130. 130.  Lehr C-M, Bouwstra JA, Tukker JJ, Junginger HE 1990. Intestinal transit of bioadhesive microspheres in an in situ loop in the rat—a comparative study with copolymers and blends based on poly(acrylic acid). J. Control. Release 13:51–62
    [Google Scholar]
  131. 131.  Bernkop-Schnürch A, Guggi D, Pinter Y 2004. Thiolated chitosans: development and in vitro evaluation of a mucoadhesive, permeation enhancing oral drug delivery system. J. Control. Release 94:177–86
    [Google Scholar]
  132. 132.  Guggi D, Kast C, Bernkop-Schnürch A 2003. In vivo evaluation of an oral salmon calcitonin-delivery system based on a thiolated chitosan carrier matrix. Off. J. Am. Assoc. Pharm. Sci. 20:1989–94
    [Google Scholar]
  133. 133.  Yang M, Lai SK, Wang Y-Y, Zhong W, Happe C et al. 2011. Biodegradable nanoparticles composed entirely of safe materials that rapidly penetrate human mucus. Angew. Chem. Int. Ed. Engl. 50:2597–600
    [Google Scholar]
  134. 134.  Tang BC, Dawson M, Lai SK, Wang Y-Y, Suk JS et al. 2009. Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier. PNAS 106:19268–73
    [Google Scholar]
  135. 135.  Wang Y-Y, Lai SK, So C, Schneider C, Cone R, Hanes J 2011. Mucoadhesive nanoparticles may disrupt the protective human mucus barrier by altering its microstructure. PLOS ONE 6:e21547
    [Google Scholar]
  136. 136.  Yang M, Lai SK, Yu T, Wang Y-Y, Happe C et al. 2014. Nanoparticle penetration of human cervico-vaginal mucus: the effect of polyvinyl alcohol. J. Control. Release 192:202–8
    [Google Scholar]
  137. 137.  Schneider CS, Xu Q, Boylan NJ, Chisholm J, Tang BC et al. 2017. Nanoparticles that do not adhere to mucus provide uniform and long-lasting drug delivery to airways following inhalation. Sci. Adv. 3:e1601556
    [Google Scholar]
  138. 138.  Xu Q, Ensign LM, Boylan NJ, Schön A, Gong X et al. 2015. Impact of surface polyethylene glycol (PEG) density on biodegradable nanoparticle transport in mucus ex vivo and distribution in vivo. ACS Nano 9:9217–27
    [Google Scholar]
  139. 139.  Mastorakos P, Da Silva AL, Chisholm J, Song E, Choi WK et al. 2015. Highly compacted biodegradable DNA nanoparticles capable of overcoming the mucus barrier for inhaled lung gene therapy. PNAS 112:8720–25
    [Google Scholar]
  140. 140.  Yu T, Chan KWY, Anonuevo A, Song X, Schuster BS et al. 2015. Liposome-based mucus-penetrating particles (MPP) for mucosal theranostics: demonstration of diamagnetic chemical exchange saturation transfer (diaCEST) magnetic resonance imaging (MRI). Nanomed. Nanotechnol. Biol. Med. 11:401–5
    [Google Scholar]
  141. 141.  Chen S, Li L, Zhao C, Zheng J 2010. Surface hydration: principles and applications toward low-fouling/nonfouling biomaterials. Polymer 51:5283–93
    [Google Scholar]
  142. 142.  Shan W, Zhu X, Tao W, Cui Y, Liu M et al. 2016. Enhanced oral delivery of protein drugs using zwitterion-functionalized nanoparticles to overcome both the diffusion and absorption barriers. ACS Appl. Mater. Interfaces 8:25444–53
    [Google Scholar]
  143. 143.  Pereira de Sousa I, Cattoz B, Wilcox MD, Griffiths PC, Dalgliesh R et al. 2015. Nanoparticles decorated with proteolytic enzymes, a promising strategy to overcome the mucus barrier. Eur. J. Pharm. Biopharm. 97:257–64
    [Google Scholar]
  144. 144.  Leichner C, Menzel C, Laffleur F, Bernkop-Schnürch A 2017. Development and in vitro characterization of a papain loaded mucolytic self-emulsifying drug delivery system (SEDDS). Int. J. Pharm. 530:346–53
    [Google Scholar]
  145. 145.  Maisel K, Ensign L, Reddy M, Cone R, Hanes J 2015. Effect of surface chemistry on nanoparticle interaction with gastrointestinal mucus and distribution in the gastrointestinal tract following oral and rectal administration in the mouse. J. Control. Release 197:48–57
    [Google Scholar]
  146. 146.  Ensign LM, Hoen T, Maisel K, Cone R, Hanes J 2013. Enhanced vaginal drug delivery through the use of hypotonic formulations that induce fluid uptake. Biomaterials 34:6922–29
    [Google Scholar]
  147. 147.  Maisel K, Chattopadhyay S, Moench T, Hendrix C, Cone R et al. 2015. Enema ion compositions for enhancing colorectal drug delivery. J. Control. Release 209:280–87
    [Google Scholar]
  148. 148.  Leyva FJ, Bakshi RP, Fuchs EJ, Li L, Caffo BS et al. 2013. Isoosmolar enemas demonstrate preferential gastrointestinal distribution, safety, and acceptability compared with hyperosmolar and hypoosmolar enemas as a potential delivery vehicle for rectal microbicides. AIDS Res. Hum. Retrovir. 29:1487–95
    [Google Scholar]
  149. 149.  Popov A, Schopf L, Bourassa J, Chen H 2016. Enhanced pulmonary delivery of fluticasone propionate in rodents by mucus-penetrating nanoparticles. Int. J. Pharm. 502:188–97
    [Google Scholar]
/content/journals/10.1146/annurev-bioeng-062117-121156
Loading
/content/journals/10.1146/annurev-bioeng-062117-121156
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error