1932

Abstract

Living cells detect and process external signals using signaling pathways that are affected by random fluctuations. These variations cause the behavior of individual cells to fluctuate over time (behavioral variability) and generate phenotypic differences between genetically identical individuals (phenotypic diversity). These two noise sources reduce our ability to predict biological behavior because they diversify cellular responses to identical signals. Here, we review recent experimental and theoretical advances in understanding the mechanistic origin and functional consequences of such variation in chemotaxis—a well-understood model of signal transduction and behavior. After briefly summarizing the architecture and logic of the chemotaxis system, we discuss determinants of behavior and chemotactic performance of individual cells. Then, we review how cell-to-cell differences in protein abundance map onto differences in individual chemotactic abilities and how phenotypic variability affects the performance of the population. We conclude with open questions to be addressed by future research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-062215-010954
2018-05-20
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/biophys/47/1/annurev-biophys-062215-010954.html?itemId=/content/journals/10.1146/annurev-biophys-062215-010954&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Ackermann M. 2015. A functional perspective on phenotypic heterogeneity in microorganisms. Nat. Rev. Microbiol. 13:497–508
    [Google Scholar]
  2. 2.  Adler J. 1966. Chemotaxis in bacteria. Science 153:708–16
    [Google Scholar]
  3. 3.  Adler J. 1973. A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by Escherichia coli. J. Gen. Microbiol. 74:77–91
    [Google Scholar]
  4. 4.  Alexander RP, Zhulin IB 2007. Evolutionary genomics reveals conserved structural determinants of signaling and adaptation in microbial chemoreceptors. PNAS 104:2885–90
    [Google Scholar]
  5. 5.  Alon U, Surette MG, Barkai N, Leibler S 1999. Robustness in bacterial chemotaxis. Nature 397:168–71
    [Google Scholar]
  6. 6.  Amsler CD, Cho M, Matsumura P 1993. Multiple factors underlying the maximum motility of Escherichia coli as cultures enter post-exponential growth. J. Bacteriol. 175:6238–44
    [Google Scholar]
  7. 7.  Antommattei FM, Munzner JB, Weis RM 2004. Ligand-specific activation of Escherichia coli chemoreceptor transmethylation. J. Bacteriol. 186:7556–63
    [Google Scholar]
  8. 8.  Aquino G, Wingreen NS, Endres RG 2016. Know the single-receptor sensing limit? Think again. J. Stat. Phys. 162:1353–64
    [Google Scholar]
  9. 9.  Bai F, Branch RW, Nicolau DV Jr., Pilizota T, Steel BC et al. 2010. Conformational spread as a mechanism for cooperativity in the bacterial flagellar switch. Science 327:685–89
    [Google Scholar]
  10. 10.  Bardy SL, Briegel A, Rainville S, Krell T 2018. Recent advances and future prospects in bacterial and archaeal locomotion and signal transduction. J. Bacteriol. In press. https://doi.org/10.1128/JB.00203-17
    [Crossref] [Google Scholar]
  11. 11.  Barkai N, Leibler S 1997. Robustness in simple biochemical networks. Nature 387:913–17
    [Google Scholar]
  12. 12.  Beaumont HJE, Gallie J, Kost C, Ferguson GC, Rainey PB 2009. Experimental evolution of bet hedging. Nature 462:90–93
    [Google Scholar]
  13. 13.  Berg HC. 2003. The rotary motor of bacterial flagella. Annu. Rev. Biochem. 72:19–54
    [Google Scholar]
  14. 14.  Berg HC, Brown DA 1972. Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 239:500–4
    [Google Scholar]
  15. 15.  Berg HC, Purcell EM 1977. Physics of chemoreception. Biophys. J. 20:193–219
    [Google Scholar]
  16. 16.  Bialek W, Setayeshgar S 2005. Physical limits to biochemical signaling. PNAS 102:10040–45
    [Google Scholar]
  17. 17.  Bitbol AF, Wingreen NS 2015. Fundamental constraints on the abundances of chemotaxis proteins. Biophys. J. 108:1293–305
    [Google Scholar]
  18. 18.  Block SM, Segall JE, Berg HC 1983. Adaptation kinetics in bacterial chemotaxis. J. Bacteriol. 154:312–23
    [Google Scholar]
  19. 19.  Bódi Z, Farkas Z, Nevozhay D, Kalapis D, Lázár V et al. 2017. Phenotypic heterogeneity promotes adaptive evolution. PLOS Biol 15:e2000644
    [Google Scholar]
  20. 20.  Boehm A, Kaiser M, Li H, Spangler C, Kasper CA et al. 2010. Second messenger-mediated adjustment of bacterial swimming velocity. Cell 141:107–16
    [Google Scholar]
  21. 21.  Borczuk A, Staub A, Stock J 1986. Demethylation of bacterial chemoreceptors is inhibited by attractant stimuli in the complete absence of the regulatory domain of the demethylating enzyme. Biochem. Biophys. Res. Commun. 141:918–23
    [Google Scholar]
  22. 22.  Bray D, Levin MD, Morton-Firth CJ 1998. Receptor clustering as a cellular mechanism to control sensitivity. Nature 393:85–88
    [Google Scholar]
  23. 23.  Briegel A, Jensen G 2017. Progress and potential of electron cryotomography as illustrated by its application to bacterial chemoreceptor arrays. Annu. Rev. Biophys. 46:1–21
    [Google Scholar]
  24. 24.  Briegel A, Li X, Bilwes AM, Hughes KT, Jensen GJ, Crane BR 2012. Bacterial chemoreceptor arrays are hexagonally packed trimers of receptor dimers networked by rings of kinase and coupling proteins. PNAS 109:3766–71
    [Google Scholar]
  25. 25.  Brookfield JFY. 2009. Evolution and evolvability: celebrating Darwin 200. Biol. Lett. 5:44–46
    [Google Scholar]
  26. 26.  Bull JJ. 1987. Evolution of phenotypic variance. Evolution 41:303–15
    [Google Scholar]
  27. 27.  Celani A, Shimizu TS, Vergassola M 2011. Molecular and functional aspects of bacterial chemotaxis. J. Stat. Phys. 144:219–40
    [Google Scholar]
  28. 28.  Celani A, Vergassola M 2010. Bacterial strategies for chemotaxis response. PNAS 107:1391–96
    [Google Scholar]
  29. 29.  Celani A, Vergassola M 2012. Nonlinearity, fluctuations, and response in sensory systems. Phys. Rev. Lett. 108:258102
    [Google Scholar]
  30. 30.  Chalah A, Weis RM 2005. Site-specific and synergistic stimulation of methylation on the bacterial chemotaxis receptor Tsr by serine and CheW. BMC Microbiol 5:12
    [Google Scholar]
  31. 31.  Chatterjee S, da Silveira RA, Kafri Y 2011. Chemotaxis when bacteria remember: drift versus diffusion. PLOS Comput. Biol. 7:e1002283
    [Google Scholar]
  32. 32.  Chattopadhyay S, Wu XL 2009. The effect of long-range hydrodynamic interaction on the swimming of a single bacterium. Biophys. J. 96:2023–28
    [Google Scholar]
  33. 33.  Chilcott GS, Hughes KT 2000. Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar Typhimurium and Escherichia coli. Microbiol. Mol. Biol. Rev. 64:694–708
    [Google Scholar]
  34. 34.  Clark DA, Grant LC 2005. The bacterial chemotactic response reflects a compromise between transient and steady-state behavior. PNAS 102:9150–55
    [Google Scholar]
  35. 35.  Clausznitzer D, Oleksiuk O, Lovdok L, Sourjik V, Endres RG 2010. Chemotactic response and adaptation dynamics in Escherichia coli. PLOS Comput. Biol. 6:e1000784
    [Google Scholar]
  36. 36.  Cluzel P, Surette M, Leibler S 2000. An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells. Science 287:1652–55
    [Google Scholar]
  37. 37.  Cohen-Ben-Lulu GN, Francis NR, Shimoni E, Noy D, Davidov Y et al. 2008. The bacterial flagellar switch complex is getting more complex. EMBO J 27:1134–44
    [Google Scholar]
  38. 38.  Colin R, Rosazza C, Vaknin A, Sourjik V 2017. Multiple sources of slow activity fluctuations in a bacterial chemosensory network. eLife 6:e26796
    [Google Scholar]
  39. 39.  Colin R, Sourjik V 2017. Emergent properties of bacterial chemotaxis pathway. Curr. Opin. Microbiol. 39:24–33
    [Google Scholar]
  40. 40.  de Gennes PG 2004. Chemotaxis: the role of internal delays. Eur. Biophys. J. 33:691–93
    [Google Scholar]
  41. 41.  De Lay N, Gottesman S 2012. A complex network of small non-coding RNAs regulate motility in Escherichia coli. Mol. Microbiol. 86:524–38
    [Google Scholar]
  42. 42.  Dobell C. 1960 (1932). Antony van Leeuwenhoek and His “Little Animals” New York: Dover
  43. 43.  Dufour YS, Fu X, Hernandez-Nunez L, Emonet T 2014. Limits of feedback control in bacterial chemotaxis. PLOS Comput. Biol. 10:e1003694
    [Google Scholar]
  44. 44.  Dufour YS, Gillet S, Frankel NW, Weibel DB, Emonet T 2016. Direct correlation between motile behavior and protein abundance in single cells. PLOS Comput. Biol. 12:e1005041
    [Google Scholar]
  45. 45.  Duke TA, Bray D 1999. Heightened sensitivity of a lattice of membrane receptors. PNAS 96:10104–8
    [Google Scholar]
  46. 46.  Edgington MP, Tindall MJ 2015. Understanding the link between single cell and population scale responses of Escherichia coli in differing ligand gradients. Comput. Struct. Biotechnol. J. 13:528–38
    [Google Scholar]
  47. 47.  Emonet T, Cluzel P 2008. Relationship between cellular response and behavioral variability in bacterial chemotaxis. PNAS 105:3304–9
    [Google Scholar]
  48. 48.  Emonet T, Macal CM, North MJ, Wickersham CE, Cluzel P 2005. AgentCell: a digital single-cell assay for bacterial chemotaxis. Bioinformatics 21:2714–21
    [Google Scholar]
  49. 49.  Endres RG, Wingreen NS 2006. Precise adaptation in bacterial chemotaxis through “assistance neighborhoods. .” PNAS 103:13040–44
    [Google Scholar]
  50. 50.  Endres RG, Wingreen NS 2008. Accuracy of direct gradient sensing by single cells. PNAS 105:15749–54
    [Google Scholar]
  51. 51.  Erban R, Othmer HG 2005. From individual to collective behavior in bacterial chemotaxis. SIAM J. Appl. Math. 65:361–91
    [Google Scholar]
  52. 52.  Flores M, Shimizu TS, ten Wolde PR, Tostevin F 2012. Signaling noise enhances chemotactic drift of E. coli. Phys. Rev. Lett. 109:148101
    [Google Scholar]
  53. 53.  Fraiberg M, Afanzar O, Cassidy CK, Gabashvili A, Schulten K et al. 2015. CheY's acetylation sites responsible for generating clockwise flagellar rotation in Escherichia coli. Mol. Microbiol. 95:231–44
    [Google Scholar]
  54. 54.  Frank V, Vaknin A 2013. Prolonged stimuli alter the bacterial chemosensory clusters. Mol. Microbiol. 88:634–44
    [Google Scholar]
  55. 55.  Frankel NW, Pontius W, Dufour YS, Long J, Hernandez-Nunez L, Emonet T 2014. Adaptability of non-genetic diversity in bacterial chemotaxis. eLife 3:e03526
    [Google Scholar]
  56. 56.  Goldbeter A, Koshland DE Jr. 1981. An amplified sensitivity arising from covalent modification in biological systems. PNAS 78:6840–44
    [Google Scholar]
  57. 57.  Hansen CH, Endres RG, Wingreen NS 2008. Chemotaxis in Escherichia coli: a molecular model for robust precise adaptation. PLOS Comput. Biol. 4:e1
    [Google Scholar]
  58. 58.  Hazelbauer GL. 2012. Bacterial chemotaxis: the early years of molecular studies. Annu. Rev. Microbiol. 66:285–303
    [Google Scholar]
  59. 59.  Hegde M, Englert DL, Schrock S, Cohn WB, Vogt C et al. 2011. Chemotaxis to the quorum-sensing signal AI-2 requires the Tsr chemoreceptor and the periplasmic LsrB AI-2-binding protein. J. Bacteriol. 193:768–73
    [Google Scholar]
  60. 60.  Hu B, Tu Y 2013. Coordinated switching of bacterial flagellar motors: evidence for direct motor-motor coupling. ? Phys. Rev. Lett. 110:158703
    [Google Scholar]
  61. 61.  Hu B, Tu Y 2014. Behaviors and strategies of bacterial navigation in chemical and nonchemical gradients. PLOS Comput. Biol. 10:e1003672
    [Google Scholar]
  62. 62.  Huh D, Paulsson J 2011. Non-genetic heterogeneity from stochastic partitioning at cell division. Nat. Genet. 43:95–100
    [Google Scholar]
  63. 63.  Ishihara A, Segall JE, Block SM, Berg HC 1983. Coordination of flagella on filamentous cells of Escherichia coli. J. Bacteriol. 155:228–37
    [Google Scholar]
  64. 64.  Jenal U, Reinders A, Lori C 2017. Cyclic di-GMP: second messenger extraordinaire. Nat. Rev. Microbiol. 15:271–84
    [Google Scholar]
  65. 65.  Jensen JLWV. 1906. Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Math 30:175–93
    [Google Scholar]
  66. 66.  Jiang L, Ouyang Q, Tu Y 2010. Quantitative modeling of Escherichia coli chemotactic motion in environments varying in space and time. PLOS Comput. Biol. 6:e1000735
    [Google Scholar]
  67. 67.  Jones CW, Armitage JP 2015. Positioning of bacterial chemoreceptors. Trends Microbiol 23:247–56
    [Google Scholar]
  68. 68.  Jones DL, Brewster RC, Phillips R 2014. Promoter architecture dictates cell-to-cell variability in gene expression. Science 346:1533–36
    [Google Scholar]
  69. 69.  Kalir S, McClure J, Pabbaraju K, Southward C, Ronen M et al. 2001. Ordering genes in a flagella pathway by analysis of expression kinetics from living bacteria. Science 292:2080–83
    [Google Scholar]
  70. 70.  Keegstra JM, Kamino K, Anquez F, Lazova MD, Emonet T, Shimizu TS 2017. Phenotypic diversity and temporal variability in a bacterial signaling network revealed by single-cell FRET. eLife 6:e27455
    [Google Scholar]
  71. 71.  Keller EF, Segel LA 1971. Traveling bands of chemotactic bacteria: a theoretical analysis. J. Theor. Biol. 30:235–48
    [Google Scholar]
  72. 72.  Keymer JE, Endres RG, Skoge M, Meir Y, Wingreen NS 2006. Chemosensing in Escherichia coli: two regimes of two-state receptors. PNAS 103:1786–91
    [Google Scholar]
  73. 73.  Kim KK, Yokota H, Kim SH 1999. Four-helical-bundle structure of the cytoplasmic domain of a serine chemotaxis receptor. Nature 400:787–92
    [Google Scholar]
  74. 74.  Kollmann M, Lovdok L, Bartholome K, Timmer J, Sourjik V 2005. Design principles of a bacterial signalling network. Nature 438:504–7
    [Google Scholar]
  75. 75.  Korobkova E, Emonet T, Park H, Cluzel P 2006. Hidden stochastic nature of a single bacterial motor. Phys. Rev. Lett. 96:58105
    [Google Scholar]
  76. 76.  Korobkova E, Emonet T, Vilar JM, Shimizu TS, Cluzel P 2004. From molecular noise to behavioural variability in a single bacterium. Nature 428:574–78
    [Google Scholar]
  77. 77.  Kussell E, Leibler S 2005. Phenotypic diversity, population growth, and information in fluctuating environments. Science 309:2075–78
    [Google Scholar]
  78. 78.  Laganenka L, Colin R, Sourjik V 2016. Chemotaxis towards autoinducer 2 mediates autoaggregation in Escherichia coli. Nat. Commun. 7:12984
    [Google Scholar]
  79. 79.  Lan G, Sartori P, Neumann S, Sourjik V, Tu Y 2012. The energy-speed-accuracy tradeoff in sensory adaptation. Nat. Phys. 8:422–28
    [Google Scholar]
  80. 80.  Lan G, Schulmeister S, Sourjik V, Tu Y 2011. Adapt locally and act globally: strategy to maintain high chemoreceptor sensitivity in complex environments. Mol. Syst. Biol. 7:475
    [Google Scholar]
  81. 81.  Lazova MD, Ahmed T, Bellomo D, Stocker R, Shimizu TS 2011. Response rescaling in bacterial chemotaxis. PNAS 108:13870–75
    [Google Scholar]
  82. 82.  Leake MC, Chandler JH, Wadhams GH, Bai F, Berry RM, Armitage JP 2006. Stoichiometry and turnover in single, functioning membrane protein complexes. Nature 443:355–58
    [Google Scholar]
  83. 83.  Lee C, Park C 2013. Mutations upregulating the flhDC operon of Escherichia coli K-12. J. Microbiol. 51:140–44
    [Google Scholar]
  84. 84.  Levin MD, Morton-Firth CJ, Abouhamad WN, Bourret RB, Bray D 1998. Origins of individual swimming behavior in bacteria. Biophys. J. 74:175–81
    [Google Scholar]
  85. 85.  Levin MD, Shimizu TS, Bray D 2002. Binding and diffusion of CheR molecules within a cluster of membrane receptors. Biophys. J. 82:1809–17
    [Google Scholar]
  86. 86.  Li M, Hazelbauer GL 2004. Cellular stoichiometry of the components of the chemotaxis signaling complex. J. Bacteriol. 186:3687–94
    [Google Scholar]
  87. 87.  Li M, Hazelbauer GL 2005. Adaptational assistance in clusters of bacterial chemoreceptors. Mol. Microbiol. 56:1617–26
    [Google Scholar]
  88. 88.  Liu J, Hu B, Morado DR, Jani S, Manson MD, Margolin W 2012. Molecular architecture of chemoreceptor arrays revealed by cryoelectron tomography of Escherichia coli minicells. PNAS 109:E1481–88
    [Google Scholar]
  89. 89.  Locsei JT. 2007. Persistence of direction increases the drift velocity of run and tumble chemotaxis. J. Math. Biol. 55:41–60
    [Google Scholar]
  90. 90.  Long J, Zucker SW, Emonet T 2017. Feedback between motion and sensation provides nonlinear boost in run-and-tumble navigation. PLOS Comput. Biol. 13:e1005429
    [Google Scholar]
  91. 91.  Løvdok L, Bentele K, Vladimirov N, Müller A, Pop FS et al. 2009. Role of translational coupling in robustness of bacterial chemotaxis pathway. PLOS Biol 7:e1000171
    [Google Scholar]
  92. 92.  Løvdok L, Kollmann M, Sourjik V 2007. Co-expression of signaling proteins improves robustness of the bacterial chemotaxis pathway. J. Biotechnol. 129:173–80
    [Google Scholar]
  93. 93.  Lovely PS, Dahlquist FW 1975. Statistical measures of bacterial motility and chemotaxis. J. Theor. Biol. 50:477–96
    [Google Scholar]
  94. 94.  Macnab RM, Koshland DE Jr 1972. The gradient-sensing mechanism in bacterial chemotaxis. PNAS 69:2509–12
    [Google Scholar]
  95. 95.  Masson JB, Voisinne G, Wong-Ng J, Celani A, Vergassola M 2012. Noninvasive inference of the molecular chemotactic response using bacterial trajectories. PNAS 109:1802–7
    [Google Scholar]
  96. 96.  Matthaus F, Jagodic M, Dobnikar J 2009. E. coli superdiffusion and chemotaxis-search strategy, precision, and motility. Biophys. J. 97:946–57
    [Google Scholar]
  97. 97.  Mears PJ, Koirala S, Rao CV, Golding I, Chemla YR 2014. Escherichia coli swimming is robust against variations in flagellar number. eLife 3:e01916
    [Google Scholar]
  98. 98.  Mello BA, Tu Y 2005. An allosteric model for heterogeneous receptor complexes: understanding bacterial chemotaxis responses to multiple stimuli. PNAS 102:17354–59
    [Google Scholar]
  99. 99.  Mesibov R, Ordal GW, Adler J 1973. The range of attractant concentrations for bacterial chemotaxis and the threshold and size of response over this range: Weber law and related phenomena. J. Gen. Physiol. 62:203–23
    [Google Scholar]
  100. 100.  Micali G, Endres RG 2016. Bacterial chemotaxis: information processing, thermodynamics, and behavior. Curr. Opin. Microbiol. 30:8–15
    [Google Scholar]
  101. 101.  Min TL, Mears PJ, Chubiz LM, Rao CV, Golding I, Chemla YR 2009. High-resolution, long-term characterization of bacterial motility using optical tweezers. Nat. Methods 6:831–35
    [Google Scholar]
  102. 102.  Neumann S, Vladimirov N, Krembel AK, Wingreen NS, Sourjik V 2014. Imprecision of adaptation in Escherichia coli chemotaxis. PLOS ONE 9:e84904
    [Google Scholar]
  103. 103.  Oleksiuk O, Jakovljevic V, Vladimirov N, Carvalho R, Paster E et al. 2011. Thermal robustness of signaling in bacterial chemotaxis. Cell 145:312–21
    [Google Scholar]
  104. 104.  Park H, Oikonomou P, Guet CC, Cluzel P 2011. Noise underlies switching behavior of the bacterial flagellum. Biophys. J. 101:2336–40
    [Google Scholar]
  105. 105.  Park H, Pontius W, Guet CC, Marko JF, Emonet T, Cluzel P 2010. Interdependence of behavioural variability and response to small stimuli in bacteria. Nature 468:819–23
    [Google Scholar]
  106. 106.  Parkinson JS, Hazelbauer GL, Falke JJ 2015. Signaling and sensory adaptation in Escherichia coli chemoreceptors: 2015 update. Trends Microbiol 23:257–66
    [Google Scholar]
  107. 107.  Perez E, West AH, Stock AM, Djordjevic S 2004. Discrimination between different methylation states of chemotaxis receptor Tar by receptor methyltransferase CheR. Biochemistry 43:953–61
    [Google Scholar]
  108. 108.  Pontius W, Sneddon MW, Emonet T 2013. Adaptation dynamics in densely clustered chemoreceptors. PLOS Comput. Biol. 9:e1003230
    [Google Scholar]
  109. 109.  Popat R, Cornforth DM, McNally L, Brown SP 2015. Collective sensing and collective responses in quorum-sensing bacteria. J. R. Soc. Interface 12:20140882
    [Google Scholar]
  110. 110.  Rusconi R, Garren M, Stocker R 2014. Microfluidics expanding the frontiers of microbial ecology. Annu. Rev. Biophys. 43:65–91
    [Google Scholar]
  111. 111.  Ryu WS, Berry RM, Berg HC 2000. Torque-generating units of the flagellar motor of Escherichia coli have a high duty ratio. Nature 403:444–47
    [Google Scholar]
  112. 112.  Saragosti J, Calvez V, Bournaveas N, Perthame B, Buguin A, Silberzan P 2011. Directional persistence of chemotactic bacteria in a traveling concentration wave. PNAS 108:16235–40
    [Google Scholar]
  113. 113.  Sartori P, Tu Y 2015. Free energy cost of reducing noise while maintaining a high sensitivity. Phys. Rev. Lett. 115:118102
    [Google Scholar]
  114. 114.  Schnitzer MJ. 1993. Theory of continuum random walks and application to chemotaxis. Phys. Rev. E 48:2553–68
    [Google Scholar]
  115. 115.  Segall JE, Block SM, Berg HC 1986. Temporal comparisons in bacterial chemotaxis. PNAS 83:8987–91
    [Google Scholar]
  116. 116.  Shimizu TS, Tu Y, Berg HC 2010. A modular gradient-sensing network for chemotaxis in Escherichia coli revealed by responses to time-varying stimuli. Mol. Syst. Biol. 6:382
    [Google Scholar]
  117. 117.  Si G, Wu T, Ouyang Q, Tu Y 2012. Pathway-based mean-field model for Escherichia coli chemotaxis. Phys. Rev. Lett. 109:048101
    [Google Scholar]
  118. 118.  Silverman MR, Simon MI 1972. Flagellar assembly mutants in Escherichia coli. J. Bacteriol. 112:986–93
    [Google Scholar]
  119. 119.  Skoge M, Meir Y, Wingreen NS 2011. Dynamics of cooperativity in chemical sensing among cell-surface receptors. Phys. Rev. Lett. 107:178101
    [Google Scholar]
  120. 120.  Sneddon MW, Pontius W, Emonet T 2012. Stochastic coordination of multiple actuators reduces latency and improves chemotactic response in bacteria. PNAS 109:805–10
    [Google Scholar]
  121. 121.  Sourjik V, Armitage JP 2010. Spatial organization in bacterial chemotaxis. EMBO J 29:2724–33
    [Google Scholar]
  122. 122.  Sourjik V, Berg HC 2002. Receptor sensitivity in bacterial chemotaxis. PNAS 99:123–27
    [Google Scholar]
  123. 123.  Sourjik V, Berg HC 2004. Functional interactions between receptors in bacterial chemotaxis. Nature 428:437–41
    [Google Scholar]
  124. 124.  Sourjik V, Vaknin A, Shimizu TS, Berg HC 2007. In vivo measurement by FRET of pathway activity in bacterial chemotaxis. Methods Enzymol 423:365–91
    [Google Scholar]
  125. 125.  Sourjik V, Wingreen NS 2012. Responding to chemical gradients: bacterial chemotaxis. Curr. Opin. Cell Biol. 24:262–68
    [Google Scholar]
  126. 126.  Spudich JL, Koshland DE Jr 1976. Non-genetic individuality: chance in the single cell. Nature 262:467–71
    [Google Scholar]
  127. 127.  Staropoli JF, Alon U 2000. Computerized analysis of chemotaxis at different stages of bacterial growth. Biophys. J. 78:513–19
    [Google Scholar]
  128. 128.  Stocker R. 2012. Marine microbes see a sea of gradients. Science 338:628–33
    [Google Scholar]
  129. 129.  Taheri-Araghi S, Bradde S, Sauls John T, Hill Norbert S, Levin Petra A et al. 2015. Cell-size control and homeostasis in bacteria. Curr. Biol. 25:385–91
    [Google Scholar]
  130. 130.  Taniguchi Y, Choi PJ, Li GW, Chen H, Babu M et al. 2010. Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329:533–38
    [Google Scholar]
  131. 131.  Taute KM, Gude S, Tans SJ, Shimizu TS 2015. High-throughput 3D tracking of bacteria on a standard phase contrast microscope. Nat. Commun. 6:8776
    [Google Scholar]
  132. 132.  Taylor JR, Stocker R 2012. Trade-offs of chemotactic foraging in turbulent water. Science 338:675–79
    [Google Scholar]
  133. 133.  Terasawa S, Fukuoka H, Inoue Y, Sagawa T, Takahashi H, Ishijima A 2011. Coordinated reversal of flagellar motors on a single Escherichia coli cell. Biophys. J. 100:2193–200
    [Google Scholar]
  134. 134.  Terwilliger TC, Wang JY, Koshland DE 1986. Kinetics of receptor modification: the multiply methylated aspartate receptors involved in bacterial chemotaxis. J. Biol. Chem. 261:814–20
    [Google Scholar]
  135. 135.  Tu Y. 2008. The nonequilibrium mechanism for ultrasensitivity in a biological switch: sensing by Maxwell's demons. PNAS 105:11737–41
    [Google Scholar]
  136. 136.  Tu Y. 2013. Quantitative modeling of bacterial chemotaxis: signal amplification and accurate adaptation. Annu. Rev. Biophys. 42:337–59
    [Google Scholar]
  137. 137.  Tu Y, Grinstein G 2005. How white noise generates power-law switching in bacterial flagellar motors. Phys. Rev. Lett. 94:208101
    [Google Scholar]
  138. 138.  Tu Y, Shimizu TS, Berg HC 2008. Modeling the chemotactic response of Escherichia coli to time-varying stimuli. PNAS 105:14855–60
    [Google Scholar]
  139. 139.  Turner L, Ping L, Neubauer M, Berg HC 2016. Visualizing flagella while tracking bacteria. Biophys. J. 111:630–39
    [Google Scholar]
  140. 140.  Vaknin A, Berg HC 2004. Single-cell FRET imaging of phosphatase activity in the Escherichia coli chemotaxis system. PNAS 101:17072–77
    [Google Scholar]
  141. 141.  Vaknin A, Berg HC 2006. Osmotic stress mechanically perturbs chemoreceptors in Escherichia coli. PNAS 103:592–96
    [Google Scholar]
  142. 142.  Vladimirov N, Lebiedz D, Sourjik V 2010. Predicted auxiliary navigation mechanism of peritrichously flagellated chemotactic bacteria. PLOS Comput. Biol. 6:e1000717
    [Google Scholar]
  143. 143.  Vladimirov N, Lovdok L, Lebiedz D, Sourjik V 2008. Dependence of bacterial chemotaxis on gradient shape and adaptation rate. PLOS Comput. Biol. 4:e1000242
    [Google Scholar]
  144. 144.  Waite AJ, Frankel NW, Dufour YS, Johnston JF, Long J, Emonet T 2016. Non-genetic diversity modulates population performance. Mol. Syst. Biol. 12:895
    [Google Scholar]
  145. 145.  Wang F, Shi H, He R, Wang RJ, Zhang RJ, Yuan JH 2017. Non-equilibrium effect in the allosteric regulation of the bacterial flagellar switch. Nat. Phys. 13:710–14
    [Google Scholar]
  146. 146.  Wang F, Yuan J, Berg HC 2014. Switching dynamics of the bacterial flagellar motor near zero load. PNAS 111:15752–55
    [Google Scholar]
  147. 147.  Wong-Ng J, Melbinger A, Celani A, Vergassola M 2016. The role of adaptation in bacterial speed races. PLOS Comput. Biol. 12:e1004974
    [Google Scholar]
  148. 148.  Wu J, Li J, Li G, Long DG, Weis RM 1996. The receptor binding site for the methyltransferase of bacterial chemotaxis is distinct from the sites of methylation. Biochemistry 35:4984–93
    [Google Scholar]
  149. 149.  Wuichet K, Cantwell BJ, Zhulin IB 2010. Evolution and phyletic distribution of two-component signal transduction systems. Curr. Opin. Microbiol. 13:219–25
    [Google Scholar]
  150. 150.  Yi T-M, Huang Y, Simon MI, Doyle J 2000. Robust perfect adaptation in bacterial chemotaxis through integral feedback control. PNAS 97:4649–53
    [Google Scholar]
  151. 151.  Yuan J, Branch RW, Hosu BG, Berg HC 2012. Adaptation at the output of the chemotaxis signalling pathway. Nature 484:233–36
    [Google Scholar]
  152. 152.  Zhu X, Si G, Deng N, Ouyang Q, Wu T et al. 2012. Frequency-dependent Escherichia coli chemotaxis behavior. Phys. Rev. Lett. 108:128101
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-062215-010954
Loading
/content/journals/10.1146/annurev-biophys-062215-010954
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error