1932

Abstract

Additive manufacturing's attributes include print customization, low per-unit cost for small- to mid-batch production, seamless interfacing with mainstream medical 3D imaging techniques, and feasibility to create free-form objects in materials that are biocompatible and biodegradable. Consequently, additive manufacturing is apposite for a wide range of biomedical applications including custom biocompatible implants that mimic the mechanical response of bone, biodegradable scaffolds with engineered degradation rate, medical surgical tools, and biomedical instrumentation. This review surveys the materials, 3D printing methods and technologies, and biomedical applications of metal 3D printing, providing a historical perspective while focusing on the state of the art. It then identifies a number of exciting directions of future growth: () the improvement of mainstream additive manufacturing methods and associated feedstock; () the exploration of mature, less utilized metal 3D printing techniques; () the optimization of additively manufactured load-bearing structures via artificial intelligence; and () the creation of monolithic, multimaterial, finely featured, multifunctional implants.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-082020-032402
2021-07-13
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/23/1/annurev-bioeng-082020-032402.html?itemId=/content/journals/10.1146/annurev-bioeng-082020-032402&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Roser C. 2017. Faster, Better, Cheaper in the History of Manufacturing: From the Stone Age to Lean Manufacturing and Beyond Boca Raton, FL: CRC Press
  2. 2. 
    Benvenuto MA. 2016. Metals and Alloys: Industrial Applications Berlin: De Gruyter
  3. 3. 
    Worboys M. 2013. Joseph Lister and the performance of antiseptic surgery. Notes Rec. R. Soc. Lond. 67:3199–209
    [Google Scholar]
  4. 4. 
    Balamurugan A, Rajeswari S, Balossier G, Rebelo AHS, Ferreira JMF. 2008. Corrosion aspects of metallic implants—an overview. Mater. Corrosion 59:11855–69
    [Google Scholar]
  5. 5. 
    Hlinka J, Kraus M, Hajnys J, Pagac M, Petrů J et al. 2020. Complex corrosion properties of AISI 316L steel prepared by 3D printing technology for possible implant applications. Materials 13:71527
    [Google Scholar]
  6. 6. 
    Pramanik S, Agarwal AK, Rai KN. 2005. Chronology of total hip joint replacement and materials development. Trends Biomater. Artif. Organs 19:15–26
    [Google Scholar]
  7. 7. 
    Rony L, Lancigu R, Hubert L. 2018. Intraosseus metal implants in orthopedics: a review. Morphologie 103:339231–42
    [Google Scholar]
  8. 8. 
    Geetha M, Singh AK, Asokamani R, Gogia AK. 2009. Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Progress Mater. Sci. 54:397–425
    [Google Scholar]
  9. 9. 
    Kurtz S, Ong K, Lau E, Mowat F, Halpern M. 2007. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J. Bone Joint Surg. Am. 89:4780–85
    [Google Scholar]
  10. 10. 
    ASTM Int 2015. ISO/ASTM 52900-15, Standard Terminology for Additive ManufacturingGeneral PrinciplesTerminology. West Conshohocken, PA: ASTM Int.
    [Google Scholar]
  11. 11. 
    Gibson I, Rosen D, Stucker B. 2015. Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing New York: Springer. , 2nd ed..
  12. 12. 
    Ni J, Ling H, Zhang S, Wang Z, Peng Z et al. 2019. Three-dimensional printing of metals for biomedical applications. Mater. Today Bio 3:100024
    [Google Scholar]
  13. 13. 
    Popov VV, Muller-Kamskii G, Katz-Demyanetz A, Kovalevsky A, Usov S et al. 2019. Additive manufacturing to veterinary practice: recovery of bony defects after the osteosarcoma resection in canines. Biomed. Eng. Lett. 9:197–108
    [Google Scholar]
  14. 14. 
    Waheed S, Cabot J, Macdonald NP, Lewis T, Gujit RM et al. 2016. 3D printed microfluidic devices: enablers and barriers. Lab. Chip 16:111993–2013
    [Google Scholar]
  15. 15. 
    Au AK, Huynh W, Horowitz LF, Folch A. 2016. 3D-printed microfluidics. Angew. Chem. Int. 55:123862–81
    [Google Scholar]
  16. 16. 
    Taylor AP, Izquierdo Reyes J, Velásquez-García LF 2020. Compact, magnetically actuated, additively manufactured pumps for liquids and gases. J. Phys. D Appl. Phys. 53:35355002
    [Google Scholar]
  17. 17. 
    Taylor AP, Velásquez-García LF. 2017. Miniaturized diaphragm vacuum pump by multi-material additive manufacturing. J. Microelectromech. Syst. 26:61316–26
    [Google Scholar]
  18. 18. 
    Melo Máximo D, Velásquez-García LF 2020. Additively manufactured electrohydrodynamic ionic liquid pure-ion sources for nanosatellite propulsion. Addit. Manuf. 36:101719
    [Google Scholar]
  19. 19. 
    Milewski JO. 2017. Additive Manufacturing of Metals: From Fundamental Technology to Rocket Nozzles, Medical Implants, and Custom Jewelry Cham, Switzerland: Springer
  20. 20. 
    Balakrishnan P, Sreekala MS, Thomas S 2018. Fundamental Biomaterials: Metals Duxford, UK: Woodhead Publishing
  21. 21. 
    Henry SD 2009. Materials and Coatings for Medical Devices: Cardiovascular Materials Park, OH: ASM International
  22. 22. 
    Banerjee PC, Al-Saadi S, Choudhary L, Harandi SE, Singh R. 2019. Magnesium implants: prospect and challenges. Materials 12:1136
    [Google Scholar]
  23. 23. 
    Wu S, Liu X, Yeung KWK, Liu C, Yang X 2014. Biomimetic porous scaffolds for bone tissue engineering. Mater. Sci. Eng. R Rep. 80:1–36
    [Google Scholar]
  24. 24. 
    Chen Q, Thouas GA. 2015. Metallic implant biomaterials. Mater. Sci. Eng. R Rep. 87:1–57
    [Google Scholar]
  25. 25. 
    Yeganeh VE, Li P. 2017. Effect of beam offset on microstructure and mechanical properties of dissimilar electron beam welded high temperature titanium alloys. Mater. Des. 124:78–86
    [Google Scholar]
  26. 26. 
    Davis JR 2003. Metallic materials. Handbook of Materials for Medical Devices JR Davis 21–50 Materials Park, OH: ASM Int.
    [Google Scholar]
  27. 27. 
    Lütjering G, Williams JC. 2007. Titanium Leipzig, Germany: Springer
  28. 28. 
    Venkatesh BD, Chen DL, Bhole SD. 2009. Effect of heat treatment on mechanical properties of Ti-6Al-4V ELI alloy. Mater. Sci. Eng. A 506:117–24
    [Google Scholar]
  29. 29. 
    Milovanovic A, Sedmak A, Grbovic A, Mijatovic T, Colic K. 2020. Design aspects of hip implant made of Ti-6Al-4V extra low interstitials alloy. Procedia Struct. Integr. 26:299–305
    [Google Scholar]
  30. 30. 
    Khang D, Lu J, Yao C, Haberstroh KM, Webster TJ. 2008. The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium. Biomaterials 29:970–83
    [Google Scholar]
  31. 31. 
    Zhang L-C, Chen L-Y. 2019. A review on biomedical titanium alloys: recent progress and prospect. Adv. Eng. Mater. 21:1801215
    [Google Scholar]
  32. 32. 
    Elias CN, Lima JHC, Valiev R, Meyers MA. 2008. Biomedical applications of titanium and its alloys. JOM 60:46–49
    [Google Scholar]
  33. 33. 
    Bandyopadhyay A, Espana F, Balla VK, Bose S, Ohgami Y, Davies NMJ. 2010. Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants. Acta Biomater 6:41640–48
    [Google Scholar]
  34. 34. 
    Evans FG. 1976. Mechanical properties and histology of cortical bone from younger and older men. Anat. Rec. 185:11–11
    [Google Scholar]
  35. 35. 
    Burstein AH, Reilly DT, Martens M. 1976. Aging of bone tissue: mechanical properties. J. Bone Joint Surg. Am. 58:182–86
    [Google Scholar]
  36. 36. 
    Tang JC, Luo JP, Huang YJ, Sun JF, Zhu ZY et al. 2020. Immunological response triggered by metallic 3D printing powders. Addit. Manuf. 22:101392
    [Google Scholar]
  37. 37. 
    Koutsoukis T, Zinelis S, Eliades G, Al-Wazzan K, Rifaiy MA, Al Jabbari YS 2015. Selective laser melting technique of Co-Cr dental alloys: a review of structure and properties and comparative analysis with other available techniques. J. Prosthodont. 24:4303–12
    [Google Scholar]
  38. 38. 
    Kassapidou M, Stenport VF, Hjalmarsson L, Johansson CB. 2017. Cobalt-chromium alloys in fixed prosthodontics in Sweden. Acta Biomater. Odontol. Scand. 3:153–62
    [Google Scholar]
  39. 39. 
    Delaunay C, Petit I, Learmonth ID, Oger P, Vendittoli PA. 2010. Metal-on-metal bearings total hip arthroplasty: the cobalt and chromium ions release concern. Orthop. Traumatol. Surg. Res. 96:8894–904
    [Google Scholar]
  40. 40. 
    Mao X, Wong AA, Crawford RW. 2011. Cobalt toxicity—an emerging clinical problem in patients with metal-on-metal hip prostheses?. Med. J. Aust. 194:649–51
    [Google Scholar]
  41. 41. 
    Sahasrabudhe H, Bose S, Bandyopadhyay A. 2018. Laser processed calcium phosphate reinforced CoCrMo for load-bearing applications: processing and wear induced damage evaluation. Acta Biomater 66:118–28
    [Google Scholar]
  42. 42. 
    Munoz A, Costa M. 2012. Elucidating the mechanisms of nickel compound uptake: a review of particulate and nano-nickel endocytosis and toxicity. Toxicol. Appl. Pharmacol. 260:1–16
    [Google Scholar]
  43. 43. 
    Matthay RA, Balzer PA, Putman CE, Gee JB, Beck GJ, Greenspan RH. 1978. Tantalum oxide, silica and latex: effects on alveolar macrophage viability and lysozyme release. Investig. Radiol. 13:6514–18
    [Google Scholar]
  44. 44. 
    Rahmati B, Sarhan AD, Zalnezhad E, Kamiab Z, Dabbagh A et al. 2016. Development of tantalum oxide (Ta-O) thin film coating on biomedical Ti-6Al-4V alloy to enhance mechanical properties and biocompatibility. Ceramics Int 42:1466–80
    [Google Scholar]
  45. 45. 
    Wei X, Zhao D, Wang B, Wang W, Kang K et al. 2016. Tantalum coating of porous carbon scaffold supplemented with autologous bone barrow stromal stem cells for bone regeneration in vitro and in vivo. Exp. Biol. Med. 241:6592–602
    [Google Scholar]
  46. 46. 
    Demann ETK, Stein PS, Hauberinch JE. 2005. Gold as an implant in medicine and dentistry. J. Long-Term Effects Med. Implants 15:6687–98
    [Google Scholar]
  47. 47. 
    Gladwin M, Bagby M. 2018. Clinical Aspects of Dental Materials: Theory, Practice, and Cases Philadelphia: Wolters Kluwer. , 5th ed..
  48. 48. 
    Lansdown ABG. 2018. Gold: Human exposure and update on toxic risks. Crit. Rev. Toxicol. 48:7596–614
    [Google Scholar]
  49. 49. 
    Hughes MO. 2010. Incorporating gold into ocular prosthetics. J. Ophthalmic Prosthetics 15:37–43
    [Google Scholar]
  50. 50. 
    Wang Y, Wan J, Miron RJ, Zhao Y, Zhang Y. 2016. Antibacterial properties and mechanisms of gold-silver nanocages. Nanoscale 8:11143–52
    [Google Scholar]
  51. 51. 
    Baltzer N, Copponnex T 2014. Properties and processing of precious metal alloys for biomedical applications. Precious Metals for Biomedical Applications N Baltzer, T Copponnex 3–36 Sawston, UK: Elsevier
    [Google Scholar]
  52. 52. 
    Dykman LA, Khlebtsov NG. 2016. Biomedical applications of multifunctional gold-based nanocomposites. Biochemistry (Moscow) 81:131771–89
    [Google Scholar]
  53. 53. 
    Yang Y, He C, Dianyu E, Yang W, Qi F et al. 2020. Mg bone implant: features, developments and perspectives. Mater. Des. 185:108259
    [Google Scholar]
  54. 54. 
    Zberg B, Uggowitzer PJ, Löffler JF. 2009. MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nat. Mater. 8:887–91
    [Google Scholar]
  55. 55. 
    Kleger N, Cihova M, Masania K, Studart AR, Löffler JF. 2019. 3D printing of salt as a template for magnesium with structured porosity. Adv. Mater. 31:1903783
    [Google Scholar]
  56. 56. 
    Liu J, Yi L 2018. Liquid Metal BiomaterialsPrinciples and Applications Singapore: Springer
    [Google Scholar]
  57. 57. 
    Yi L, Liu J. 2017. Liquid metal biomaterials: a newly emerging area to tackle modern biomedical challenges. Int. Mater. Rev. 62:7415–40
    [Google Scholar]
  58. 58. 
    Yan J, Lu Y, Chen G, Yang M, Gu Z 2018. Advances in liquid metals for biomedical applications. Chem. Soc. Rev. 47:21518
    [Google Scholar]
  59. 59. 
    Scharmann F, Cherkashinin G, Breternitz V, Knedlik C, Hartung G et al. 2004. Viscosity effect on GaInSn studied by XPS. Surf. Interface Anal. 36:8981–85
    [Google Scholar]
  60. 60. 
    Liu F, Yu Y, Yi L, Liu J 2016. Liquid metal as reconnection agent for peripheral nerve injury. Sci. Bull. 61:12939–47
    [Google Scholar]
  61. 61. 
    Wang X, Liu J. 2016. Recent advancements in liquid metal flexible printed electronics: properties, technologies, and applications. Micromachines 7:12206
    [Google Scholar]
  62. 62. 
    Palleau E, Reece S, Desai SC, Smith ME, Dickey MD. 2013. Self-healing stretchable wires for reconfigurable circuit wiring and 3D microfluidics. Adv. Mater. 25:1589–92
    [Google Scholar]
  63. 63. 
    Li Y, Jahr H, Zhou J, Zadpoor AA. 2020. Additively manufactured biodegradable porous metals. Acta Biomater 115:29–50
    [Google Scholar]
  64. 64. 
    Kraus T, Moszner F, Fischerauer S, Fiedler M, Martinelli E et al. 2014. Biodegradable Fe-based alloys for use in osteosynthesis: outcome of an in vivo study after 52 weeks. Acta Biomater 10:73346–53
    [Google Scholar]
  65. 65. 
    Bar-Cohen Y 2018. Advances in Manufacturing and Processing of Materials and Structures Boca Raton, FL: CRC Press
  66. 66. 
    Ghods S, Schultz E, Wisdom C, Schur R, Pahuja R et al. 2020. Electron beam additive manufacturing of Ti6Al4V: evolution of powder morphology and part microstructure with powder reuse. Materialia 9:100631
    [Google Scholar]
  67. 67. 
    Jianzhong R, Sparks TE, Fan Z, Stroble JK, Panackal A. 2006. A review of layer based manufacturing processes for metals. 2006 InternationalSolid Freeform Fabrication Symposium233–45 Austin: Univ. Tex. Press
    [Google Scholar]
  68. 68. 
    Srivastava M, Rathee S, Maheshwari S, Kundra TK. 2019. Additive Manufacturing: Fundamentals and Advancements Boca Raton, FL: CRC Press
  69. 69. 
    Mower TM, Long MJ. 2016. Mechanical behavior of additive manufactured, powder-bed laser-fused materials. Mater. Sci. Eng. A 651:198–213
    [Google Scholar]
  70. 70. 
    Frazier WE. 2014. Metal additive manufacturing: a review. J. Mater. Eng. Perform. 23:61917–28
    [Google Scholar]
  71. 71. 
    Yadroitsev I, Krakhmalev P, Yadroitsava I, Johansson S, Smurov I. 2013. Energy input effect on morphology and microstructure of selective laser melting single track from metallic powder. J. Mater. Process. Technol. 213:4606–13
    [Google Scholar]
  72. 72. 
    Abd-Elghany K, Bourell DL 2012. Property evaluation of 304L stainless steel fabricated by selective laser melting. Rapid Prototyp. J. 18:3420–28
    [Google Scholar]
  73. 73. 
    Sachdeva A, Singh S, Sharma VS. 2013. Investigating surface roughness of parts produced by SLS process. Int. J. Adv. Manuf. Technol. 64:1505–16
    [Google Scholar]
  74. 74. 
    Murr LE, Martinez E, Hernandez J, Collins S, Amato KN et al. 2012. Microstructures and properties of 17-4 PH stainless steel fabricated by selective laser melting. J. Mater. Res. Technol. 1:3167–77
    [Google Scholar]
  75. 75. 
    General Electric 2021. Inside electron beam melting White Pap., General Electric Boston: https://go.additive.ge.com/rs/706-JIU-273/images/GE%20Additive_EBM_White%20paper_FINAL.pdf
  76. 76. 
    Kumar S. 2020. Additive Manufacturing Processes Cham, Switz: Springer
  77. 77. 
    Wysocki B, Maj P, Sitek R, Buhagiar J, Kurzydłowski KJ, Święszkowski W. 2017. Laser and electron beam additive manufacturing methods of fabricating titanium bone implants. Appl. Sci. 7:7657
    [Google Scholar]
  78. 78. 
    Sames WJ, List FA, Pannala S, Dehoff RR, Babu SS. 2016. The metallurgy and processing science of metal additive manufacturing. Int. Mater. Rev. 61:5315–60
    [Google Scholar]
  79. 79. 
    Mirzababaei S, Pasebani S. 2019. A review of binder jet additive manufacturing of 316L stainless steel. J. Manuf. Mater. Process. 3:382
    [Google Scholar]
  80. 80. 
    Sun Z, Vladimirov G, Nikolaev E, Velásquez-García LF. 2018. Exploration of metal 3-D printing technologies for the microfabrication of freeform, finely featured, mesoscaled structures. J. Microelectromech. Syst. 27:61171–85
    [Google Scholar]
  81. 81. 
    Verlee B, Dormal T, Lecomte-Beckers J. 2012. Density and porosity control of sintered 316L stainless steel parts produced by additive manufacturing. Powder Metall 55:4260–67
    [Google Scholar]
  82. 82. 
    ExOne 2020. Metal 3D printers—materials & binders. ExOne https://www.exone.com/en-US/3d-printing-materials-and-binders/metal-materials-binders
    [Google Scholar]
  83. 83. 
    Salehi M, Maleksaeedi S, Sapari MAB, Nai MLS, Meenashisundaram GK, Gupta M. 2019. Additive manufacturing of magnesium-zin-zirconium (ZK) alloys via capillary-mediated binderless three-dimensional printing. Mater. Des 169:107683
    [Google Scholar]
  84. 84. 
    Hong D, Chou D-T, Velikokhatnyi OI, Roy A, Lee B et al. 2016. Binder-jetting 3D printing and alloy development of new biodegradable Fe-Mn-Ca/Mg alloys. Acta Biomater 45:375–86
    [Google Scholar]
  85. 85. 
    Davé V. 1995. Electron beam (EB)-assisted materials fabrication PhD Thesis, Mass. Inst. Technol Cambridge, MA:
  86. 86. 
    Taminger KM, Watson JK, Hafley RA, Petersen DD. 2003. Solid freeform fabrication apparatus and methods. US Patent 7:168,935
    [Google Scholar]
  87. 87. 
    Wholers T, Gornet T. 2014. History of additive manufacturing. Wholers Report http://wohlersassociates.com/history2014.pdf
    [Google Scholar]
  88. 88. 
    BASF 2020. Ultrafuse® 316L: Stainless steel composite metal filament for 3D printers. BASF Group https://www.forward-am.net/find-material/filaments/ultrafuse-316l/
    [Google Scholar]
  89. 89. 
    Wolff M, Mesterknecht T, Bals A, Ebel T, Willumeit-Römer R 2019. FFF of Mg-alloys for biomedical application. Magnesium Technology 2019 VV Joshi, JB Jordon, D Orlov, NR Neelameggham 43–49 Cham, Switzerland: Springer
    [Google Scholar]
  90. 90. 
    Wolff M, Schaper JG, Dahms M, Ebel T, Kainer KU, Klassen T. 2014. Magnesium powder injection moulding for biomedical application. Powder Metall 57:5331–40
    [Google Scholar]
  91. 91. 
    Lewis J. 2016. Direct ink writing of 3D functional materials. Adv. Funct. Mater. 16:172193–204
    [Google Scholar]
  92. 92. 
    Hirt L, Reiser A, Spolenak R, Zambelli T. 2017. Additive manufacturing of metal structures at the micrometer scale. Adv. Mater. 29:1604211
    [Google Scholar]
  93. 93. 
    Zhu K, Shin SR, van Kempen T, Li Y-C, Ponraj V et al. 2017. Gold nanocomposite bioink for printing 3D cardiac constructs. Adv. Funct. Mater. 27:1605352
    [Google Scholar]
  94. 94. 
    Zhang J, Zhao S, Zhu M, Zhu Y, Zhang Y et al. 2014. 3D-printed magnetic Fe3O4/MBG/PCL composite scaffolds with multifunctionality of bone regeneration, local anticancer drug delivery and hyperthermia. J. Mater. Chem. 2:437583–95
    [Google Scholar]
  95. 95. 
    Hoshino K, Morikawa M, Kohno T, Ueda K, Miyakawa M. 1994. Moldable mixture for use in the manufacturing of precious metal articles US Patent 5328,775
  96. 96. 
    Hartkop DT. 2016. Build Your Own Mini Metal Maker: 3D Print with Metal Clay, Ceramic, Chocolate, Stem Cells, or Whatever! Scotts Valley, CA: CreateSpace Independent Publishing Platform
  97. 97. 
    Segura-Cárdenas E, Velásquez-García LF. 2020. Additively manufactured robust microfluidics via silver clay extrusion. J. Microelectromech. Syst. 29:3427–37
    [Google Scholar]
  98. 98. 
    Campbell SA. 2013. Fabrication Engineering and the Micro- and Nanoscale New York: Oxford Univ. Press
  99. 99. 
    Burwell ED. 2015. A microplasma-based sputtering system for direct-write, microscale fabrication of thin-film metal structures MS Thesis, Case Western Reserve University Cleveland, OH:
  100. 100. 
    Abdul-Wahed AM, Roy AL, Xiao Z, Takahata K 2018. Direct writing of metal film via sputtering of micromachined electrodes. J. Mater. Process. Technol. 262:403–10
    [Google Scholar]
  101. 101. 
    Wang T, Lv L, Shi L, Tong B, Zhang X et al. 2020. Microplasma direct writing of a copper thin film in the atmospheric condition with a novel copper powder electrode. Plasma Process. Polymers 17:e2000034
    [Google Scholar]
  102. 102. 
    Guo QJ, Ni GH, Li L, Lin QF, Zhao YJ et al. 2018. Effects of input power, gas flow rate and hydrogen concentration on Cu film deposition by a radio frequency driven non-thermal atmospheric pressure plasma jet. Thin. Solid Films 660:493–98
    [Google Scholar]
  103. 103. 
    Kornbluth YS, Mathews RH, Parameswaran L, Racz LM, Velásquez-García LF. 2018. Microsputterer with integrated ion-drag focusing for additive manufacturing of thin, narrow conductive lines. J. Phys. D Appl. Phys. 51:16165603
    [Google Scholar]
  104. 104. 
    Kornbluth YS, Mathews RH, Parameswaran L, Racz LM, Velásquez-García LF. 2019. Room-temperature, atmospheric-pressure microsputtering of dense, electrically conductive, sub-100 nm gold films. Nanotechnology 30:28285602
    [Google Scholar]
  105. 105. 
    Kornbluth YS, Mathews RH, Parameswaran L, Racz LM, Velásquez-García LF 2019. Room-temperature printing of micron-scale-wide metal lines for microsystems via atmospheric microsputtering. Technical Digest 32nd Conference on Micro Electro Mechanical Systems (MEMS 2019), S Takeuchi, JB Yoon 372–75 Piscataway, NJ: IEEE
    [Google Scholar]
  106. 106. 
    Lyu H, Zhang X, Liu F, Huang Y, Zhang Z et al. 2019. Fabrication of micro-scale radiation shielding structures using tungsten nanoink through electrohydrodynamic jet printing. J. Micromech. Microeng. 29:11115004
    [Google Scholar]
  107. 107. 
    Samarasinghe SR, Pastoriza-Santos I, Edirisinghe MJ, Liz-Marzán LM. 2008. Fabrication of nanostructured gold films by electrohydrodynamic atomization. Appl. Phys. A 91:141–47
    [Google Scholar]
  108. 108. 
    Lee MW, An S, Kim NY, Seo JH, Huh J-Y et al. 2013. Effects of pulsing frequency on characteristics of electrohydrodynamic inkjet using micro-Al and nano-Ag particles. Exp. Therm. Fluid Sci. 46:103–10
    [Google Scholar]
  109. 109. 
    Matsuura T, Takai T, Iwata F. 2017. Local electrophoresis deposition assisted by laser trapping coupled with a spatial light modulator for three-dimensional microfabrication. Jpn. J. Appl. Phys. 56:10105502
    [Google Scholar]
  110. 110. 
    Zenou M, Sa'ar A, Kotler Z. 2015. Laser transfer of metals and metal alloys for digital microfabrication of 3D objects. Small 11:334082–89
    [Google Scholar]
  111. 111. 
    Feinaeugle M, Pohl R, Bor T, Vaneker T, Römer G-W. 2018. Printing of complex free-standing microstructures via laser-induced forward transfer (LIFT) of pure metal thin films. Addit. Manuf. 24:391–99
    [Google Scholar]
  112. 112. 
    Hu J, Yu M-F. 2010. Meniscus-confined three-dimensional electrodeposition for direct writing of wire bonds. Science 329:5989313–16
    [Google Scholar]
  113. 113. 
    Zhang X, Zhang Y, Li Y, Lei Y, Li Z et al. 2019. Bipolar electrochemistry regulation for dynamic meniscus confined electrodeposition of copper micro-structures by a double-anode system. J. Electrochem. Soc. 166:13D676
    [Google Scholar]
  114. 114. 
    Tanaka T, Ishikawa A, Kawata S. 2006. Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure. Appl. Phys. Lett. 88:8081107
    [Google Scholar]
  115. 115. 
    Barton P, Mukherjee S, Prabha J, Boudouris BW, Pan L, Xu X. 2017. Fabrication of silver nanostructures using femtosecond laser-induced photoreduction. Nanotechnology 28:50505302
    [Google Scholar]
  116. 116. 
    Li C, Hu J, Jiang L, Xu C, Li X et al. 2020. Shaped femtosecond laser induced photoreduction for highly controllable Au nanoparticles based on localized field enhancement and their SERS applications. Nanophotonics 9:3691–702
    [Google Scholar]
  117. 117. 
    Henry MR, Kim S, Fedorov AG. 2016. High purity tungsten nanostructures via focused electron beam induced deposition with carrier gas assisted supersonic jet delivery of organometallic precursors. J. Phys. Chem. C 120:1910584–90
    [Google Scholar]
  118. 118. 
    Córdoba R, Orús P, Strohauer S, Torres TE, De Teresa JM. 2019. Ultra-fast direct growth of metallic micro- and nano-structures by focused ion beam irradiation. Sci. Rep. 9:14076
    [Google Scholar]
  119. 119. 
    Kornbluth Y, Mathews RH, Parameswaran L, Racz L, Velásquez-García LF. 2020. Nano-additively manufactured gold thin films with high adhesion and near-bulk electrical resistivity via jet-assisted, nanoparticle-dominated, room-temperature microsputtering. Addit. Manuf. 36:101679
    [Google Scholar]
  120. 120. 
    Jamieson R, Holmer B, Ashby A 1995. How rapid prototyping can assist in the development of new orthopaedic products: a case study. Rapid Prototyp. J. 1:38–41
    [Google Scholar]
  121. 121. 
    Kim J-H, Kim M-Y, Knowles JC, Choi S, Kang H et al. 2020. Mechanophysical and biological properties of a 3D-printed titanium alloy for dental applications. Dental Mater 36:7945–58
    [Google Scholar]
  122. 121a. 
    Lee U-L, Kwon J-S, Woo S-H, Choi Y-J 2016. Simultaneous bimaxillary surgery and mandibular reconstruction with a 3-dimensional printed titanium implant fabricated by electron beam melting: a preliminary mechanical testing of the printed mandible. J. Oral Maxillofac. Surg 74:71501.e115
    [Google Scholar]
  123. 122. 
    Park E-K, Lim J-Y, Yun I-S, Kim J-S, Woo S-H et al. 2016. Cranioplasty enhanced by three-dimensional printing: custom-made three-dimensional-printed titanium implants for skull defects. J. Craniofac. Surg. 27:4943–49
    [Google Scholar]
  124. 123. 
    Imanishi J, Choong PFM. 2015. Three dimensional printed calcaneal prosthesis following total calcanectomy. Int. J. Surg. Case Rep. 10:83–87
    [Google Scholar]
  125. 124. 
    Aranda JL, Jiménez MF, Rodríguez M, Varela G. 2015. Tridimensional titanium-printed custom-made prosthesis for sternocostal reconstruction. Eur. J. Cardiothorac. Surg. 48:4e92–94
    [Google Scholar]
  126. 125. 
    Mobbs RJ, Coughlan M, Thompson R, Sutterlin CE, Phan K. 2017. The utility of 3D printing for surgical planning and patient-specific implant design for complex spinal pathologies: case report. J. Neurosurg. Spine 26:4513–18
    [Google Scholar]
  127. 126. 
    Hsu RA, Ellington JK. 2015. Patient-specific 3-dimensional printed titanium truss cage with tibiotalocalcaneal arthrodesis for salvage of persistent distal tibia nonunion. Foot Ankle Spec 8:6483–89
    [Google Scholar]
  128. 127. 
    Dekker TJ, Steele JR, Federer AE, Hamid KS, Adams SB. 2018. Use of patient-specific 3D-printed titanium implants for complex foot and ankle limb salvage, deformity correction, and arthrodesis procedures. Foot Ankle Int 39:8916–21
    [Google Scholar]
  129. 128. 
    Murr LE, Gaytan SM, Martinez E, Medina F, Wicker RBJ. 2012. Next generation orthopaedic implants by additive manufacturing using electron beam melting. Int. J. Biomater. 2012.245727
    [Google Scholar]
  130. 129. 
    Mangano C, Bianchi A, Mangano FG, Dana J, Colombo M et al. 2020. Custom-made 3D printed subperiosteal titanium implants for the prosthetic restoration of the atrophic posterior mandible of elderly patients: a case series. 3D Print. Med. 6:1
    [Google Scholar]
  131. 130. 
    Popov VV Jr., Muller-Kamskii G, Kovalevsky A, Dzhenzhera G, Strokin E et al. 2018. Design and 3D-printing of titanium bone implants: brief review of approach and clinical cases. Biomed. Eng. Lett. 8:4337–44
    [Google Scholar]
  132. 131. 
    Barbin T, Velôso DV, Del Rio Silva L, Borges GA, Camacho Presotto AG et al. 2020. 3D metal printing in dentistry: an in vitro biomechanical comparative study of two additive manufacturing technologies for full-arch implant-supported prostheses. J. Mech. Behav. Biomed. Mater. 108:103821
    [Google Scholar]
  133. 132. 
    Xiu P, Jia Z, Lv J, Yin C, Cheng Y et al. 2016. Tailored surface treatment of 3D printed porous Ti6Al4V by microarc oxidation for enhanced osseointegration via optimized bone in-growth patterns and interlocked bone/implant interface. ACS Appl. Mater. Interfaces 8:2817964–75
    [Google Scholar]
  134. 133. 
    Van Bael S, Chai YC, Truscello S, Moesen M, Kerckhofs G et al. 2012. The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds. Acta Biomater 8:72824–34
    [Google Scholar]
  135. 134. 
    Hassanin H, Finet L, Cox SC, Jamshidi P, Grover LM et al. 2018. Tailoring selective laser melting process for titanium drug-delivering implants with releasing micro-channels. Addit. Manuf. 20:144–55
    [Google Scholar]
  136. 135. 
    Lewin S, Fleps I, Åberg J, Ferguson SJ, Engqvist H et al. 2021. Additively manufactured mesh-type titanium structures for cranial implants: E-PBF vs. L-PBF. Mater. Design 197:109207
    [Google Scholar]
  137. 136. 
    Finazzi V, Demir AG, Biffi CA, Migliavacca F, Petrini L, Previtali B. 2020. Design and functional testing of a novel balloon-expandable cardiovascular stent in CoCr ally produced by selective laser melting. J. Manuf. Process. 55:161–73
    [Google Scholar]
  138. 137. 
    Hazlehurst K, Wang CJ, Stanford M. 2013. Evaluation of the stiffness characteristics of square pore CoCrMo cellular structures manufactured using laser melting technology for potential orthopaedic applications. Mater. Des. 51:949–55
    [Google Scholar]
  139. 138. 
    Shah FA, Omar O, Suska F, Snis A, Matic A et al. 2016. Long-term osseointegration of 3D printed CoCr constructs with an interconnected open-pore architecture prepared by electron beam melting. Acta Biomater 36:296–309
    [Google Scholar]
  140. 139. 
    Kim SC, Jo WL, Kim YS, Kwon SY, Cho YS, Lim YW. 2019. Titanium powder coating using metal 3D printing: a novel coating technology for cobalt-chromium alloy implants. Tissue Eng. Regen. Med. 16:11–18
    [Google Scholar]
  141. 140. 
    Wauthle R, van der Stok J, Yavari SA, Van Humbeeck J, Kruth J-P et al. 2015. Additively manufactured porous tantalum implants. Acta Biomater 14:217–25
    [Google Scholar]
  142. 141. 
    Bobyn JD, Stackpool GJ, Hacking SA, Tanzer M, Krygier JJ. 1999. Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial. J. Bone Joint Surg. Br. 81:907–14
    [Google Scholar]
  143. 142. 
    Guo Y, Xie K, Jiang W, Wang L, Li G et al. 2019. In vitro and in vivo study of 3D-printed porous tantalum scaffolds for repairing bone defects. ACS Biomater. Sci. Eng 5:21123–33
    [Google Scholar]
  144. 143. 
    Bandyopadhyay A, Mitra I, Shivaram A, Dasgupta N, Bose S. 2019. Direct comparison of additively manufactured porous titanium and tantalum implants towards in vivo osseointegration. Addit. Manuf. 28:259–66
    [Google Scholar]
  145. 144. 
    Tang HP, Yang K, Jia L, He WW, Yang L, Zhang XZ 2020. Tantalum bone implants printed by selective electron beam manufacturing (SEBM) and their clinical applications. JOM 72:1016–21
    [Google Scholar]
  146. 145. 
    Skardal A, Zhang J, McCoard L, Oottamasathien S, Prestwich GD. 2010. Dynamically crosslinked gold nanoparticle–hyaluronan hydrogels. Adv. Mater. 22:4736–40
    [Google Scholar]
  147. 146. 
    Meenashisundaram GK, Wang N, Maskomani S, Lu S, Anantharajan SK et al. 2020. Fabrication of Ti + Mg composites by three-dimensional printing of porous Ti and subsequent pressureless infiltration of biodegradable Mg. Mater. Sci. Eng. C 108:110478
    [Google Scholar]
  148. 147. 
    Dutta S, Devi KB, Roy M. 2017. Processing and degradation behavior of porous magnesium scaffold for biomedical applications. Adv. Powder Technol. 28:3204–12
    [Google Scholar]
  149. 148. 
    Kopp A, Derra T, Müther M, Jauer L, Schleifenbaum JH et al. 2019. Influence of design and postprocessing parameters on the degradation behavior and mechanical properties of additively manufactured magnesium scaffolds. Acta Biomater 98:23–35
    [Google Scholar]
  150. 149. 
    Carluccio D, Xu C, Venezuela J, Cao Y, Kent D et al. 2020. Additively manufactured iron-manganese for biodegradable porous load-bearing bone scaffold applications. Acta Biomater 103:346–60
    [Google Scholar]
  151. 150. 
    Li Y, Jahr H, Lietaert K, Pavanram P, Yilmaz A et al. 2018. Additively manufactured biodegradable porous iron. Acta Biomater 77:380–93
    [Google Scholar]
  152. 151. 
    Culmone C, Smit G, Breedveld P. 2019. Additive manufacturing of medical instruments: a state-of-the-art review. Addit. Manuf 27:461–73
    [Google Scholar]
  153. 152. 
    Ibrahim AMS, Jose RR, Rabie AM, Gerstle TL, Lee BT, Lin SJ. 2015. Three-dimensional printing in developing countries. Plast. Reconstr. Surg. Glob. Open 3:e443
    [Google Scholar]
  154. 153. 
    US Food Drug Admin 2017. Technical considerations for additive manufactured medical devices FDA-2016-D-1210, US Food Drug Admin Rockville, MD: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/technical-considerations-additive-manufactured-medical-devices
  155. 154. 
    Coemert S, Traeger MF, Graf EC, Lueth TC. 2017. Suitability evaluation of various manufacturing technologies for the development of surgical snake-like manipulators from metals based on flexure hinges. Procedia CIRP 65:1–6
    [Google Scholar]
  156. 155. 
    Sakes A, Hovlan K, Smit G, Geraedts J, Breedveld P. 2018. Design of a novel three-dimensional-printed two degrees-of-freedom steerable electrosurgical grasper for minimally invasive surgery. J. Med. Devices 12:1011007
    [Google Scholar]
  157. 156. 
    Baila DI, Doicin CV, Cotrut CM, Ulmeanu ME, Ghionea IG, Tarba CI. 2016. Sintering the beaks of the elevator manufactured by direct metal laser sintering (DMSL) process from Co-Cr alloy. Metalurgija 55:4663–66
    [Google Scholar]
  158. 157. 
    Nahata S, Ozdoganlar OB. 2019. Feasibility of metal additive manufacturing for fabricating custom surgical instrumentation for hip and knee implants. Procedia Manuf 34:772–79
    [Google Scholar]
  159. 158. 
    Leibrandt K, Wisanuvej P, Gras G, Shang J, Seneci CA et al. 2017. Effective manipulation in confined spaces of highly articulated robotic instruments for single access surgery. IEEE Robot. Autom. Lett 2:31704–11
    [Google Scholar]
  160. 159. 
    Banerjee S. 2020. Empowering clinical diagnostics with mass spectrometry. ACS Omega 5:52041–48
    [Google Scholar]
  161. 160. 
    Snyder DT, Pulliam CJ, Ouyang Z, Cooks RG. 2016. Miniature and fieldable mass spectrometers: recent advances. Anal. Chem. 88:12–29
    [Google Scholar]
  162. 161. 
    Wang Q, Yu Y, Pan K, Liu J. 2014. Liquid metal angiography for mega contrast X-ray visualization of vascular network in reconstructing in-vitro organ anatomy. IEEE Trans. Biomed. Eng. 61:72161–66
    [Google Scholar]
  163. 162. 
    Yan J, Lu Y, Chen G, Yang M, Gu Z 2018. Advances in liquid metals for biomedical applications. Chem. Soc. Rev. 47:2518–33
    [Google Scholar]
  164. 163. 
    Jin C, Zhang J, Li X, Yang X, Li J, Liu J. 2013. Injectable 3D fabrication of medical electronics at the target biological tissues. Sci. Rep. 3:3442
    [Google Scholar]
  165. 164. 
    Zheng Y, He Z-Z, Yang J, Liu J 2015. Personal electronics printing via tapping mode composite liquid metal ink delivery and adhesion mechanism. Sci. Rep. 4:4588
    [Google Scholar]
  166. 165. 
    Gui H, Tan SC, Wang Q, Yu Y, Liu FJ et al. 2017. Spraying printing of liquid metal electronics on various clothes to compose wearable functional device. Sci. China Technol. Sci. 60:306–16
    [Google Scholar]
  167. 166. 
    Vanmeensel K, Lietaert K, Vrancken B, Dadbakhsh S, Li X et al. 2018. Additively manufactured metals for medical applications. Additive ManufacturingMaterials Processes, Quantifications and Applications J Zhang, Y-G Jung 261–309 Oxford, UK: Elsevier
    [Google Scholar]
  168. 167. 
    Regenfuss P, Hartwig L, Klötzer S, Ebert R, Exner H. 2003. Microparts by a novel modification of selective laser sintering. Proceedings of Rapid Prototyping and Manufacturing Conference1–7 Southfield, MI: SME
    [Google Scholar]
  169. 168. 
    Roy NK, Behera D, Dibua OG, Foong CS, Cullinan MA. 2018. Single shot, large area metal sintering with micrometer level resolution. Opt. Express 26:2025534–44
    [Google Scholar]
  170. 169. 
    Baltes H, Brand O, Fedder GK, Hierold C, Korvink JG, Tabata O 2005. Microengineering of Metals and Ceramics: Part II: Special Replication Techniques, Automation, and Properties Darmstadt, Germany: Wiley-VCH
  171. 170. 
    Ryan GE, Pandit AS, Apatsidis DP. 2008. Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique. Biomaterials 29:273625–35
    [Google Scholar]
  172. 171. 
    Vaezi M, Drescher P, Seitz H. 2020. Beamless metal additive manufacturing. Materials 13:4922
    [Google Scholar]
  173. 172. 
    White D. 2003. Ultrasonic object consolidation. US Patent 6:519,500
    [Google Scholar]
  174. 173. 
    Norfolk M, Johnson H. 2015. Solid-state additive manufacturing for heat exchangers. JOM 67:655–59
    [Google Scholar]
  175. 174. 
    Bournias-Varotsis A, Han X, Harris RA, Engstrom DS. 2019. Ultrasonic additive manufacturing using feedstock with build-in circuitry for 3D metal embedded electronics. Addit. Manuf. 29:100799
    [Google Scholar]
  176. 175. 
    Jiang L, Chen S, Sadasivan C, Jiao X 2017. Structural topology optimization for generative design of personalized aneurysm implants: design, additive manufacturing, and experimental validation. Proceedings 2017 IEEE Healthcare Innovation Point Care Technologies (HI-POCT 2017) A Dhawan, G Mensah 9–13 Piscataway, NJ: IEEE
    [Google Scholar]
  177. 176. 
    Skinner SN, Zare-Behtash H. 2018. State-of-the-art in aerodynamic shape optimization methods. Appl. Soft Comput. 62:933–62
    [Google Scholar]
  178. 177. 
    Li F, Macdonald NP, Guijt RM, Breadmore MC. 2019. Increasing the functionalities of 3D printed microchemical devices by single material, multimaterial, and print-pause-print 3D printing. Lab. Chip 19:35–49
    [Google Scholar]
/content/journals/10.1146/annurev-bioeng-082020-032402
Loading
/content/journals/10.1146/annurev-bioeng-082020-032402
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error