1932

Abstract

Magnetic resonance imaging (MRI) has become an important tool for the clinical evaluation of patients with cardiac and vascular diseases. Since its introduction in the late 1980s, quantitative flow imaging with MRI has become a routine part of standard-of-care cardiothoracic and vascular MRI for the assessment of pathological changes in blood flow in patients with cardiovascular disease. More recently, time-resolved flow imaging with velocity encoding along all three flow directions and three-dimensional (3D) anatomic coverage (4D flow MRI) has been developed and applied to enable comprehensive 3D visualization and quantification of hemodynamics throughout the human circulatory system. This article provides an overview of the use of 4D flow applications in different cardiac and vascular regions in the human circulatory system, with a focus on using 4D flow MRI in cardiothoracic and cerebrovascular diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-100219-110055
2020-06-04
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/22/1/annurev-bioeng-100219-110055.html?itemId=/content/journals/10.1146/annurev-bioeng-100219-110055&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Zoghbi WA, Adams D, Bonow RO, Enriquez-Sarano M, Foster E et al. 2017. Recommendations for noninvasive evaluation of native valvular regurgitation: a report from the American Society of Echocardiography developed in collaboration with the Society for Cardiovascular Magnetic Resonance. J. Am. Soc. Echocardiogr. 30:303–71
    [Google Scholar]
  2. 2. 
    Nayak KS, Nielsen JF, Bernstein MA, Markl M, Gatehouse PD et al. 2015. Cardiovascular magnetic resonance phase contrast imaging. J. Cardiovasc. Magn. Reson. 17:71
    [Google Scholar]
  3. 3. 
    Dyverfeldt P, Bissell M, Barker AJ, Bolger AF, Carlhall CJ et al. 2015. 4D flow cardiovascular magnetic resonance consensus statement. J. Cardiovasc. Magn. Reson. 17:72
    [Google Scholar]
  4. 4. 
    Moran PR. 1982. A flow velocity zeugmatographic interlace for NMR imaging in humans. Magn. Reson. Imaging 1:197–203
    [Google Scholar]
  5. 5. 
    Nayler GL, Firmin DN, Longmore DB 1986. Blood flow imaging by cine magnetic resonance. J. Comput. Assist. Tomogr. 5:715–22
    [Google Scholar]
  6. 6. 
    Firmin DN, Nayler GL, Klipstein RH, Underwood SR, Rees RS, Longmore DB 1987. In vivo validation of MR velocity imaging. J. Comput. Assist. Tomogr. 11:751–56
    [Google Scholar]
  7. 7. 
    Bollache E, Barker AJ, Dolan RS, Carr JC, van Ooij P et al. 2018. k-t accelerated aortic 4D flow MRI in under two minutes: feasibility and impact of resolution, k-space sampling patterns, and respiratory navigator gating on hemodynamic measurements. Magn. Reson. Med. 79:195–207
    [Google Scholar]
  8. 8. 
    Cheng JY, Hanneman K, Zhang T, Alley MT, Lai P et al. 2016. Comprehensive motion-compensated highly accelerated 4D flow MRI with ferumoxytol enhancement for pediatric congenital heart disease. J. Magn. Reson. Imaging 43:1355–68
    [Google Scholar]
  9. 9. 
    Dyvorne H, Knight-Greenfield A, Jajamovich G, Besa C, Cui Y et al. 2015. Abdominal 4D flow MR imaging in a breath hold: combination of spiral sampling and dynamic compressed sensing for highly accelerated acquisition. Radiology 275:245–54
    [Google Scholar]
  10. 10. 
    Ma LE, Markl M, Chow K, Huh H, Forman C et al. 2019. Aortic 4D flow MRI in 2 minutes using compressed sensing, respiratory controlled adaptive k-space reordering, and inline reconstruction. Magn. Reson. Med. 81:3675–90
    [Google Scholar]
  11. 11. 
    Bastkowski R, Weiss K, Maintz D, Giese D 2018. Self-gated golden-angle spiral 4D flow MRI. Magn. Reson. Med. 80:904–13
    [Google Scholar]
  12. 12. 
    Baltes C, Kozerke S, Hansen MS, Pruessmann KP, Tsao J, Boesiger P 2005. Accelerating cine phase-contrast flow measurements using k-t BLAST and k-t SENSE. Magn. Reson. Med. 54:1430–38
    [Google Scholar]
  13. 13. 
    Bauer S, Markl M, Foll D, Russe M, Stankovic Z, Jung B 2013. K-t GRAPPA accelerated phase contrast MRI: improved assessment of blood flow and 3-directional myocardial motion during breath-hold. J. Magn. Reson. Imaging 38:1054–62
    [Google Scholar]
  14. 14. 
    Knobloch V, Boesiger P, Kozerke S 2013. Sparsity transform k-t principal component analysis for accelerating cine three-dimensional flow measurements. Magn. Reson. Med. 70:53–63
    [Google Scholar]
  15. 15. 
    Liu J, Koskas L, Faraji F, Kao E, Wang Y et al. 2018. Highly accelerated intracranial 4D flow MRI: evaluation of healthy volunteers and patients with intracranial aneurysms. Magn. Reson. Mater. Phys. Med. Biol. 31:295–307
    [Google Scholar]
  16. 16. 
    Hsiao A, Lustig M, Alley MT, Murphy M, Chan FP et al. 2012. Rapid pediatric cardiac assessment of flow and ventricular volume with compressed sensing parallel imaging volumetric cine phase-contrast MRI. Am. J. Roentgenol. 198:W250–59
    [Google Scholar]
  17. 17. 
    Gu T, Korosec FR, Block WF, Fain SB, Turk Q et al. 2005. PC VIPR: a high-speed 3D phase-contrast method for flow quantification and high-resolution angiography. Am. J. Neuroradiol. 4:743–49
    [Google Scholar]
  18. 18. 
    Sigfridsson A, Petersson S, Carlhall CJ, Ebbers T 2012. Four-dimensional flow MRI using spiral acquisition. Magn. Reson. Med. 68:1065–73
    [Google Scholar]
  19. 19. 
    Deleted in proof
  20. 20. 
    Glover GH, Pauly JM. 1992. Projection reconstruction techniques for reduction of motion effects in MRI. Magn. Reson. Med. 28:275–89
    [Google Scholar]
  21. 21. 
    Petersson S, Sigfridsson A, Dyverfeldt P, Carlhall CJ, Ebbers T 2016. Retrospectively gated intracardiac 4D flow MRI using spiral trajectories. Magn. Reson. Med. 75:196–206
    [Google Scholar]
  22. 22. 
    Stankovic Z, Allen BD, Garcia J, Jarvis KB, Markl M 2014. 4D flow imaging with MRI. Cardiovasc. Diagn. Ther. 4:173–92
    [Google Scholar]
  23. 23. 
    Nett EJ, Johnson KM, Frydrychowicz A, Del Rio AM, Schrauben E et al. 2012. Four-dimensional phase contrast MRI with accelerated dual velocity encoding. J. Magn. Reson. Imaging 35:1462–71
    [Google Scholar]
  24. 24. 
    Garg P, Westenberg JJM, van den Boogaard PJ, Swoboda PP, Aziz R et al. 2018. Comparison of fast acquisition strategies in whole-heart four-dimensional flow cardiac MR: two-center, 1.5 Tesla, phantom and in vivo validation study. J. Magn. Reson. Imaging 47:272–81
    [Google Scholar]
  25. 25. 
    Bock J, Toger J, Bidhult S, Markenroth Bloch K, Arvidsson P et al. 2019. Validation and reproducibility of cardiovascular 4D-flow MRI from two vendors using 2 × 2 parallel imaging acceleration in pulsatile flow phantom and in vivo with and without respiratory gating. Acta Radiol 60:327–37
    [Google Scholar]
  26. 26. 
    Ebel S, Hubner L, Kohler B, Kropf S, Preim B et al. 2019. Validation of two accelerated 4D flow MRI sequences at 3 T: a phantom study. Eur. Radiol. Exp. 3:10
    [Google Scholar]
  27. 27. 
    Stankovic Z, Csatari Z, Deibert P, Euringer W, Jung B et al. 2013. A feasibility study to evaluate splanchnic arterial and venous hemodynamics by flow-sensitive 4D MRI compared with Doppler ultrasound in patients with cirrhosis and controls. Eur. J. Gastroenterol. Hepatol. 25:669–75
    [Google Scholar]
  28. 28. 
    Gabbour M, Schnell S, Jarvis K, Robinson JD, Markl M, Rigsby CK 2015. 4-D flow magnetic resonance imaging: blood flow quantification compared to 2-D phase-contrast magnetic resonance imaging and Doppler echocardiography. Pediatr. Radiol. 45:804–13
    [Google Scholar]
  29. 29. 
    Rose MJ, Jarvis K, Chowdhary V, Barker AJ, Allen BD et al. 2016. Efficient method for volumetric assessment of peak blood flow velocity using 4D flow MRI. J. Magn. Reson. Imaging 44:1673–82
    [Google Scholar]
  30. 30. 
    Stalder AF, Russe MF, Frydrychowicz A, Bock J, Hennig J, Markl M 2008. Quantitative 2D and 3D phase contrast MRI: optimized analysis of blood flow and vessel wall parameters. Magn. Reson. Med. 60:1218–31
    [Google Scholar]
  31. 31. 
    Brix L, Ringgaard S, Rasmusson A, Sorensen TS, Kim WY 2009. Three dimensional three component whole heart cardiovascular magnetic resonance velocity mapping: comparison of flow measurements from 3D and 2D acquisitions. J. Cardiovasc. Magn. Reson. 11:3
    [Google Scholar]
  32. 32. 
    Carlson M, Airhart N, Lopez L, Silberbach M 2012. Moderate aortic enlargement and bicuspid aortic valve are associated with aortic dissection in Turner syndrome: report of the International Turner Syndrome Aortic Dissection Registry. Circulation 126:2220–26
    [Google Scholar]
  33. 33. 
    Frydrychowicz A, Wieben O, Niespodzany E, Reeder SB, Johnson KM, Francois CJ 2013. Quantification of thoracic blood flow using volumetric magnetic resonance imaging with radial velocity encoding: in vivo validation. Investig. Radiol. 48:819–25
    [Google Scholar]
  34. 34. 
    Bollache E, van Ooij P, Powell A, Carr J, Markl M, Barker AJ 2016. Comparison of 4D flow and 2D velocity-encoded phase contrast MRI sequences for the evaluation of aortic hemodynamics. Int. J. Cardiovasc. Imaging 32:1529–41
    [Google Scholar]
  35. 35. 
    Hope MD, Meadows AK, Hope TA, Ordovas KG, Saloner D et al. 2010. Clinical evaluation of aortic coarctation with 4D flow MR imaging. J. Magn. Reson. Imaging 31:711–18
    [Google Scholar]
  36. 36. 
    Hanneman K, Sivagnanam M, Nguyen ET, Wald R, Greiser A et al. 2014. Magnetic resonance assessment of pulmonary (QP) to systemic (QS) flows using 4D phase-contrast imaging: pilot study comparison with standard through-plane 2D phase-contrast imaging. Acad. Radiol. 21:1002–8
    [Google Scholar]
  37. 37. 
    Valverde I, Nordmeyer S, Uribe S, Greil G, Berger F et al. 2012. Systemic-to-pulmonary collateral flow in patients with palliated univentricular heart physiology: measurement using cardiovascular magnetic resonance 4D velocity acquisition. J. Cardiovasc. Magn. Reson. 14:25
    [Google Scholar]
  38. 38. 
    Hsiao A, Alley MT, Massaband P, Herfkens RJ, Chan FP, Vasanawala SS 2011. Improved cardiovascular flow quantification with time-resolved volumetric phase-contrast MRI. Pediatr. Radiol. 41:711–20
    [Google Scholar]
  39. 39. 
    Roldan-Alzate A, Frydrychowicz A, Niespodzany E, Landgraf BR, Johnson KM et al. 2013. In vivo validation of 4D flow MRI for assessing the hemodynamics of portal hypertension. J. Magn. Reson. Imaging 37:1100–8
    [Google Scholar]
  40. 40. 
    Tariq U, Hsiao A, Alley M, Zhang T, Lustig M, Vasanawala SS 2013. Venous and arterial flow quantification are equally accurate and precise with parallel imaging compressed sensing 4D phase contrast MRI. J. Magn. Reson. Imaging 37:1419–26
    [Google Scholar]
  41. 41. 
    Isoda H, Ohkura Y, Kosugi T, Hirano M, Alley MT et al. 2010. Comparison of hemodynamics of intracranial aneurysms between MR fluid dynamics using 3D cine phase-contrast MRI and MR-based computational fluid dynamics. Neuroradiology 52:913–20
    [Google Scholar]
  42. 42. 
    Cibis M, Jarvis K, Markl M, Rose M, Rigsby C et al. 2015. The effect of resolution on viscous dissipation measured with 4D flow MRI in patients with Fontan circulation: evaluation using computational fluid dynamics. J. Biomech. 48:2984–89
    [Google Scholar]
  43. 43. 
    Szajer J, Ho-Shon K. 2018. A comparison of 4D flow MRI-derived wall shear stress with computational fluid dynamics methods for intracranial aneurysms and carotid bifurcations—a review. Magn. Reson. Imaging 48:62–69
    [Google Scholar]
  44. 44. 
    Nordmeyer S, Riesenkampff E, Messroghli D, Kropf S, Nordmeyer J et al. 2013. Four-dimensional velocity-encoded magnetic resonance imaging improves blood flow quantification in patients with complex accelerated flow. J. Magn. Reson. Imaging 37:208–16
    [Google Scholar]
  45. 45. 
    Hope MD, Hope TA, Meadows AK, Ordovas KG, Urbania TH et al. 2010. Bicuspid aortic valve: four-dimensional MR evaluation of ascending aortic systolic flow patterns. Radiology 255:53–61
    [Google Scholar]
  46. 46. 
    Barker AJ, Lanning C, Shandas R 2010. Quantification of hemodynamic wall shear stress in patients with bicuspid aortic valve using phase-contrast MRI. Ann. Biomed. Eng. 38:788–800
    [Google Scholar]
  47. 47. 
    Meierhofer C, Schneider EP, Lyko C, Hutter A, Martinoff S et al. 2013. Wall shear stress and flow patterns in the ascending aorta in patients with bicuspid aortic valves differ significantly from tricuspid aortic valves: a prospective study. Eur. Heart J. Cardiovasc. Imaging 14:797–804
    [Google Scholar]
  48. 48. 
    Shan Y, Li J, Wang Y, Wu B, Barker AJ et al. 2017. Aortic shear stress in patients with bicuspid aortic valve with stenosis and insufficiency. J. Thorac. Cardiovasc. Surg. 153:1263–72.e1
    [Google Scholar]
  49. 49. 
    Barker AJ, Markl M, Burk J, Lorenz R, Bock J et al. 2012. Bicuspid aortic valve is associated with altered wall shear stress in the ascending aorta. Circ. Cardiovasc. Imaging 5:457–66
    [Google Scholar]
  50. 50. 
    Bissell MM, Hess AT, Biasiolli L, Glaze SJ, Loudon M et al. 2013. Aortic dilation in bicuspid aortic valve disease: flow pattern is a major contributor and differs with valve fusion type. Circ. Cardiovasc. Imaging 6:499–507
    [Google Scholar]
  51. 51. 
    Mahadevia R, Barker AJ, Schnell S, Entezari P, Kansal P et al. 2014. Bicuspid aortic cusp fusion morphology alters aortic three-dimensional outflow patterns, wall shear stress, and expression of aortopathy. Circulation 129:673–82
    [Google Scholar]
  52. 52. 
    Rodriguez-Palomares JF, Dux-Santoy L, Guala A, Kale R, Maldonado G et al. 2018. Aortic flow patterns and wall shear stress maps by 4D-flow cardiovascular magnetic resonance in the assessment of aortic dilatation in bicuspid aortic valve disease. J. Cardiovasc. Magn. Reson. 20:28
    [Google Scholar]
  53. 53. 
    Dux-Santoy L, Guala A, Teixido-Tura G, Ruiz-Munoz A, Maldonado G et al. 2019. Increased rotational flow in the proximal aortic arch is associated with its dilation in bicuspid aortic valve disease. Eur. Heart J. Cardiovasc. Imaging 20:1407–17
    [Google Scholar]
  54. 54. 
    Allen BD, van Ooij P, Barker AJ, Carr M, Gabbour M et al. 2015. Thoracic aorta 3D hemodynamics in pediatric and young adult patients with bicuspid aortic valve. J. Magn. Reson. Imaging 42:954–63
    [Google Scholar]
  55. 55. 
    Farag ES, van Ooij P, Planken RN, Dukker KCP, de Heer F et al. 2018. Aortic valve stenosis and aortic diameters determine the extent of increased wall shear stress in bicuspid aortic valve disease. J. Magn. Reson. Imaging 48:522–30
    [Google Scholar]
  56. 56. 
    Shan Y, Li J, Wang Y, Wu B, Barker AJ et al. 2019. Aortic stenosis exacerbates flow aberrations related to the bicuspid aortic valve fusion pattern and the aortopathy phenotype. Eur. J. Cardiothorac. Surg. 55:534–42
    [Google Scholar]
  57. 57. 
    Bustamante M, Petersson S, Eriksson J, Alehagen U, Dyverfeldt P et al. 2015. Atlas-based analysis of 4D flow CMR: automated vessel segmentation and flow quantification. J. Cardiovasc. Magn. Reson. 17:87
    [Google Scholar]
  58. 58. 
    Cibis M, Bustamante M, Eriksson J, Carlhall CJ, Ebbers T 2017. Creating hemodynamic atlases of cardiac 4D flow MRI. J. Magn. Reson. Imaging 46:1389–99
    [Google Scholar]
  59. 59. 
    van Ooij P, Potters WV, Nederveen AJ, Allen BD, Collins J et al. 2015. A methodology to detect abnormal relative wall shear stress on the full surface of the thoracic aorta using four-dimensional flow MRI. Magn. Reson. Med. 73:1216–27
    [Google Scholar]
  60. 60. 
    van Ooij P, Garcia J, Potters WV, Malaisrie SC, Collins JD et al. 2016. Age-related changes in aortic 3D blood flow velocities and wall shear stress: implications for the identification of altered hemodynamics in patients with aortic valve disease. J. Magn. Reson. Imaging 43:1239–49
    [Google Scholar]
  61. 61. 
    Guzzardi DG, Barker AJ, van Ooij P, Malaisrie SC, Puthumana JJ et al. 2015. Valve-related hemodynamics mediate human bicuspid aortopathy: insights from wall shear stress mapping. J. Am. Coll. Cardiol. 66:892–900
    [Google Scholar]
  62. 62. 
    Bollache E, Guzzardi DG, Sattari S, Olsen KE, Di Martino ES et al. 2018. Aortic valve-mediated wall shear stress is heterogeneous and predicts regional aortic elastic fiber thinning in bicuspid aortic valve–associated aortopathy. J. Thorac. Cardiovasc. Surg. 156:2112–20.e2
    [Google Scholar]
  63. 63. 
    Schnell S, Smith DA, Barker AJ, Entezari P, Honarmand AR et al. 2016. Altered aortic shape in bicuspid aortic valve relatives influences blood flow patterns. Eur. Heart J. Cardiovasc. Imaging 17:1239–47
    [Google Scholar]
  64. 64. 
    Geiger J, Markl M, Herzer L, Hirtler D, Loeffelbein F et al. 2012. Aortic flow patterns in patients with Marfan syndrome assessed by flow-sensitive four-dimensional MRI. J. Magn. Reson. Imaging 35:594–600
    [Google Scholar]
  65. 65. 
    Geiger J, Arnold R, Herzer L, Hirtler D, Stankovic Z et al. 2013. Aortic wall shear stress in Marfan syndrome. Magn. Reson. Med. 70:1137–44
    [Google Scholar]
  66. 66. 
    Geiger J, Hirtler D, Gottfried K, Rahman O, Bollache E et al. 2017. Longitudinal evaluation of aortic hemodynamics in Marfan syndrome: new insights from a 4D flow cardiovascular magnetic resonance multi-year follow-up study. J. Cardiovasc. Magn. Reson. 19:33
    [Google Scholar]
  67. 67. 
    van der Palen RL, Barker AJ, Bollache E, Garcia J, Rose MJ et al. 2017. Altered aortic 3D hemodynamics and geometry in pediatric Marfan syndrome patients. J. Cardiovasc. Magn. Reson. 19:30
    [Google Scholar]
  68. 68. 
    Hope TA, Kvitting JP, Hope MD, Miller DC, Markl M, Herfkens RJ 2013. Evaluation of Marfan patients status post valve-sparing aortic root replacement with 4D flow. Magn. Reson. Imaging 31:1479–84
    [Google Scholar]
  69. 69. 
    Guala A, Rodriguez-Palomares J, Dux-Santoy L, Teixido-Tura G, Maldonado G et al. 2019. Influence of aortic dilation on the regional aortic stiffness of bicuspid aortic valve assessed by 4-dimensional flow cardiac magnetic resonance: comparison with Marfan syndrome and degenerative aortic aneurysm. JACC Cardiovasc. Imaging 12:1020–29
    [Google Scholar]
  70. 70. 
    Francois CJ, Markl M, Schiebler ML, Niespodzany E, Landgraf BR et al. 2013. Four-dimensional, flow-sensitive magnetic resonance imaging of blood flow patterns in thoracic aortic dissections. J. Thorac. Cardiovasc. Surg. 145:1359–66
    [Google Scholar]
  71. 71. 
    Allen BD, Aouad PJ, Burris NS, Rahsepar AA, Jarvis KB et al. 2019. Detection and hemodynamic evaluation of flap fenestrations in type B aortic dissection with 4D flow MRI: comparison with conventional MRI and CT angiography. Radiol. Cardiothorac. Imaging 1:e180009
    [Google Scholar]
  72. 72. 
    Frydrychowicz A, Markl M, Hirtler D, Harloff A, Schlensak C et al. 2011. Aortic hemodynamics in patients with and without repair of aortic coarctation: in vivo analysis by 4D flow-sensitive magnetic resonance imaging. Investig. Radiol. 46:317–25
    [Google Scholar]
  73. 73. 
    Bock J, Frydrychowicz A, Lorenz R, Hirtler D, Barker AJ et al. 2011. In vivo noninvasive 4D pressure difference mapping in the human aorta: phantom comparison and application in healthy volunteers and patients. Magn. Reson. Med. 66:1079–88
    [Google Scholar]
  74. 74. 
    Rengier F, Delles M, Eichhorn J, Azad YJ, von Tengg-Kobligk H et al. 2015. Noninvasive 4D pressure difference mapping derived from 4D flow MRI in patients with repaired aortic coarctation: comparison with young healthy volunteers. Int. J. Cardiovasc. Imaging 31:823–30
    [Google Scholar]
  75. 75. 
    Riesenkampff E, Fernandes JF, Meier S, Goubergrits L, Kropf S et al. 2014. Pressure fields by flow-sensitive, 4D, velocity-encoded CMR in patients with aortic coarctation. JACC Cardiovasc. Imaging 7:920–26
    [Google Scholar]
  76. 76. 
    Semaan E, Markl M, Malaisrie SC, Barker A, Allen B et al. 2014. Haemodynamic outcome at four-dimensional flow magnetic resonance imaging following valve-sparing aortic root replacement with tricuspid and bicuspid valve morphology. Eur. J. Cardiothorac. Surg. 45:818–25
    [Google Scholar]
  77. 77. 
    Bissell MM, Loudon M, Hess AT, Stoll V, Orchard E et al. 2018. Differential flow improvements after valve replacements in bicuspid aortic valve disease: a cardiovascular magnetic resonance assessment. J. Cardiovasc. Magn. Reson. 20:10
    [Google Scholar]
  78. 78. 
    Farag ES, Vendrik J, van Ooij P, Poortvliet QL, van Kesteren F et al. 2019. Transcatheter aortic valve replacement alters ascending aortic blood flow and wall shear stress patterns: a 4D flow MRI comparison with age-matched, elderly controls. Eur. Radiol. 29:1444–51
    [Google Scholar]
  79. 79. 
    Keller EJ, Malaisrie SC, Kruse J, McCarthy PM, Carr JC et al. 2016. Reduction of aberrant aortic haemodynamics following aortic root replacement with a mechanical valved conduit. Interact. Cardiovasc. Thorac. Surg. 23:416–23
    [Google Scholar]
  80. 80. 
    van Kesteren F, Wollersheim LW, Baan J Jr., Nederveen AJ, Kaya A et al. 2018. Four-dimensional flow MRI of stented versus stentless aortic valve bioprostheses. Eur. Radiol. 28:257–64
    [Google Scholar]
  81. 81. 
    Sakata M, Takehara Y, Katahashi K, Sano M, Inuzuka K et al. 2016. Hemodynamic analysis of endoleaks after endovascular abdominal aortic aneurysm repair by using 4-dimensional flow-sensitive magnetic resonance imaging. Circ. J. 80:1715–25
    [Google Scholar]
  82. 82. 
    Salehi Ravesh M, Langguth P, Pfarr JA, Schupp J, Trentmann J et al. 2019. Non-contrast-enhanced magnetic resonance imaging for visualization and quantification of endovascular aortic prosthesis, their endoleaks and aneurysm sacs at 1.5T. Magn. Reson. Imaging 60:164–72
    [Google Scholar]
  83. 83. 
    Wu C, Honarmand AR, Schnell S, Kuhn R, Schoeneman SE et al. 2016. Age-related changes of normal cerebral and cardiac blood flow in children and adults aged 7 months to 61 years. J. Am. Heart Assoc. 5:e002657
    [Google Scholar]
  84. 84. 
    Wu C, Schnell S, Vakil P, Honarmand AR, Ansari SA et al. 2017. In vivo assessment of the impact of regional intracranial atherosclerotic lesions on brain arterial 3D hemodynamics. Am. J. Neuroradiol. 38:515–22
    [Google Scholar]
  85. 85. 
    Vali A, Aristova M, Vakil P, Abdalla R, Prabhakaran S et al. 2019. Semi-automated analysis of 4D flow MRI to assess the hemodynamic impact of intracranial atherosclerotic disease. Magn. Reson. Med. 82:749–62
    [Google Scholar]
  86. 86. 
    Schuchardt F, Hennemuth A, Schroeder L, Meckel S, Markl M et al. 2017. Acute cerebral venous thrombosis: three-dimensional visualization and quantification of hemodynamic alterations using 4-dimensional flow magnetic resonance imaging. Stroke 48:671–77
    [Google Scholar]
  87. 87. 
    Meckel S, Stalder AF, Santini F, Radu EW, Rufenacht DA et al. 2008. In vivo visualization and analysis of 3-D hemodynamics in cerebral aneurysms with flow-sensitized 4-D MR imaging at 3 T. Neuroradiology 50:473–84
    [Google Scholar]
  88. 88. 
    Boussel L, Rayz V, Martin A, Acevedo-Bolton G, Lawton MT et al. 2009. Phase-contrast magnetic resonance imaging measurements in intracranial aneurysms in vivo of flow patterns, velocity fields, and wall shear stress: comparison with computational fluid dynamics. Magn. Reson. Med. 61:409–17
    [Google Scholar]
  89. 89. 
    Isoda H, Ohkura Y, Kosugi T, Hirano M, Takeda H et al. 2010. In vivo hemodynamic analysis of intracranial aneurysms obtained by magnetic resonance fluid dynamics (MRFD) based on time-resolved three-dimensional phase-contrast MRI. Neuroradiology 52:921–28
    [Google Scholar]
  90. 90. 
    Schnell S, Ansari SA, Vakil P, Wasielewski M, Carr ML et al. 2014. Three-dimensional hemodynamics in intracranial aneurysms: influence of size and morphology. J. Magn. Reson. Imaging 39:120–31
    [Google Scholar]
  91. 91. 
    Futami K, Nambu I, Kitabayashi T, Sano H, Misaki K et al. 2017. Inflow hemodynamics evaluated by using four-dimensional flow magnetic resonance imaging and the size ratio of unruptured cerebral aneurysms. Neuroradiology 59:411–18
    [Google Scholar]
  92. 92. 
    Wu C, Ansari SA, Honarmand AR, Vakil P, Hurley MC et al. 2015. Evaluation of 4D vascular flow and tissue perfusion in cerebral arteriovenous malformations: influence of Spetzler-Martin grade, clinical presentation, and AVM risk factors. Am. J. Neuroradiol. 36:1142–49
    [Google Scholar]
  93. 93. 
    Aristova M, Vali A, Ansari SA, Shaibani A, Alden TD et al. 2019. Standardized evaluation of cerebral arteriovenous malformations using flow distribution network graphs and dual-venc 4D flow MRI. J. Magn. Reson. Imaging 50:61718–30
    [Google Scholar]
  94. 94. 
    Schnell S, Ansari SA, Wu C, Garcia J, Murphy IG et al. 2017. Accelerated dual-venc 4D flow MRI for neurovascular applications. J. Magn. Reson. Imaging 46:102–14
    [Google Scholar]
  95. 95. 
    Morbiducci U, Ponzini R, Rizzo G, Cadioli M, Esposito A et al. 2011. Mechanistic insight into the physiological relevance of helical blood flow in the human aorta: an in vivo study. Biomech. Model. Mechanobiol. 3:339–55
    [Google Scholar]
  96. 96. 
    Garcia J, Barker AJ, Collins JD, Carr JC, Markl M 2017. Volumetric quantification of absolute local normalized helicity in patients with bicuspid aortic valve and aortic dilatation. Magn. Reson. Med. 78:689–701
    [Google Scholar]
  97. 97. 
    Sotelo J, Urbina J, Valverde I, Mura J, Tejos C et al. 2018. Three-dimensional quantification of vorticity and helicity from 3D cine PC-MRI using finite-element interpolations. Magn. Reson. Med. 79:541–53
    [Google Scholar]
  98. 98. 
    Frydrychowicz A, Stalder AF, Russe MF, Bock J, Bauer S et al. 2009. Three-dimensional analysis of segmental wall shear stress in the aorta by flow-sensitive four-dimensional-MRI. J. Magn. Reson. Imaging 30:77–84
    [Google Scholar]
  99. 99. 
    Potters WV, van Ooij P, Marquering H, vanBavel E, Nederveen AJ 2015. Volumetric arterial wall shear stress calculation based on cine phase contrast MRI. J. Magn. Reson. Imaging 41:505–16
    [Google Scholar]
  100. 100. 
    van Ooij P, Potters WV, Collins J, Carr M, Carr J et al. 2015. Characterization of abnormal wall shear stress using 4D flow MRI in human bicuspid aortopathy. Ann. Biomed. Eng. 43:1385–97
    [Google Scholar]
  101. 101. 
    Sotelo J, Dux-Santoy L, Guala A, Rodriguez-Palomares J, Evangelista A et al. 2018. 3D axial and circumferential wall shear stress from 4D flow MRI data using a finite element method and a laplacian approach. Magn. Reson. Med. 79:2816–23
    [Google Scholar]
  102. 102. 
    Petersson S, Dyverfeldt P, Ebbers T 2012. Assessment of the accuracy of MRI wall shear stress estimation using numerical simulations. J. Magn. Reson. Imaging 36:128–38
    [Google Scholar]
  103. 103. 
    Markl M, Wallis W, Harloff A 2011. Reproducibility of flow and wall shear stress analysis using flow-sensitive four-dimensional MRI. J. Magn. Reson. Imaging 33:988–94
    [Google Scholar]
  104. 104. 
    van Ooij P, Powell AL, Potters WV, Carr JC, Markl M, Barker AJ 2016. Reproducibility and interobserver variability of systolic blood flow velocity and 3D wall shear stress derived from 4D flow MRI in the healthy aorta. J. Magn. Reson. Imaging 43:236–48
    [Google Scholar]
  105. 105. 
    Carlsson M, Heiberg E, Toger J, Arheden H 2012. Quantification of left and right ventricular kinetic energy using four-dimensional intracardiac magnetic resonance imaging flow measurements. Am. J. Physiol. Heart Circ. Physiol. 302:H893–900
    [Google Scholar]
  106. 106. 
    Dyverfeldt P, Hope MD, Tseng EE, Saloner D 2013. Magnetic resonance measurement of turbulent kinetic energy for the estimation of irreversible pressure loss in aortic stenosis. JACC Cardiovasc. Imaging 6:64–71
    [Google Scholar]
  107. 107. 
    Barker AJ, van Ooij P, Bandi K, Garcia J, Albaghdadi M et al. 2014. Viscous energy loss in the presence of abnormal aortic flow. Magn. Reson. Med. 72:620–28
    [Google Scholar]
  108. 108. 
    Garcia D, Dumesnil JG, Durand L-G, Kadem L, Pibarot P 2003. Discrepancies between catheter and Doppler estimates of valve effective orifice area can be predicted from the pressure recovery phenomenon. J. Am. Coll. Cardiol. 41:435–42
    [Google Scholar]
  109. 109. 
    Ha H, Kvitting JP, Dyverfeldt P, Ebbers T 2019. Validation of pressure drop assessment using 4D flow MRI-based turbulence production in various shapes of aortic stenoses. Magn. Reson. Med. 81:893–906
    [Google Scholar]
  110. 110. 
    Falahatpisheh A, Rickers C, Gabbert D, Heng EL, Stalder A et al. 2016. Simplified Bernoulli's method significantly underestimates pulmonary transvalvular pressure drop. J. Magn. Reson. Imaging 43:1313–19
    [Google Scholar]
  111. 111. 
    Ziegler M, Welander M, Lantz J, Lindenberger M, Bjarnegard N et al. 2019. Visualizing and quantifying flow stasis in abdominal aortic aneurysms in men using 4D flow MRI. Magn. Reson. Imaging 57:103–10
    [Google Scholar]
  112. 112. 
    Markl M, Lee DC, Furiasse N, Carr M, Foucar C et al. 2016. Left atrial and left atrial appendage 4D blood flow dynamics in atrial fibrillation. Circ. Cardiovasc. Imaging 9:e004984
    [Google Scholar]
  113. 113. 
    Markl M, Wallis W, Brendecke S, Simon J, Frydrychowicz A, Harloff A 2010. Estimation of global aortic pulse wave velocity by flow-sensitive 4D MRI. Magn. Reson. Med. 63:1575–82
    [Google Scholar]
  114. 114. 
    Dyverfeldt P, Ebbers T, Lanne T 2014. Pulse wave velocity with 4D flow MRI: systematic differences and age-related regional vascular stiffness. Magn. Reson. Imaging 32:1266–71
    [Google Scholar]
  115. 115. 
    Garcia J, Barker AJ, van Ooij P, Schnell S, Puthumana J et al. 2015. Assessment of altered three-dimensional blood characteristics in aortic disease by velocity distribution analysis. Magn. Reson. Med. 74:817–25
    [Google Scholar]
  116. 116. 
    Kolipaka A, Illapani VS, Kalra P, Garcia J, Mo X et al. 2017. Quantification and comparison of 4D-flow MRI-derived wall shear stress and MRE-derived wall stiffness of the abdominal aorta. J. Magn. Reson. Imaging 45:771–78
    [Google Scholar]
  117. 117. 
    Bollache E, Fedak PWM, van Ooij P, Rahman O, Malaisrie SC et al. 2018. Perioperative evaluation of regional aortic wall shear stress patterns in patients undergoing aortic valve and/or proximal thoracic aortic replacement. J. Thorac. Cardiovasc. Surg. 155:2277–86.e2
    [Google Scholar]
  118. 118. 
    Markl M, Brendecke SM, Simon J, Barker AJ, Weiller C, Harloff A 2013. Co-registration of the distribution of wall shear stress and 140 complex plaques of the aorta. Magn. Reson. Imaging 31:1156–62
    [Google Scholar]
  119. 119. 
    Ha H, Ziegler M, Welander M, Bjarnegard N, Carlhall CJ et al. 2018. Age-related vascular changes affect turbulence in aortic blood flow. Front. Physiol. 9:36
    [Google Scholar]
  120. 120. 
    Harloff A, Mirzaee H, Lodemann T, Hagenlocher P, Wehrum T et al. 2018. Determination of aortic stiffness using 4D flow cardiovascular magnetic resonance—a population-based study. J. Cardiovasc. Magn. Reson. 20:43
    [Google Scholar]
  121. 121. 
    Bouaou K, Bargiotas I, Dietenbeck T, Bollache E, Soulat G et al. 2019. Analysis of aortic pressure fields from 4D flow MRI in healthy volunteers: associations with age and left ventricular remodeling. J. Magn. Reson. Imaging 50:982–93
    [Google Scholar]
  122. 122. 
    Reiter G, Reiter U, Kovacs G, Olschewski H, Fuchsjäger M 2015. Blood flow vortices along the main pulmonary artery measured with MR imaging for diagnosis of pulmonary hypertension. Radiology 275:71–79
    [Google Scholar]
  123. 123. 
    Barker AJ, Roldan-Alzate A, Entezari P, Shah SJ, Chesler NC et al. 2015. Four-dimensional flow assessment of pulmonary artery flow and wall shear stress in adult pulmonary arterial hypertension: results from two institutions. Magn. Reson. Med. 73:1904–13
    [Google Scholar]
  124. 124. 
    Han QJ, Witschey WR, Fang-Yen CM, Arkles JS, Barker AJ et al. 2015. Altered right ventricular kinetic energy work density and viscous energy dissipation in patients with pulmonary arterial hypertension: a pilot study using 4D flow MRI. PLOS ONE 10:e0138365
    [Google Scholar]
  125. 125. 
    Jarvis K, Schnell S, Barker AJ, Garcia J, Lorenz R et al. 2016. Evaluation of blood flow distribution asymmetry and vascular geometry in patients with Fontan circulation using 4-D flow MRI. Pediatr. Radiol. 46:1507–19
    [Google Scholar]
  126. 126. 
    Rijnberg FM, Hazekamp MG, Wentzel JJ, de Koning PJH, Westenberg JJM et al. 2018. Energetics of blood flow in cardiovascular disease: concept and clinical implications of adverse energetics in patients with a Fontan circulation. Circulation 137:2393–407
    [Google Scholar]
  127. 127. 
    Kamphuis VP, Elbaz MSM, van den Boogaard PJ, Kroft LJM, van der Geest RJ et al. 2019. Disproportionate intraventricular viscous energy loss in Fontan patients: analysis by 4D flow MRI. Eur. Heart J. Cardiovasc. Imaging 20:323–33
    [Google Scholar]
  128. 128. 
    François CJ, Srinivasan S, Schiebler ML, Reeder SB, Niespodzany E et al. 2012. 4D cardiovascular magnetic resonance velocity mapping of alterations of right heart flow patterns and main pulmonary artery hemodynamics in tetralogy of Fallot. J. Cardiovasc. Magn. Reson. 14:16
    [Google Scholar]
  129. 129. 
    Sjoberg P, Bidhult S, Bock J, Heiberg E, Arheden H et al. 2018. Disturbed left and right ventricular kinetic energy in patients with repaired tetralogy of Fallot: pathophysiological insights using 4D-flow MRI. Eur. Radiol. 28:4066–76
    [Google Scholar]
  130. 130. 
    Robinson JD, Rose MJ, Joh M, Jarvis K, Schnell S et al. 2019. 4-D flow magnetic-resonance-imaging-derived energetic biomarkers are abnormal in children with repaired tetralogy of Fallot and associated with disease severity. Pediatr. Radiol. 49:308–17
    [Google Scholar]
  131. 131. 
    Jarvis K, Vonder M, Barker AJ, Schnell S, Rose M et al. 2016. Hemodynamic evaluation in patients with transposition of the great arteries after the arterial switch operation: 4D flow and 2D phase contrast cardiovascular magnetic resonance compared with Doppler echocardiography. J. Cardiovasc. Magn. Reson. 18:59
    [Google Scholar]
  132. 132. 
    Calkoen EE, Elbaz MS, Westenberg JJ, Kroft LJ, Hazekamp MG et al. 2015. Altered left ventricular vortex ring formation by 4-dimensional flow magnetic resonance imaging after repair of atrioventricular septal defects. J. Thorac. Cardiovasc. Surg. 150:1233–40.e1
    [Google Scholar]
  133. 133. 
    Hsiao A, Lustig M, Alley MT, Murphy MJ, Vasanawala SS 2012. Evaluation of valvular insufficiency and shunts with parallel-imaging compressed-sensing 4D phase-contrast MR imaging with stereoscopic 3D velocity-fusion volume-rendered visualization. Radiology 265:87–95
    [Google Scholar]
  134. 134. 
    van Ooij P, Markl M, Collins JD, Carr JC, Rigsby C et al. 2017. Aortic valve stenosis alters expression of regional aortic wall shear stress: new insights from a 4-dimensional flow magnetic resonance imaging study of 571 subjects. J. Am. Heart Assoc. 6:e005959
    [Google Scholar]
  135. 135. 
    Chelu RG, van den Bosch AE, van Kranenburg M, Hsiao A, van den Hoven AT et al. 2016. Qualitative grading of aortic regurgitation: a pilot study comparing CMR 4D flow and echocardiography. Int. J. Cardiovasc. Imaging 32:301–7
    [Google Scholar]
  136. 136. 
    Feneis JF, Kyubwa E, Atianzar K, Cheng JY, Alley MT et al. 2018. 4D flow MRI quantification of mitral and tricuspid regurgitation: reproducibility and consistency relative to conventional MRI. J. Magn. Reson. Imaging 48:1147–58
    [Google Scholar]
  137. 137. 
    Gorodisky L, Agmon Y, Porat M, Abadi S, Lessick J 2018. Assessment of mitral regurgitation by 3-dimensional proximal flow convergence using magnetic resonance imaging: comparison with echo-Doppler. Int. J. Cardiovasc. Imaging 34:793–802
    [Google Scholar]
  138. 138. 
    von Knobelsdorff-Brenkenhoff F, Trauzeddel RF, Barker AJ, Gruettner H, Markl M, Schulz-Menger J 2014. Blood flow characteristics in the ascending aorta after aortic valve replacement—a pilot study using 4D-flow MRI. Int. J. Cardiol. 170:426–33
    [Google Scholar]
  139. 139. 
    Eriksson J, Bolger AF, Ebbers T, Carlhall CJ 2013. Four-dimensional blood flow–specific markers of LV dysfunction in dilated cardiomyopathy. Eur. Heart J. Cardiovasc. Imaging 14:417–24
    [Google Scholar]
  140. 140. 
    Garg P, Crandon S, Swoboda PP, Fent GJ, Foley JRJ et al. 2018. Left ventricular blood flow kinetic energy after myocardial infarction—insights from 4D flow cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 20:61
    [Google Scholar]
  141. 141. 
    Allen BD, Choudhury L, Barker AJ, van Ooij P, Collins JD et al. 2015. Three-dimensional haemodynamics in patients with obstructive and non-obstructive hypertrophic cardiomyopathy assessed by cardiac magnetic resonance. Eur. Heart J. Cardiovasc. Imaging 16:29–36
    [Google Scholar]
  142. 142. 
    van Ooij P, Allen BD, Contaldi C, Garcia J, Collins J et al. 2016. 4D flow MRI and T1-mapping: assessment of altered cardiac hemodynamics and extracellular volume fraction in hypertrophic cardiomyopathy. J. Magn. Reson. Imaging 43:107–14
    [Google Scholar]
  143. 143. 
    Fluckiger JU, Goldberger JJ, Lee DC, Ng J, Lee R et al. 2013. Left atrial flow velocity distribution and flow coherence using four-dimensional FLOW MRI: a pilot study investigating the impact of age and pre- and postintervention atrial fibrillation on atrial hemodynamics. J. Magn. Reson. Imaging 38:580–87
    [Google Scholar]
  144. 144. 
    Rivera-Rivera LA, Johnson KM, Turski PA, Wieben O 2018. Pressure mapping and hemodynamic assessment of intracranial dural sinuses and dural arteriovenous fistulas with 4D flow MRI. Am. J. Neuroradiol. 39:485–87
    [Google Scholar]
  145. 145. 
    Harloff A, Berg S, Barker AJ, Schollhorn J, Schumacher M et al. 2013. Wall shear stress distribution at the carotid bifurcation: influence of eversion carotid endarterectomy. Eur. Radiol. 23:3361–69
    [Google Scholar]
  146. 146. 
    Harloff A, Zech T, Wegent F, Strecker C, Weiller C, Markl M 2013. Comparison of blood flow velocity quantification by 4D flow MR imaging with ultrasound at the carotid bifurcation. Am. J. Neuroradiol. 34:1407–13
    [Google Scholar]
  147. 147. 
    Peper ES, Strijkers GJ, Gazzola K, Potters WV, Motaal AG et al. 2018. Regional assessment of carotid artery pulse wave velocity using compressed sensing accelerated high temporal resolution 2D CINE phase contrast cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 20:86
    [Google Scholar]
  148. 148. 
    van Ooij P, Cibis M, Rowland EM, Vernooij MW, van der Lugt A et al. 2018. Spatial correlations between MRI-derived wall shear stress and vessel wall thickness in the carotid bifurcation. Eur. Radiol. Exp. 2:27
    [Google Scholar]
  149. 149. 
    Siedek F, Giese D, Weiss K, Ekdawi S, Brinkmann S et al. 2018. 4D flow MRI for the analysis of celiac trunk and mesenteric artery stenoses. Magn. Reson. Imaging 53:52–62
    [Google Scholar]
  150. 150. 
    Galizia MS, Barker A, Liao Y, Collins J, Carr J et al. 2014. Wall morphology, blood flow and wall shear stress: MR findings in patients with peripheral artery disease. Eur. Radiol. 24:850–56
    [Google Scholar]
/content/journals/10.1146/annurev-bioeng-100219-110055
Loading
/content/journals/10.1146/annurev-bioeng-100219-110055
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error