1932

Abstract

In the global health emergency caused by coronavirus disease 2019 (COVID-19), efficient and specific therapies are urgently needed. Compared with traditional small-molecular drugs, antibody therapies are relatively easy to develop; they are as specific as vaccines in targeting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); and they have thus attracted much attention in the past few months. This article reviews seven existing antibodies for neutralizing SARS-CoV-2 with 3D structures deposited in the Protein Data Bank (PDB). Five 3D antibody structures associated with the SARS-CoV spike (S) protein are also evaluated for their potential in neutralizing SARS-CoV-2. The interactions of these antibodies with the S protein receptor-binding domain (RBD) are compared with those between angiotensin-converting enzyme 2 and RBD complexes. Due to the orders of magnitude in the discrepancies of experimental binding affinities, we introduce topological data analysis, a variety of network models, and deep learning to analyze the binding strength and therapeutic potential of the 14 antibody–antigen complexes. The current COVID-19 antibody clinical trials, which are not limited to the S protein target, are also reviewed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-062920-063711
2021-05-06
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/biophys/50/1/annurev-biophys-062920-063711.html?itemId=/content/journals/10.1146/annurev-biophys-062920-063711&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Berggård T, Linse S, James P 2007. Methods for the detection and analysis of protein–protein interactions. Proteomics 7:162833–42
    [Google Scholar]
  2. 2. 
    Blum JS, Wearsch PA, Cresswell P 2013. Pathways of antigen processing. Annu. Rev. Immunol. 31:443–73
    [Google Scholar]
  3. 3. 
    Bonacich P. 1987. Power and centrality: a family of measures. Am. J. Sociol. 92:51170–82
    [Google Scholar]
  4. 4. 
    Borghesi L, Milcarek C. 2006. From B cell to plasma cell. Immunol. Res. 36:1–327–32
    [Google Scholar]
  5. 5. 
    Breedveld F. 2000. Therapeutic monoclonal antibodies. Lancet 355:9205735–40
    [Google Scholar]
  6. 6. 
    Cang Z, Mu L, Wei G-W 2018. Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening. PLOS Comput. Biol. 14:1e1005929
    [Google Scholar]
  7. 7. 
    Cao X. 2020. COVID-19: immunopathology and its implications for therapy. Nat. Rev. Immunol. 20:5269–70
    [Google Scholar]
  8. 8. 
    Cao Y, Su B, Guo X, Sun W, Deng Y et al. 2020. Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients' B cells. Cell 182:17384.e16
    [Google Scholar]
  9. 9. 
    Chen L, Xiong J, Bao L, Shi Y 2020. Convalescent plasma as a potential therapy for COVID-19. Lancet Infect. Dis. 20:4398–400
    [Google Scholar]
  10. 10. 
    Chi X, Yan R, Zhang J, Zhang G, Zhang Y et al. 2020. A neutralizing human antibody binds to the N-terminal domain of the spike protein of SARS-CoV-2. Science 369:650465055
    [Google Scholar]
  11. 11. 
    Clark IA. 2007. The advent of the cytokine storm. Immunol. Cell Biol. 85:4271–73
    [Google Scholar]
  12. 12. 
    Corti D, Misasi J, Mulangu S, Stanley DA, Kanekiyo M et al. 2016. Protective monotherapy against lethal Ebola virus infection by a potently neutralizing antibody. Science 351:62791339–42
    [Google Scholar]
  13. 13. 
    Crotty S. 2015. A brief history of T cell help to B cells. Nat. Rev. Immunol. 15:3185–89
    [Google Scholar]
  14. 14. 
    De Vlieger D, Ballegeer M, Rossey I, Schepens B, Saelens X 2019. Single-domain antibodies and their formatting to combat viral infections. Antibodies 8:11
    [Google Scholar]
  15. 15. 
    DeLano WL. 2002. Pymol: An open-source molecular graphics tool. CCP4 Newsl. Protein Crystallogr. 40:182–92
    [Google Scholar]
  16. 16. 
    Diaz M, Casali P. 2002. Somatic immunoglobulin hypermutation. Curr. Opin. Immunol. 14:2235–40
    [Google Scholar]
  17. 17. 
    Dumoulin M, Conrath K, Van Meirhaeghe A, Meersman F, Heremans K et al. 2002. Single-domain antibody fragments with high conformational stability. Protein Sci 11:3500–15
    [Google Scholar]
  18. 18. 
    Edelsbrunner H, Letscher D, Zomorodian A 2000. Topological persistence and simplification. Proceedings of the 41st Annual Symposium on Foundations of Computer Science454–63 Piscataway, NJ: IEEE
    [Google Scholar]
  19. 19. 
    Estrada E. 2010. Quantifying network heterogeneity. Phys. Rev. E 82:6066102
    [Google Scholar]
  20. 20. 
    Estrada E. 2020. Topological analysis of SARS-CoV-2 main protease. Chaos Interdiscip. J. Nonlinear Sci. 30:6061102
    [Google Scholar]
  21. 21. 
    Estrada E, Hatano N. 2008. Communicability in complex networks. Phys. Rev. E 77:3036111
    [Google Scholar]
  22. 22. 
    Estrada E, Hatano N. 2016. Communicability angle and the spatial efficiency of networks. SIAM Rev 58:4692–715
    [Google Scholar]
  23. 23. 
    Estrada E, Rodriguez-Velazquez JA. 2005. Subgraph centrality in complex networks. Phys. Rev. E 71:5056103
    [Google Scholar]
  24. 24. 
    Fanning LJ, Connor AM, Wu GE 1996. Development of the immunoglobulin repertoire. Clin. Immunol. Immunopathol. 79:11–14
    [Google Scholar]
  25. 25. 
    Forsman A, Beirnaert E, Aasa-Chapman MM, Hoorelbeke B, Hijazi K et al. 2008. Llama antibody fragments with cross-subtype human immunodeficiency virus type 1 (HIV-1)-neutralizing properties and high affinity for HIV-1 gp120. J. Virol. 82:2412069–81
    [Google Scholar]
  26. 26. 
    Freeman LC. 1978. Centrality in social networks conceptual clarification. Soc. Netw. 1:3215–39
    [Google Scholar]
  27. 27. 
    Govaert J, Pellis M, Deschacht N, Vincke C, Conrath K et al. 2012. Dual beneficial effect of interloop disulfide bond for single domain antibody fragments. J. Biol. Chem. 287:31970–79
    [Google Scholar]
  28. 28. 
    Hale G. 2006. Therapeutic antibodies: delivering the promise. ? Adv. Drug Deliv. Rev. 58:5-6633–39
    [Google Scholar]
  29. 29. 
    Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hammers C et al. 1993. Naturally occurring antibodies devoid of light chains. Nature 363:6428446–48
    [Google Scholar]
  30. 30. 
    Hamming I, Timens W, Bulthuis M, Lely A, Navis G, van Goor H 2004. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus: a first step in understanding SARS pathogenesis. J. Pathol. 203:2631–37
    [Google Scholar]
  31. 31. 
    Hanke L, Vidakovics MLP, Sheward D, Das H, Schulte T et al. 2020. An alpaca nanobody neutralizes SARS-CoV-2 by blocking receptor interaction. bioRxiv 130161. https://doi.org/10.1101/2020.06.02.130161
    [Crossref]
  32. 32. 
    Hansel TT, Kropshofer H, Singer T, Mitchell JA, George AJ 2010. The safety and side effects of monoclonal antibodies. Nat. Rev. Drug Discov. 9:4325–38
    [Google Scholar]
  33. 33. 
    Heyman B. 1996. Complement and Fc-receptors in regulation of the antibody response. Immunol. Lett. 54:2-3195–99
    [Google Scholar]
  34. 34. 
    Hwang WC, Lin Y, Santelli E, Sui J, Jaroszewski L et al. 2006. Structural basis of neutralization by a human anti-severe acute respiratory syndrome spike protein antibody, 80R. J. Biol. Chem. 281:4534610–16
    [Google Scholar]
  35. 35. 
    Jankauskaitė J, Jiménez-García B, Dapkūnas J, Fernández-Recio J, Moal IH 2019. Skempi 2.0: an updated benchmark of changes in protein–protein binding energy, kinetics and thermodynamics upon mutation. Bioinformatics 35:3462–69
    [Google Scholar]
  36. 36. 
    Ju B, Zhang Q, Ge J, Wang R, Sun J et al. 2020. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature 584:11519
    [Google Scholar]
  37. 37. 
    Kelley B. 2020. Developing therapeutic monoclonal antibodies at pandemic pace. Nat. Biotechnol. 38:5540–45
    [Google Scholar]
  38. 38. 
    Köhler G, Milstein C. 1975. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:5517495–97
    [Google Scholar]
  39. 39. 
    Lan J, Ge J, Yu J, Shan S, Zhou H et al. 2020. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581:215–20
    [Google Scholar]
  40. 40. 
    Laursen NS, Friesen RH, Zhu X, Jongeneelen M, Blokland S et al. 2018. Universal protection against influenza infection by a multidomain antibody to influenza hemagglutinin. Science 362:6414598–602
    [Google Scholar]
  41. 41. 
    Leader B, Baca QJ, Golan DE 2008. Protein therapeutics: a summary and pharmacological classification. Nat. Rev. Drug Discov. 7:121–39
    [Google Scholar]
  42. 42. 
    Market E, Papavasiliou FN. 2003. V(D)J recombination and the evolution of the adaptive immune system. PLOS Biol 1:1e16
    [Google Scholar]
  43. 43. 
    Mian IS, Bradwell AR, Olson AJ 1991. Structure, function and properties of antibody binding sites. J. Mol. Biol. 217:1133–51
    [Google Scholar]
  44. 44. 
    Murphy K, Weaver C. 2016. Janeway's Immunobiology New York: Garland Sci.
  45. 45. 
    Nguyen DD, Xia K, Wei G-W 2016. Generalized flexibility-rigidity index. J. Chem. Phys. 144:23234106
    [Google Scholar]
  46. 46. 
    Nissim A, Chernajovsky Y. 2008. Historical development of monoclonal antibody therapeutics. Therapeutic Antibodies Y Chernajovsky, A Nissim 3–18 Berlin: Springer
    [Google Scholar]
  47. 47. 
    Pak JE, Sharon C, Satkunarajah M, Auperin TC, Cameron CM et al. 2009. Structural insights into immune recognition of the severe acute respiratory syndrome coronavirus S protein receptor binding domain. J. Mol. Biol. 388:4815–23
    [Google Scholar]
  48. 48. 
    Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B et al. 2011. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12:2825–30
    [Google Scholar]
  49. 49. 
    Pinto D, Park Y-J, Beltramello M, Walls AC, Tortorici MA et al. 2020. Structural and functional analysis of a potent sarbecovirus neutralizing antibody. bioRxiv 023903. https://doi.org/10.1101/2020.04.07.023903
    [Crossref]
  50. 50. 
    Prabakaran P, Gan J, Feng Y, Zhu Z, Choudhry V et al. 2006. Structure of severe acute respiratory syndrome coronavirus receptor-binding domain complexed with neutralizing antibody. J. Biol. Chem. 281:2315829–36
    [Google Scholar]
  51. 51. 
    Presta LG. 2008. Molecular engineering and design of therapeutic antibodies. Curr. Opin. Immunol. 20:4460–70
    [Google Scholar]
  52. 52. 
    Putnam FW, Liu Y, Low T 1979. Primary structure of a human IgA1 immunoglobulin. IV. Streptococcal IgA1 protease, digestion, Fab and Fc fragments, and the complete amino acid sequence of the alpha 1 heavy chain. J. Biol. Chem. 254:82865–74
    [Google Scholar]
  53. 53. 
    Ravetch JV, Bolland S. 2001. IgG Fc receptors. Annu. Rev. Immunol. 19:275–90
    [Google Scholar]
  54. 54. 
    Reichert JM, Dewitz MC. 2006. Anti-infective monoclonal antibodies: perils and promise of development. Nat. Rev. Drug Discov. 5:3191–95
    [Google Scholar]
  55. 55. 
    Reichert JM, Rosensweig CJ, Faden LB, Dewitz MC 2005. Monoclonal antibody successes in the clinic. Nat. Biotechnol. 23:91073–78
    [Google Scholar]
  56. 56. 
    Rogers TF, Zhao F, Huang D, Beutler N, Burns A et al. 2020. Rapid isolation of potent SARS-CoV-2 neutralizing antibodies and protection in a small animal model. bioRxiv 088674. https://doi.org/10.1101/2020.05.11.088674
    [Crossref]
  57. 57. 
    Rotman M, Welling MM, van den Boogaard ML, Moursel LG, van der Graaf LM et al. 2015. Fusion of hIgG1-Fc to 111In-anti-amyloid single domain antibody fragment VHH-pa2H prolongs blood residential time in APP/PS1 mice but does not increase brain uptake. Nuclear Med. Biol. 42:8695–702
    [Google Scholar]
  58. 58. 
    Scheid JF, Mouquet H, Feldhahn N, Seaman MS, Velinzon K et al. 2009. Broad diversity of neutralizing antibodies isolated from memory B cells in HIV-infected individuals. Nature 458:7238636–40
    [Google Scholar]
  59. 59. 
    Shen C, Wang Z, Zhao F, Yang Y, Li J et al. 2020. Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. JAMA 323:161582–89
    [Google Scholar]
  60. 60. 
    Shi R, Shan C, Duan X, Chen Z, Liu P et al. 2020. A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2. Nature 584:12024
    [Google Scholar]
  61. 61. 
    Sui J, Li W, Murakami A, Tamin A, Matthews LJ et al. 2004. Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association. PNAS 101:82536–41
    [Google Scholar]
  62. 62. 
    Sultana A, Lee JE. 2015. Measuring protein-protein and protein-nucleic acid interactions by biolayer interferometry. Curr. Protoc. Protein Sci. 79:119–25
    [Google Scholar]
  63. 63. 
    Ter Meulen J, Van Den Brink EN, Poon LL, Marissen WE, Leung CS et al. 2006. Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants. PLOS Med 3:7e237
    [Google Scholar]
  64. 64. 
    Thompson JD, Gibson TJ, Higgins DG 2003. Multiple sequence alignment using ClustalW and ClustalX. Curr. Protoc. Bioinform 2003:2.3.122
    [Google Scholar]
  65. 65. 
    Tian X, Li C, Huang A, Xia S, Lu S et al. 2020. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerging Microbes Infect 9:1382–85
    [Google Scholar]
  66. 66. 
    Tirado SMC, Yoon K-J. 2003. Antibody-dependent enhancement of virus infection and disease. Viral Immunol 16:169–86
    [Google Scholar]
  67. 67. 
    Tortorici MA, Veesler D. 2019. Structural insights into coronavirus entry. Adv. Virus Res. 105:93–116
    [Google Scholar]
  68. 68. 
    Van der Linden R, Frenken L, De Geus B, Harmsen M, Ruuls R et al. 1999. Comparison of physical chemical properties of llama VHH antibody fragments and mouse monoclonal antibodies. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 1431:137–46
    [Google Scholar]
  69. 69. 
    Waldmann H, Hale G. 2005. Campath: from concept to clinic. Philos. Trans. R. Soc. B 360:14611707–11
    [Google Scholar]
  70. 70. 
    Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veesler D 2020. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181:281–92.e6
    [Google Scholar]
  71. 71. 
    Walls AC, Tortorici MA, Bosch B-J, Frenz B, Rottier PJ et al. 2016. Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer. Nature 531:7592114–17
    [Google Scholar]
  72. 72. 
    Walls AC, Tortorici MA, Snijder J, Xiong X, Bosch B-J et al. 2017. Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion. PNAS 114:4211157–62
    [Google Scholar]
  73. 73. 
    Walls AC, Xiong X, Park Y-J, Tortorici MA, Snijder J et al. 2019. Unexpected receptor functional mimicry elucidates activation of coronavirus fusion. Cell 176:51026–39
    [Google Scholar]
  74. 74. 
    Wan J, Xing S, Ding L, Wang Y, Zhu D et al. 2020. Human IgG neutralizing monoclonal antibodies block SARS-CoV-2 infection. bioRxiv 2020.05.19.104117 https://doi.org/10.1101/2020.05.19.104117
    [Crossref]
  75. 75. 
    Wang K, Chen W, Zhou Y-S, Lian J-Q, Zhang Z et al. 2020. SARS-CoV-2 invades host cells via a novel route: CD147-spike protein. bioRxiv 2020.03.14.988345. https://doi.org/10.1101/2020.03.14.988345
    [Crossref]
  76. 76. 
    Wang L, Shi W, Chappell JD, Joyce MG, Zhang Y et al. 2018. Importance of neutralizing monoclonal antibodies targeting multiple antigenic sites on the Middle East respiratory syndrome coronavirus spike glycoprotein to avoid neutralization escape. J. Virol. 92:10e02002–17
    [Google Scholar]
  77. 77. 
    Wang M, Cang Z, Wei G-W 2020. A topology-based network tree for the prediction of protein–protein binding affinity changes following mutation. Nat. Mach. Intel. 2:2116–23
    [Google Scholar]
  78. 78. 
    Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ 2009. Jalview version 2: a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:91189–91
    [Google Scholar]
  79. 79. 
    Watts DJ, Strogatz SH. 1998. Collective dynamics of ‘small-world’ networks. Nature 393:6684440–42
    [Google Scholar]
  80. 80. 
    Woof JM, Burton DR. 2004. Human antibody–Fc receptor interactions illuminated by crystal structures. Nat. Rev. Immunol. 4:289–99
    [Google Scholar]
  81. 81. 
    Wrapp D, De Vlieger D, Corbett KS, Torres GM, Wang N et al. 2020. Structural basis for potent neutralization of betacoronaviruses by single-domain camelid antibodies. Cell 181:1004–15
    [Google Scholar]
  82. 82. 
    Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh C-L et al. 2020. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367:64831260–63
    [Google Scholar]
  83. 83. 
    Wu C, Liu Y, Yang Y, Zhang P, Zhong W et al. 2020. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B 10:766–88
    [Google Scholar]
  84. 84. 
    Wu F, Zhao S, Yu B, Chen Y-M, Wang W et al. 2020. A new coronavirus associated with human respiratory disease in China. Nature 579:7798265–69
    [Google Scholar]
  85. 85. 
    Wu Y, Wang F, Shen C, Peng W, Li D et al. 2020. A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2. Science 368:1274–78
    [Google Scholar]
  86. 86. 
    Xia K, Opron K, Wei G-W 2013. Multiscale multiphysics and multidomain models: flexibility and rigidity. J. Chem. Phys. 139:19194109
    [Google Scholar]
  87. 87. 
    Xue LC, Rodrigues JP, Kastritis PL, Bonvin AM, Vangone A 2016. Prodigy: a web server for predicting the binding affinity of protein–protein complexes. Bioinformatics 32:233676–78
    [Google Scholar]
  88. 88. 
    Yuan M, Wu NC, Zhu X, Lee C-CD, So RT et al. 2020. A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV. Science 368:6491630–33
    [Google Scholar]
  89. 89. 
    Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L et al. 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579:7798270–73
    [Google Scholar]
  90. 90. 
    Zimmer K. 2020. First antibody trial launched in COVID-19 patients. The Scientist June 2. https://www.the-scientist.com/news-opinion/first-antibody-trial-launched-in-covid-19-patients–67604
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-062920-063711
Loading
/content/journals/10.1146/annurev-biophys-062920-063711
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error