1932

Abstract

This review explores bioheat transfer applications at multiple scales from nanoparticle (NP) heating to whole-body thermoregulation. For instance, iron oxide nanoparticles are being used for nanowarming, which uniformly and quickly rewarms 50–80-mL (≤5-cm-diameter) vitrified systems by coupling with radio-frequency (RF) fields where standard convective warming fails. A modification of this approach can also be used to successfully rewarm cryopreserved fish embryos (∼0.8 mm diameter) by heating previously injected gold nanoparticles with millisecond pulsed laser irradiation where standard convective warming fails. Finally, laser-induced heating of gold nanoparticles can improve the sensitivity of lateral flow assays (LFAs) so that they are competitive with laboratory tests such as the enzyme-linked immunosorbent assay. This approach addresses the main weakness of LFAs, which are otherwise the cheapest, easiest, and fastest to use point-of-care diagnostic tests in the world. Body core temperature manipulation has now become possible through selective thermal stimulation (STS) approaches. For instance, simple and safe heating of selected areas of the skin surface can open arteriovenous anastomosis flow in glabrous skin when it is not already established, thereby creating a convenient and effective pathway to induce heat flow between the body core and environment. This has led to new applications of STS to increase or decrease core temperatures in humans and animals to assist in surgery (perioperative warming), to aid ischemic stress recovery (cooling), and even to enhance the quality of sleep. Together, these multiscale applications of nanoparticle heating and thermoregulation point to dramatic opportunities for translation and impact in these prophylactic, preservative, diagnostic, and therapeutic applications of bioheat transfer.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-071516-044532
2018-06-04
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/20/1/annurev-bioeng-071516-044532.html?itemId=/content/journals/10.1146/annurev-bioeng-071516-044532&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Stoll AM 1967. Heat transfer in biotechnology. Adv. Heat Transf. 4:65–141
    [Google Scholar]
  2. 2.  Chato JC 1981. ASME centennial historical perspective paper: Reflections on the history of heat and mass transfer in bioengineering. J. Biomech. Eng. 103:97–101
    [Google Scholar]
  3. 3.  Chato JC 1992. A view of the history of heat transfer in bioengineering. Adv. Heat Transf. 22:1–18
    [Google Scholar]
  4. 4.  Shitzer A, Eberhart RC 1985. Heat Transfer in Medicine and Biology: Analysis and Applications New York: Plenum
  5. 5.  Diller KR 1992. Modeling of bioheat transfer processes at high and low temperatures. Adv. Heat Transf. 22:157–357
    [Google Scholar]
  6. 6.  Diller KR, Valvano JW, Pearce JA 2005. Bioheat transfer. CRC Handbook of Mechanical Engineering F Kreith, Y Goswami 292–361 Boca Raton, FL: CRC. , 2nd ed..
    [Google Scholar]
  7. 7.  Charny CK 1992. Mathematical models of bioheat transfer. Adv. Heat Transf. 22:12–155
    [Google Scholar]
  8. 8.  Beik J, Abed Z, Ghoreishi FS, Hosseini-Nami S, Mehrzadi S et al. 2016. Nanotechnology in hyperthermia cancer therapy: from fundamental principles to advanced applications. J. Control. Release 235:205–21
    [Google Scholar]
  9. 9.  Zhao J, Lee P, Wallace MJ, Melancon MP 2015. Gold nanoparticles in cancer therapy: efficacy, biodistribution, and toxicity. Curr. Pharm. Des. 21:4240–51
    [Google Scholar]
  10. 10.  Jaque D, Martinez Maestro L, del Rosal B, Haro-Gonzalez P, Benayas A et al. 2014. Nanoparticles for photothermal therapies. Nanoscale 6:9494–530
    [Google Scholar]
  11. 11.  Hwang S, Nam J, Jung S, Song J, Doh H, Kim S 2014. Gold nanoparticle–mediated photothermal therapy: current status and future perspective. Nanomedicine 9:2003–22
    [Google Scholar]
  12. 12.  Qin Z, Bischof JC 2012. Thermophysical and biological responses of gold nanoparticle laser heating. Chem. Soc. Rev. 41:1191–217
    [Google Scholar]
  13. 13.  Dutz S, Hergt R 2013. Magnetic nanoparticle heating and heat transfer on a microscale: basic principles, realities and physical limitations of hyperthermia for tumour therapy. Int. J. Hyperth. 29:790–800
    [Google Scholar]
  14. 14.  Manuchehrabadi N, Gao Z, Zhang J, Ring HL, Shao Q et al. 2017. Improved tissue cryopreservation using inductive heating of magnetic nanoparticles. Sci. Transl. Med. 9:eaah4586
    [Google Scholar]
  15. 15.  Qin Z, Chan WC, Boulware DR, Akkin T, Butler EK, Bischof JC 2012. Significantly improved analytical sensitivity of lateral flow immunoassays by using thermal contrast. Angew. Chem. 51:4358–61
    [Google Scholar]
  16. 16.  Khosla K, Wang Y, Hagedorn M, Qin Z, Bischof JC 2017. Gold nanorod induced warming of cryogenically stabilized embryos enhances viability. ACS Nano 11:7869–78
    [Google Scholar]
  17. 17.  Kim JW, Shashkov EV, Galanzha EI, Kotagiri N, Zharov VP 2007. Photothermal antimicrobial nanotherapy and nanodiagnostics with self-assembling carbon nanotube clusters. Lasers Surg. Med. 39:622–34
    [Google Scholar]
  18. 18.  Zharov VP, Mercer KE, Galitovskaya EN, Smeltzer MS 2006. Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles. Biophys. J. 90:619–27
    [Google Scholar]
  19. 19.  Braun GB, Pallaoro A, Wu G, Missirlis D, Zasadzinski JA et al. 2009. Laser-activated gene silencing via gold nanoshell–siRNA conjugates. ACS Nano 3:2007–15
    [Google Scholar]
  20. 20.  Kim BY, Rutka JT, Chan WC 2010. Nanomedicine. N. Engl. J. Med. 363:2434–43
    [Google Scholar]
  21. 21.  Keblinski P, Cahill DG, Bodapati A, Sullivan CR, Taton TA 2006. Limits of localized heating by electromagnetically excited nanoparticles. J. Appl. Phys. 100:054305
    [Google Scholar]
  22. 22.  Govorov AO, Richardson HH 2007. Generating heat with metal nanoparticles. Nano Today 2:30–38
    [Google Scholar]
  23. 23.  Richardson HH, Carlson MT, Tandler PJ, Hernandez P, Govorov AO 2009. Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions. Nano Lett 9:1139–46
    [Google Scholar]
  24. 24.  Dutz S, Hergt R 2014. Magnetic particle hyperthermia—a promising tumour therapy?. Nanotechnology 25:452001
    [Google Scholar]
  25. 25.  Atkinson WJ, Brezovich IA, Chakraborty DP 2007. Usable frequencies in hyperthermia with thermal seeds. IEEE Trans. Biomed. Eng. 1:70–75
    [Google Scholar]
  26. 26.  Etheridge ML, Bischof JC 2013. Optimizing magnetic nanoparticle based thermal therapies within the physical limits of heating. Ann. Biomed. Eng. 41:78–88
    [Google Scholar]
  27. 27.  Etheridge ML, Xu Y, Rott L, Choi J, Glasmacher B, Bischof JC 2014. RF heating of magnetic nanoparticles improves the thawing of cryopreserved biomaterials. Technology 2:229–42
    [Google Scholar]
  28. 28.  Rosensweig RE 2002. Heating magnetic fluid with alternating magnetic field. J. Magn. Magn. Mater. 252:370–74
    [Google Scholar]
  29. 29.  Carrey J, Mehdaoui B, Respaud M 2011. Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: application to magnetic hyperthermia optimization. J. Appl. Phys. 109:083921
    [Google Scholar]
  30. 30.  Hurley KR, Ring HL, Etheridge M, Zhang J, Gao Z et al. 2016. Predictable heating and positive MRI contrast from a mesoporous silica-coated iron oxide nanoparticle. Mol. Pharm. 13:2172–83
    [Google Scholar]
  31. 31.  Dennis CL, Jackson AJ, Borchers JA, Hoopes PJ, Strawbridge R et al. 2009. Nearly complete regression of tumors via collective behavior of magnetic nanoparticles in hyperthermia. Nanotechnology 20:395103
    [Google Scholar]
  32. 32.  Tong S, Quinto CA, Zhang L, Mohindra P, Bao G 2017. Size-dependent heating of magnetic iron oxide nanoparticles. ACS Nano 11:6808–16
    [Google Scholar]
  33. 33.  Bordelon DE, Goldstein RC, Nemkov VS, Kumar A, Jackowski JK et al. 2012. Modified solenoid coil that efficiently produces high amplitude ac magnetic fields with enhanced uniformity for biomedical applications. IEEE Trans. Magn. 48:47–52
    [Google Scholar]
  34. 34.  Jeon S, Hurley KR, Bischof JC, Haynes CL, Hogan CJ 2016. Quantifying intra- and extracellular aggregation of iron oxide nanoparticles and its influence on specific absorption rate. Nanoscale 8:16053–64
    [Google Scholar]
  35. 35.  Jeon S, Oberreit DR, Van Schooneveld G, Gao Z, Bischof JC et al. 2016. Ion-mobility-based quantification of surface-coating-dependent binding of serum albumin to superparamagnetic iron oxide nanoparticles. ACS Appl. Mater. Interfaces 8:24482–90
    [Google Scholar]
  36. 36.  Etheridge ML, Hurley KR, Zhang J, Jeon S, Ring HL et al. 2014. Accounting for biological aggregation in heating and imaging of magnetic nanoparticles. Technology 2:214–28
    [Google Scholar]
  37. 37.  Kalambur VS, Longmire EK, Bischof JC 2007. Cellular level loading and heating of superparamagnetic iron oxide nanoparticles. Langmuir 23:12329–36
    [Google Scholar]
  38. 38.  Thiesen B, Jordan A 2008. Clinical applications of magnetic nanoparticles for hyperthermia. Int. J. Hyperth. 24:467–74
    [Google Scholar]
  39. 39.  Jordan A, Etheridge ML, Bischof JC 2013. Magnetic nanoparticles for cancer therapy. Physics of Thermal Therapy E Moros 293–318 Boca Raton, FL: CRC
    [Google Scholar]
  40. 40.  Zhang J, Chamberlain R, Etheridge M, Idiyatullin D, Corum C et al. 2014. Quantifying iron-oxide nanoparticles at high concentration based on longitudinal relaxation using a three-dimensional SWIFT Look–Locker sequence. Magn. Reson. Med. 71:1982–88
    [Google Scholar]
  41. 41.  Zhang J, Ring HL, Hurley KR, Shao Q, Carlson CS et al. 2016. Quantification and biodistribution of iron oxide nanoparticles in the primary clearance organs of mice using T1 contrast for heating. Magn. Reson. Med. 78:702–12
    [Google Scholar]
  42. 42.  Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B et al. 2003. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. PNAS 100:13549–54
    [Google Scholar]
  43. 43.  Jain PK, Huang X, El-Sayed IH, El-Sayed MA 2007. Review of some interesting surface plasmon resonance–enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics 2:107–18
    [Google Scholar]
  44. 44.  Modest MF 2013. Radiative Heat Transfer San Diego: Academic
  45. 45.  Hirsch LR, Gobin AM, Lowery AR, Tam F, Drezek RA et al. 2006. Metal nanoshells. Ann. Biomed. Eng. 34:15–22
    [Google Scholar]
  46. 46.  Qin Z, Wang Y, Randrianalisoa J, Raeesi V, Chan WC et al. 2016. Quantitative comparison of photothermal heat generation between gold nanospheres and nanorods. Sci. Rep. 6:29836
    [Google Scholar]
  47. 47.  Rabin Y 2002. Is intracellular hyperthermia superior to extracellular hyperthermia in the thermal sense?. Int. J. Hyperth. 18:194–202
    [Google Scholar]
  48. 48.  Salloum M, Ma R, Zhu L 2008. An in-vivo experimental study of temperature elevations in animal tissue during magnetic nanoparticle hyperthermia. Int. J. Hyperth. 24:589–601
    [Google Scholar]
  49. 49.  Manuchehrabadi N, Zhu L 2014. Development of a computational simulation tool to design a protocol for treating prostate tumours using transurethral laser photothermal therapy. Int. J. Hyperth. 30:349–61
    [Google Scholar]
  50. 50.  Taylor MJ, Song YC, Brock KGM 2004. Vitrification in tissue preservation: new developments. Life in the Frozen State N Lane, BJ Fuller, EE Benson 603–41 Boca Raton, FL: CRC
    [Google Scholar]
  51. 51.  Brockbank KGM, Chen Z, Greene ED, Campbell LH 2015. Vitrification of heart valve tissues. Cryopreservation and Freeze-Drying Protocols FW Wolkers, H Oldenhof 399–421 New York: Springer
    [Google Scholar]
  52. 52.  Song YC, Khirabadi BS, Lightfoot F, Brockbank KG, Taylor MJ 2000. Vitreous cryopreservation maintains the function of vascular grafts. Nat. Biotechnol. 18:296–99
    [Google Scholar]
  53. 53.  Fahy GM, MacFarlane DR, Angell CA, Meryman HT 1984. Vitrification as an approach to cryopreservation. Cryobiology 21:407–26
    [Google Scholar]
  54. 54.  Fahy GM, Wowk B, Wu J, Phan J, Rasch C et al. 2004. Cryopreservation of organs by vitrification: perspectives and recent advances. Cryobiology 48:157–78
    [Google Scholar]
  55. 55.  Steif PS, Palastro M, Wan CR, Baicu S, Taylor MJ, Rabin Y 2005. Cryomacroscopy of vitrification. Part II: Experimental observations and analysis of fracture formation in vitrified VS55 and DP6. Cell Preserv. Technol. 3:184–200
    [Google Scholar]
  56. 56.  Steif PS, Palastro MC, Rabin Y 2007. The effect of temperature gradients on stress development during cryopreservation via vitrification. Cell Preserv. Technol. 5:104–15
    [Google Scholar]
  57. 57.  Eisenberg DP, Bischof JC, Rabin Y 2016. Thermomechanical stress in cryopreservation via vitrification with nanoparticle heating as a stress-moderating effect. J. Biomech. Eng. 138:011010
    [Google Scholar]
  58. 58.  Wang Y, Qin Z, Boulware DR, Pritt BS, Sloan LM et al. 2016. Thermal contrast amplification reader yielding 8-fold analytical improvement for disease detection with lateral flow assays. Anal. Chem. 88:11774–82
    [Google Scholar]
  59. 59.  Yager P, Edwards T, Fu E, Helton K, Nelson K et al. 2006. Microfluidic diagnostic technologies for global public health. Nature 442:412–18
    [Google Scholar]
  60. 60.  Martinez AW, Phillips ST, Whitesides GM, Carrilho E 2009. Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal. Chem. 82:3–10
    [Google Scholar]
  61. 61.  Klostranec JM, Xiang Q, Farcas GA, Lee JA, Rhee A et al. 2007. Convergence of quantum dot barcodes with microfluidics and signal processing for multiplexed high-throughput infectious disease diagnostics. Nano Lett 7:2812–18
    [Google Scholar]
  62. 62.  Nam J-M, Thaxton CS, Mirkin CA 2003. Nanoparticle-based bio–bar codes for the ultrasensitive detection of proteins. Science 301:1884–86
    [Google Scholar]
  63. 63.  Posthuma-Trumpie G, Korf J, van Amerongen A 2009. Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal. Bioanal. Chem. 393:569–82
    [Google Scholar]
  64. 64.  Liu J, Mazumdar D, Lu Y 2006. A simple and sensitive “dipstick” test in serum based on lateral flow separation of aptamer-linked nanostructures. Angew. Chem. Int. Ed. 45:7955–59
    [Google Scholar]
  65. 65.  Boulware DR, Rolfes MA, Rajasingham R, von Hohenberg M, Qin Z et al. 2014. Multisite validation of cryptococcal antigen lateral flow assay and quantification by laser thermal contrast. Emerg. Infect. Dis. 20:45–53
    [Google Scholar]
  66. 66.  Kim J, Abdou Mohamed MA, Zagorovsky K, Chan WCW 2017. State of diagnosing infectious pathogens using colloidal nanomaterials. Biomaterials 146:97–114
    [Google Scholar]
  67. 67.  Zhan L, Guo SZ, Song F, Gong Y, Xu F et al. 2017. The role of nanoparticle design in determining analytical performance of lateral flow immunoassays. Nano Lett 17:7207–12
    [Google Scholar]
  68. 68.  Lodge DM, Turner CR, Jerde CL, Barnes MA, Chadderton L et al. 2012. Conservation in a cup of water: estimating biodiversity and population abundance from environmental DNA. Mol. Ecol. 21:2555–58
    [Google Scholar]
  69. 69.  Hagedorn M, Hsu EW, Pilatus U, Wildt DE, Rall WR, Blackband SJ 1996. Magnetic resonance microscopy and spectroscopy reveal kinetics of cryoprotectant permeation in a multicompartmental biological system. PNAS 93:7454–59
    [Google Scholar]
  70. 70.  Hagedorn M, Kleinhans FW, Artemov D, Pilatus U 1998. Characterization of a major permeability barrier in the zebrafish embryo. Biol. Reprod. 59:1240–50
    [Google Scholar]
  71. 71.  Hagedorn M, Kleinhans FW, Freitas R, Liu J, Hsu EW et al. 1997. Water distribution and permeability of zebrafish embryos. Brachydanio rerio. J. Exp. Zool. 278:356–71
    [Google Scholar]
  72. 72.  Janik M, Kleinhans FW, Hagedorn M 2000. Overcoming a permeability barrier by microinjecting cryoprotectants into zebrafish embryos (Brachydanio rerio). Cryobiology 41:25–34
    [Google Scholar]
  73. 73.  Jin B, Kleinhans F, Mazur P 2014. Survivals of mouse oocytes approach 100% after vitrification in 3-fold diluted media and ultra-rapid warming by an IR laser pulse. Cryobiology 68:419–30
    [Google Scholar]
  74. 74.  Jin B, Mazur P 2015. High survival of mouse oocytes/embryos after vitrification without permeating cryoprotectants followed by ultra-rapid warming with an IR laser pulse. Sci. Rep. 5:9271
    [Google Scholar]
  75. 75.  Licht S 1974. History of therapeutic heat and cold. Therapeutic Heat and Cold JF Lehman 1–34 Baltimore: Williams & Wilkins. , 3rd ed..
    [Google Scholar]
  76. 76.  Khoshnevis S, Craik NK, Diller KR 2014. Experimental characterization of the domains of coupling and uncoupling between surface temperature and skin blood flow. Int. J. Transp. Phenom. 13:277–301
    [Google Scholar]
  77. 77.  Bieuzen F, Bleakley CM, Costello JT 2013. Contrast water therapy and exercise induced muscle damage: a systematic review and meta-analysis. PLOS ONE 8:e62356
    [Google Scholar]
  78. 78.  Christmas KM, Patik JC, Khoshnevis S, Diller KR, Brothers RM 2016. Sustained cutaneous vasoconstriction during and following cryotherapy treatment: role of oxidative stress and Rho kinase. Microvasc. Res. 106:96–100
    [Google Scholar]
  79. 79.  Khoshnevis S, Craik NK, Diller KR 2015. Cold-induced vasoconstriction may persist long after cooling ends: an evaluation of multiple cryotherapy units. Knee Surg. Sports Traumatol. Arthrosc. 23:2475–83
    [Google Scholar]
  80. 80.  Dewhirst MW, Abraham J, Viglianti B 2015. Evolution of thermal dosimetry for application of hyperthermia to treat cancer. Adv. Heat Transf. 47:397–421
    [Google Scholar]
  81. 81.  Jiang J, Goel R, Schmechel S, Vercellotti G, Forster C, Bischof J 2010. Pre-conditioning cryosurgery: Cellular and molecular mechanisms and dynamics of TNF-α enhanced cryotherapy in an in vivo prostate cancer model system. Cryobiology 61:280–88
    [Google Scholar]
  82. 82.  Heller HC, Grahn DA 2012. Enhancing thermal exchange in humans and practical applications. Disruptive Sci. Technol. 1:11–19
    [Google Scholar]
  83. 83.  Taylor NAS, Machado-Moreira DA, van den Heuel AMJ, Caldwell AN 2014. Hands and feet: physiological insulators, radiators and evaporators. Eur. J. Appl. Physiol. 114:2037–60
    [Google Scholar]
  84. 84.  Tansey EA, Johnson CD 2015. Recent advances in thermoregulation. Adv. Physiol. Educ. 39:139–48
    [Google Scholar]
  85. 85.  Johnson JM, Minson CT, Kellogg DL Jr 2014. Cutaneous vasodilator and vasoconstrictor mechanisms in temperature regulation. Compr. Physiol. 4:33–89
    [Google Scholar]
  86. 86.  Kurz A 2008. Physiology of thermoregulation. Best Pract. Res. Clin. Anaesthesiol. 22:627–44
    [Google Scholar]
  87. 87.  Diller KR 2015. Therapeutic recruitment of thermoregulation in humans by selective thermal stimulation along the spine. Adv. Heat Transf. 47:341–96
    [Google Scholar]
  88. 88.  Diller KR 2015. Heat transfer in health and healing. J. Heat Transf. 137:103001
    [Google Scholar]
  89. 89.  Goltz F, Ewald JR 1896. Der Hund mit verkürztem Rückenmark. Pflüg. Arch. 63:362–400
    [Google Scholar]
  90. 90.  Jessen C 2001. Temperature Regulation in Humans and Other Mammals Berlin: Springer
  91. 91.  Jessen C, McLean JA, Calvert DT, Findlay JD 1972. Balanced and unbalanced temperature signals generated in the spinal cord of the ox. Am. J. Physiol. 222:1343–47
    [Google Scholar]
  92. 92.  Jessen C, Felde D, Volk P, Kuhnen G 1990. Effects of spinal cord temperature on the generation and transmission of temperature signals in the goat. Pflüg. Arch. 416:428–33
    [Google Scholar]
  93. 93.  Hales JRS, Fawcett AA, Bennett JW, Needham AD 1978. Thermal control of blood flow through capillaries and arteriovenous anastomoses in skin of sheep. Pflüg. Arch. 378:55–63
    [Google Scholar]
  94. 94.  Hales JRS, Fawcett AA, Bennett JW 1975. Differential influences of CNS and superficial body temperatures on the partition of cuteneous blood flow between capillaries and arteriovenous anastomoses (AVAs). Pflüg. Arch. 361:105–6
    [Google Scholar]
  95. 95.  Jessen C, Mayer ET 1971. Spinal cord and hypothalamus as core sensors of temperature in the conscious dog. I. Equivalence of responses. Pflüg. Arch. 34:189–204
    [Google Scholar]
  96. 96.  Jessen C, Ludwig O 1971. Spinal cord and hypothalamus as core sensors of temperature in the conscious dog. II. Addition of signals. Pflüg. Arch. 324:205–16
    [Google Scholar]
  97. 97.  Jessen C, Simon E 1971. Spinal cord and hypothalamus as core sensors of temperature in the conscious dog. III. Identity of functions. Pflüg. Arch. 324:217–26
    [Google Scholar]
  98. 98.  Carlisle HJ, Ingram DL 1973. The influence of body core temperature and peripheral temperatures on oxygen consumption in the pig. J. Physiol. 231:341–52
    [Google Scholar]
  99. 99.  Meurer K-A, Jessen C, Iriki M 1967. Kältezittern während isolierter Kühlung des Rückenmarkes nach Durchschneidung der Hinterwurzeln. Pflüg. Arch. 293:236–55
    [Google Scholar]
  100. 100.  Wunnenberg W, Bruck K 1970. Studies on the ascending pathways from the thermosensitive region of the spinal cord. Pflüg. Arch. 321:233–41
    [Google Scholar]
  101. 101.  Hales JR, Iriki M, Tsuchiya K, Kozawa E 1978. Thermally-induced cutaneous sympathetic activity related to blood flow through capillaries and arteriovenous anastomoses. Pflüg. Arch. 375:17–24
    [Google Scholar]
  102. 102.  Chai CY, Lin MT 1972. Effects of heating and cooling the spinal cord and medulla oblongata on thermoregulation in monkeys. J. Physiol. 225:297–308
    [Google Scholar]
  103. 103.  Kosaka M, Simon E 1968. Kältetremor wacher, chronisch spinalisierter Kaninchen im Vergleich zum Kältezittern intakter Tiere. Pflüg. Arch. 302:333–56
    [Google Scholar]
  104. 104.  Guieu JD, Hardy JD 1970. Effects of preoptic and spinal cord temperature in control of thermal polypnea. J. Appl. Physiol. 28:540–42
    [Google Scholar]
  105. 105.  Rautenberg W, Necker R, May B 1972. Thermoregulatory responses of the pigeon to changes of the brain and the spinal cord. Pflüg. Arch. 338:31–42
    [Google Scholar]
  106. 106.  Hammel HT, Maggert J, Kaul R 1976. Effects of altering spinal cord temperature on temperature regulation in the Adélie penguin. Pygoscelis adeliae. Pflüg. Arch. 362:1–6
    [Google Scholar]
  107. 107.  Helfmann W, Jannes P, Jessen C 1981. Total body thermosensitivity and its spinal and supraspinal fractions in the conscious goose. Pflüg. Arch. 391:60–67
    [Google Scholar]
  108. 108.  Andresson B, Ekman L, Gale CC, Sundsten JW 1963. Control of thyrotrophic hormone (TSH) secretion by the “heat loss center. .” Acta Physiol. Scand. 59:12–33
    [Google Scholar]
  109. 109.  Hensel H 1973. Neural processes in thermoregulation. Physiol. Rev. 53:948–1017
    [Google Scholar]
  110. 110.  Sessler DI 2013. The thermoregulation story. Anesthesiology 118:181–86
    [Google Scholar]
  111. 111.  Grahn DA, Brock-Utne JG, Watenpaugh DE, Heller HC 1998. Recovery from mild hypothermia can be accelerated by mechanically distending blood vessels in the hand. J. Appl. Physiol. 85:1643–48
    [Google Scholar]
  112. 112.  Grahn DA, Dillon JL, Heller HC 2009. Heat loss through the glabrous skin surfaces of heavily insulated, heat-stressed individuals. J. Biomech. Eng. 131:071005
    [Google Scholar]
  113. 113.  Grahn DA, Murray JV, Heller HC 2008. Cooling via one hand improves physical performance in heat-sensitive individuals with multiple sclerosis: a preliminary study. BMC Neurol 8:1–8
    [Google Scholar]
  114. 114.  Kurz A, Xiong J, Sessler DI, Dechert M, Noyes K, Belani K 1995. Desflurane reduces the gain of thermoregulatory arteriovenous shunt vasoconstriction in humans. Anesthesiology 83:1212–19
    [Google Scholar]
  115. 115.  Kurz A, Go JC, Sessler DI, Kaer K, Larson MD, Bjorksten AR 1995. Alfentanil slightly increases the sweating threshold and markedly reduces the vasoconstriction and shivering thresholds. Anesthesiology 83:295–99
    [Google Scholar]
  116. 116.  Kurz A, Ikeda T, Sessler DI, Larson MD, Bjorksten AR et al. 1997. Meperidine decreases the shivering threshold twice as much as the vasoconstriction threshold. Anesthesiology 86:1046–54
    [Google Scholar]
  117. 117.  Matsukawa T, Kurz A, Sessler DI, Bjorksten AR, Merrifield B, Cheng C 1995. Propofol linearly reduces the vasoconstriction and shivering thresholds. Anesthesiology 82:1169–80
    [Google Scholar]
  118. 118.  Xiong J, Kurz A, Sessler DI, Plattner O, Christensen R et al. 1996. Isoflurane produces marked and nonlinear decreases in the vasoconstriction and shivering thresholds. Anesthesiology 85:240–45
    [Google Scholar]
  119. 119.  Reynolds L, Beckmann J, Kurz A 2008. Perioperative complications of hypothermia. Best Pract. Res. Clin. Anaesthesiol. 22:645–57
    [Google Scholar]
  120. 120.  Rajagopalan S, Mascha E, Na J, Sessler DI 2008. The effects of mild perioperative hypothermia on blood loss and transfusion requirement. Anesthesiology 108:71–77
    [Google Scholar]
  121. 121.  Flores-Maldonado A, Medina-Escobedo CE, Ríos-Rodríguez HMG, Fernández-Domínguez R 2001. Mild perioperative hypothermia and the risk of wound infection. Arch. Med. Res. 32:227–31
    [Google Scholar]
  122. 122.  Lenhardt R, Marker E, Goli V, Tschernich H, Kurz A et al. 1997. Mild intraoperative hypothermia prolongs postanesthetic recovery. Anesthesiology 87:1318–23
    [Google Scholar]
  123. 123.  Kurz A, Sessler DI, Lenhardt R 1996. Perioperative normothermia to reduce the incidence of surgical-wound infection and shorten hospitalization. N. Engl. J. Med. 334:1209–15
    [Google Scholar]
  124. 124.  Frank SM, Fleisher LA, Breslow MJ 1997. Perioperative maintenance of normothermia reduces the incidence of morbid cardiac events: a randomized clinical trial. J. Am. Med. Assoc. 277:1127–34
    [Google Scholar]
  125. 125.  Giesbrecht GG, Cucharme MB, McGuire JP 1994. Comparison of forced-air patient warming systems for perioperative use. Anesthesiology 80:671–79
    [Google Scholar]
  126. 126.  Taguchi A, Ratnaraj J, Kabon B, Sharma N, Lenhardt R et al. 2004. Effects of a circulating-water garment and forced-air warming on body heat content and core temperature. Anesthesiology 100:1058–64
    [Google Scholar]
  127. 127.  Sandoval MF, Mongan PD, Dayton MR, Hogan CA 2017. Safety and efficacy of resistive polymer versus forced air warming in total joint surgery. Patient Saf. Surg. 11:1–6
    [Google Scholar]
  128. 128.  Negishi C, Hasegawa K, Mukai S, Nakagawa F, Ozaki M, Sessler DI 2003. Resistive-heating and forced-air warming are comparably effective. Anesth. Analg.1683–87
    [Google Scholar]
  129. 129.  Ruetzler K, Kovaci B, Guloglu E, Kabon B, Fleischmann E et al. 2011. Forced-air and a novel patient-warming system (vitalHEAT vH2) comparably maintain normothermia during open abdominal surgery. Anesth. Analg. 112:608–14
    [Google Scholar]
  130. 130.  Sun A, Honar H, Sessler DI, Dalton JE, Yang D et al. 2015. Intraoperative core temperature patterns, transfusion requirement, and hospital duration in patients warmed with forced air. Anesthesiology 122:276–85
    [Google Scholar]
  131. 131.  Legg AJ, Hamer AJ 2013. Forced-air patient warming blankets disrupt unidirectional airflow. Bone Joint J 95:B407–10
    [Google Scholar]
  132. 132.  Weissman C, Murray WB 2013. It's not just another room. Anesth. Analg. 117:287–89
    [Google Scholar]
  133. 133.  Wood AM, Moss C, Keenan A, Reed MR, Leaper DJ 2014. Infection control hazards associated with the use of forced-air warming in operating theatres. J. Hosp. Infect. 88:132–40
    [Google Scholar]
  134. 134.  Belani KG, Albrecht M, McGovern PD, Reed M, Nachtsheim C 2013. Patient warming excess heat: the effects on orthopedic operating room ventilation performance. Anesth. Analg. 117:406–11
    [Google Scholar]
  135. 135.  Taylor NAS, Caldwell JN, van den Heuvel AMJ, Patterson MJ 2008. To cool, but not too cool: that is the question. Immersion cooling for hyperthermia. Med. Sci. Sports Exerc. 40:1962–69
    [Google Scholar]
  136. 136.  Van Someren EJW 2000. More than a marker: interaction between the circadian regulation of temperature and sleep, age-related changes, and treatment possibilities. Chronobiol. Int. 17:313–54
    [Google Scholar]
  137. 137.  Kräuchi K 2007. The human sleep–wake cycle reconsidered from a thermoregulatory point of view. Physiol. Behav. 90:236–45
    [Google Scholar]
  138. 138.  Gilbert SS, Burgess HJ, Kennaway DJ, Dawson D 2000. Attenuation of sleep propensity, core hypothermia, and peripheral heat loss after temazepam tolerance. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279:R1980–87
    [Google Scholar]
  139. 139.  Kräuchi K, Knoblauch R, Wirz-Justice A, Cajochen C 2006. Challenging the sleep homeostat does not influence the thermoregulatory system in men: evidence from a nap versus sleep-deprivation study. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290:R1052–61
    [Google Scholar]
  140. 140.  Kräuchi K, Werth E, Wirz-Justice A 1999. Warm feet promote the rapid onset of sleep. Nature 401:36–37
    [Google Scholar]
  141. 141.  Pache M, Kräuchi K, Cajochen C, Wirz-Justice A, Dubler B et al. 2001. Cold feet and prolonged sleep-onset latency in vasospastic syndrome. Lancet 358:125–26
    [Google Scholar]
  142. 142.  Gradisar M, Lack L 2004. Relationships between the circadian rhythms of finger temperature, core temperature, sleep latency, and subjective sleepiness. J. Biol. Rhythms 19:157–63
    [Google Scholar]
  143. 143.  Smolensky MH, Hermida RC, Castriotta RJ, Portaluppi F 2007. Role of sleep–wake cycle on blood pressure circadian rhythms and hypertension. Sleep Med 8:668–80
    [Google Scholar]
  144. 144.  Hermida RC, Ayala DE, Fernández J, Mojón A 2013. Sleep-time blood pressure: prognostic value and relevance as a therapeutic target for cardiovascular risk reduction. Chronobiol. Int. 30:68–86
    [Google Scholar]
  145. 145.  Hermida RC, Ayala DE, Mojón A, Fernández JR 2013. Blunted sleep-time relative blood pressure decline increases cardiovascular risk independent of blood pressure level—the “normotensive non-dipper” paradox. Chronobiol. Int. 30:87–98
    [Google Scholar]
  146. 146. Natl. Sleep Found. 2005. 2005 Adult sleep habits and styles Poll, Natl. Sleep Found Washington, DC: https://sleepfoundation.org/sleep-polls-data/sleep-in-america-poll/2005-adult-sleep-habits-and-styles
  147. 147.  Leger D, Bayon V, Ohayon MM, Philip P, Ement P et al. 2014. Insomnia and accidents: cross-sectional study (EQUINOX) on sleep-related home, work and car accidents in 5293 subjects with insomnia from 10 countries. J. Sleep Res. 23:143–52
    [Google Scholar]
  148. 148.  Smolensky MH, Di Milia L, Ohayon MM, Philip P 2011. Sleep disorders, medical conditions, and road accident risk. Accid. Anal. Prev. 43:533–48
    [Google Scholar]
  149. 149.  Lack LC, Gradisar M, Van Someren EJ Wright HR, Lushington K 2008. The relationship between insomnia and body temperatures. Sleep Med. Rev. 12:307–17
    [Google Scholar]
  150. 150.  Kräuchi K 2007. The thermophysiological cascade leading to sleep initiation in relation to phase of entrainment. Sleep Med. Rev. 11:439–51
    [Google Scholar]
  151. 151.  Kräuchi K, Cajochen C, Werth E, Wirz-Justice A 2000. Functional link between distal vasodilation and sleep-onset latency?. Am. J. Physiol. Regul. Integr. Comp. Physiol. 278:R741–48
    [Google Scholar]
  152. 152.  Cheng C, Matsukawa T, Sessler DI, Ozaki M, Kurz A et al. 1995. Increasing mean skin temperature linearly reduces the core-temperature thresholds for vasoconstriction and shivering in humans. Anesthesiology 82:1160–68
    [Google Scholar]
  153. 153.  Lenhardt R, Greif R, Sessler DI, Laciny S, Rajek A, Bastanmehr H 1999. Relative contribution of skin and core temperatures to vasoconstriction and shivering thresholds during isoflurane anesthesia. Anesthesiology 91:422–29
    [Google Scholar]
/content/journals/10.1146/annurev-bioeng-071516-044532
Loading
/content/journals/10.1146/annurev-bioeng-071516-044532
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error