1932

Abstract

RNA polymerases I and II (Pol I and Pol II) are the eukaryotic enzymes that catalyze DNA-dependent synthesis of ribosomal RNA and messenger RNA, respectively. Recent work shows that the transcribing forms of both enzymes are similar and the fundamental mechanisms of RNA chain elongation are conserved. However, the mechanisms of transcription initiation and its regulation differ between Pol I and Pol II. Recent structural studies of Pol I complexes with transcription initiation factors provided insights into how the polymerase recognizes its specific promoter DNA, how it may open DNA, and how initiation may be regulated. Comparison with the well-studied Pol II initiation system reveals a distinct architecture of the initiation complex and visualizes promoter- and gene-class-specific aspects of transcription initiation. On the basis of new structural studies, we derive a model of the Pol I transcription cycle and provide a molecular movie of Pol I transcription that can be used for teaching.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-070317-033058
2018-05-20
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/biophys/47/1/annurev-biophys-070317-033058.html?itemId=/content/journals/10.1146/annurev-biophys-070317-033058&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Abascal-Palacios G, Ramsay EP, Beuron F, Morris E, Vannini A 2018. Structural basis of RNA polymerase III transcription initiation. Nature 553:301–6
    [Google Scholar]
  2. 2.  Albert B, Léger-Silvestre I, Normand C, Ostermaier MK, Pérez-Fernández J et al. 2011. RNA polymerase I–specific subunits promote polymerase clustering to enhance the rRNA gene transcription cycle. J. Cell Biol. 192:277–93
    [Google Scholar]
  3. 3.  Arimbasseri AG, Maraia RJ 2016. RNA polymerase III advances: structural and tRNA functional views. Trends Biochem. Sci. 41:546–59
    [Google Scholar]
  4. 4.  Armache K-J, Kettenberger H, Cramer P 2003. Architecture of initiation-competent 12-subunit RNA polymerase II. PNAS 100:6964–68
    [Google Scholar]
  5. 5.  Armache K-J, Mitterweger S, Meinhart A, Cramer P 2005. Structures of complete RNA polymerase II and its subcomplex, Rpb4/7. J. Biol. Chem. 280:7131–34
    [Google Scholar]
  6. 6.  Barnes CO, Calero M, Malik I, Graham BW, Spahr H et al. 2015. Crystal structure of a transcribing RNA Polymerase II complex reveals a complete transcription bubble. Mol. Cell 59:258–69
    [Google Scholar]
  7. 7.  Beckouet F, Labarre-Mariotte S, Albert B, Imazawa Y, Werner M et al. 2008. Two RNA polymerase I subunits control the binding and release of Rrn3 during transcription. Mol. Cell. Biol. 28:1596–605
    [Google Scholar]
  8. 8.  Bedwell GJ, Appling FD, Anderson SJ, Schneider DA 2012. Efficient transcription by RNA polymerase I using recombinant core factor. Gene 492:94–99
    [Google Scholar]
  9. 9.  Bernecky C, Herzog F, Baumeister W, Plitzko JM, Cramer P 2016. Structure of transcribing mammalian RNA polymerase II. Nature 529:551–54
    [Google Scholar]
  10. 10.  Bischler N, Brino L, Carles C, Riva M, Tschochner H et al. 2002. Localization of the yeast RNA polymerase I-specific subunits. EMBO J 21:4136–44
    [Google Scholar]
  11. 11.  Blattner C, Jennebach S, Herzog F, Mayer A, Cheung AC et al. 2011. Molecular basis of Rrn3-regulated RNA polymerase I initiation and cell growth. Genes Dev 25:2093–105
    [Google Scholar]
  12. 12.  Bodem J, Dobreva G, Hoffmann-Rohrer U, Iben S, Zentgraf H et al. 2000. TIF-IA, the factor mediating growth-dependent control of ribosomal RNA synthesis, is the mammalian homolog of yeast Rrn3p. EMBO Rep 1:171–75
    [Google Scholar]
  13. 13.  Bric A, Radebaugh CA, Paule MR 2004. Photocross-linking of the RNA polymerase I preinitiation and immediate postinitiation complexes: implications for promoter recruitment. J. Biol. Chem. 279:31259–67
    [Google Scholar]
  14. 14.  Brueckner F, Cramer P 2008. Structural basis of transcription inhibition by α-amanitin and implications for RNA polymerase II translocation. Nat. Struct. Mol. Biol. 15:811–18
    [Google Scholar]
  15. 15.  Brueckner F, Ortiz J, Cramer P 2009. A movie of the RNA polymerase nucleotide addition cycle. Curr. Opin. Struct. Biol. 19:294–99
    [Google Scholar]
  16. 16.  Brun I, Sentenac A, Werner M 1997. Dual role of the C34 subunit of RNA polymerase III in transcription initiation. EMBO J 16:5730–41
    [Google Scholar]
  17. 17.  Callaway E. 2015. The revolution will not be crystallized: a new method sweeps through structural biology. Nature 525:172–74
    [Google Scholar]
  18. 18.  Cavanaugh AH, Evans A, Rothblum LI 2008. Mammalian Rrn3 is required for the formation of a transcription competent preinitiation complex containing RNA polymerase I. Gene Expr 14:131–47
    [Google Scholar]
  19. 19.  Cavanaugh AH, Hirschler-Laszkiewicz I, Hu Q, Dundr M, Smink T et al. 2002. Rrn3 phosphorylation is a regulatory checkpoint for ribosome biogenesis. J. Biol. Chem. 277:27423–32
    [Google Scholar]
  20. 20.  Chari A, Haselbach D, Kirves JM, Ohmer J, Paknia E et al. 2015. ProteoPlex: stability optimization of macromolecular complexes by sparse-matrix screening of chemical space. Nat. Methods 12:859–65
    [Google Scholar]
  21. 21.  Chedin S, Riva M, Schultz P, Sentenac A, Carles C 1998. The RNA cleavage activity of RNA polymerase III is mediated by an essential TFIIS-like subunit and is important for transcription termination. Genes Dev 12:3857–71
    [Google Scholar]
  22. 22.  Cheng Y. 2015. Single-particle cryo-EM at crystallographic resolution. Cell 161:450–57
    [Google Scholar]
  23. 23.  Cheung AC, Cramer P 2011. Structural basis of RNA polymerase II backtracking, arrest and reactivation. Nature 471:249–53
    [Google Scholar]
  24. 24.  Cheung AC, Cramer P 2012. A movie of RNA polymerase II transcription. Cell 149:1431–37
    [Google Scholar]
  25. 25.  Claypool JA, French SL, Johzuka K, Eliason K, Vu L et al. 2004. Tor pathway regulates Rrn3p-dependent recruitment of yeast RNA polymerase I to the promoter but does not participate in alteration of the number of active genes. Mol. Biol. Cell 15:946–56
    [Google Scholar]
  26. 26.  Clemente-Blanco A, Mayan-Santos M, Schneider DA, Machin F, Jarmuz A et al. 2009. Cdc14 inhibits transcription by RNA polymerase I during anaphase. Nature 458:219–22
    [Google Scholar]
  27. 27.  Comai L, Tanese N, Tjian R 1992. The TATA-binding protein and associated factors are integral components of the RNA polymerase I transcription factor, SL1. Cell 68:965–76
    [Google Scholar]
  28. 28.  Cramer P, Armache K-J, Baumli S, Benkert S, Brueckner F et al. 2008. Structure of eukaryotic RNA polymerases. Annu. Rev. Biophys. 37:337–52
    [Google Scholar]
  29. 29.  Cramer P, Bushnell DA, Fu J, Gnatt AL, Maier-Davis B et al. 2000. Architecture of RNA polymerase II and implications for the transcription mechanism. Science 288:640–49
    [Google Scholar]
  30. 30.  Cramer P, Bushnell DA, Kornberg RD 2001. Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution. Science 292:1863–76
    [Google Scholar]
  31. 31.  De Carlo S, Carles C, Riva M, Schultz P 2003. Cryo-negative staining reveals conformational flexibility within yeast RNA polymerase I. J. Mol. Biol. 329:891–902
    [Google Scholar]
  32. 32.  Denissov S, van Driel M, Voit R, Hekkelman M, Hulsen T et al. 2007. Identification of novel functional TBP-binding sites and general factor repertoires. EMBO J 26:944–54
    [Google Scholar]
  33. 33.  Dieci G, Fiorino G, Castelnuovo M, Teichmann M, Pagano A 2007. The expanding RNA polymerase III transcriptome. Trends Genet 23:614–22
    [Google Scholar]
  34. 34.  Drygin D, Rice WG, Grummt I 2010. The RNA polymerase I transcription machinery: an emerging target for the treatment of cancer. Annu. Rev. Pharmacol. Toxicol. 50:131–56
    [Google Scholar]
  35. 35.  Ehara H, Umehara T, Sekine SI, Yokoyama S 2017. Crystal structure of RNA polymerase II from Komagataella pastoris. Biochem. Biophys. Res. Commun. 487:230–35
    [Google Scholar]
  36. 36.  Engel C, Gubbey T, Neyer S, Sainsbury S, Oberthuer C et al. 2017. Structural basis of RNA polymerase I transcription initiation. Cell 169:120–31.e22CF crystal structure and cryo-EM of Pol I ITC (and CF-apo complex) indicate conservation of biophysical promoter properties.
    [Google Scholar]
  37. 37.  Engel C, Plitzko J, Cramer P 2016. RNA polymerase I–Rrn3 complex at 4.8 Å resolution. Nat. Commun. 7:12129Cryo-EM structure of Rrn3-bound Pol I shows binding to the stalk subcomplex and dock domain.
    [Google Scholar]
  38. 38.  Engel C, Sainsbury S, Cheung AC, Kostrewa D, Cramer P 2013. RNA polymerase I structure and transcription regulation. Nature 502:650–55High-resolution crystal structure of Pol I and discussion of transcription regulation by expansion and contraction of the active center cleft.
    [Google Scholar]
  39. 39.  Fath S, Milkereit P, Peyroche G, Riva M, Carles C, Tschochner H 2001. Differential roles of phosphorylation in the formation of transcriptional active RNA polymerase I. PNAS 98:14334–39
    [Google Scholar]
  40. 40.  Feklistov A, Darst SA 2011. Structural basis for promoter-10 element recognition by the bacterial RNA polymerase sigma subunit. Cell 147:1257–69
    [Google Scholar]
  41. 41.  Fernández-Tornero C, Böttcher B, Rashid UJ, Steuerwald U, Flörchinger B et al. 2010. Conformational flexibility of RNA polymerase III during transcriptional elongation. EMBO J 29:3762–72
    [Google Scholar]
  42. 42.  Fernández-Tornero C, Moreno-Morcillo M, Rashid UJ, Taylor NM, Ruiz FM et al. 2013. Crystal structure of the 14-subunit RNA polymerase I. Nature 502:644–49Structure of Pol I solved from three different crystal forms.
    [Google Scholar]
  43. 43.  Geiger SR, Lorenzen K, Schreieck A, Hanecker P, Kostrewa D et al. 2010. RNA polymerase I contains a TFIIF-related DNA-binding subcomplex. Mol. Cell 39:583–94
    [Google Scholar]
  44. 44.  Gerber J, Reiter A, Steinbauer R, Jakob S, Kuhn CD et al. 2008. Site specific phosphorylation of yeast RNA polymerase I. Nucleic Acids Res 36:793–802
    [Google Scholar]
  45. 45.  Gnatt AL, Cramer P, Fu J, Bushnell DA, Kornberg RD 2001. Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 Å resolution. Science 292:1876–82
    [Google Scholar]
  46. 46.  Gorski JJ, Pathak S, Panov K, Kasciukovic T, Panova T et al. 2007. A novel TBP-associated factor of SL1 functions in RNA polymerase I transcription. EMBO J 26:1560–68
    [Google Scholar]
  47. 47.  Gouge J, Guthertz N, Kramm K, Dergai O, Abascal-Palacios G et al. 2017. Molecular mechanisms of Bdp1 in TFIIIB assembly and RNA polymerase III transcription initiation. Nat. Commun. 8:130
    [Google Scholar]
  48. 48.  Gouge J, Satia K, Guthertz N, Widya M, Thompson AJ et al. 2015. Redox signaling by the RNA polymerase III TFIIB-related factor Brf2. Cell 163:1375–87
    [Google Scholar]
  49. 49.  Grigorieff N. 2016. Frealign: An exploratory tool for single-particle cryo-EM. Methods Enzymol 579:191–226
    [Google Scholar]
  50. 50.  Grunberg S, Hahn S 2013. Structural insights into transcription initiation by RNA polymerase II. Trends Biochem. Sci. 38:603–11
    [Google Scholar]
  51. 51.  Günzl A, Bruderer T, Laufer G, Schimanski B, Tu L-C et al. 2003. RNA polymerase I transcribes procyclin genes and variant surface glycoprotein gene expression sites in Trypanosoma brucei. Eukaryot. Cell 2:542–51
    [Google Scholar]
  52. 52.  Haag JR, Pikaard CS 2011. Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA for plant gene silencing. Nat. Rev. Mol. Cell Biol. 12:483–92
    [Google Scholar]
  53. 53.  Hahn S. 2004. Structure and mechanism of the RNA polymerase II transcription machinery. Nat. Struct. Mol. Biol. 11:394–403
    [Google Scholar]
  54. 54.  Han Y, Yan C, Nguyen THD, Jackobel AJ, Ivanov I et al. 2017. Structural mechanism of ATP-independent transcription initiation by RNA polymerase I. eLife 6:e27414Cryo-EM of Rrn3-free initiation complexes in three states indicates cleft contraction during initiation.
    [Google Scholar]
  55. 55.  Hantsche M, Cramer P 2017. Conserved RNA polymerase II initiation complex structure. Curr. Opin. Struct. Biol. 47:17–22
    [Google Scholar]
  56. 56.  He Y, Yan C, Fang J, Inouye C, Tjian R et al. 2016. Near-atomic resolution visualization of human transcription promoter opening. Nature 533:359–65
    [Google Scholar]
  57. 57.  Hirata A, Klein BJ, Murakami KS 2008. The X-ray crystal structure of RNA polymerase from Archaea. Nature 451:851–54
    [Google Scholar]
  58. 58.  Hoffmann NA, Jakobi AJ, Moreno-Morcillo M, Glatt S, Kosinski J et al. 2015. Molecular structures of unbound and transcribing RNA polymerase III. Nature 528:231–36
    [Google Scholar]
  59. 59.  Hoffmann NA, Sadian Y, Tafur L, Kosinski J, Muller CW 2016. Specialization versus conservation: how Pol I and Pol III use the conserved architecture of the pre-initiation complex for specialized transcription. Transcription 7:127–32
    [Google Scholar]
  60. 60.  Hontz RD, French SL, Oakes ML, Tongaonkar P, Nomura M et al. 2008. Transcription of multiple yeast ribosomal DNA genes requires targeting of UAF to the promoter by Uaf30. Mol. Cell. Biol. 28:6709–19
    [Google Scholar]
  61. 61.  Jaiswal R, Choudhury M, Zaman S, Singh S, Santosh V et al. 2016. Functional architecture of the Reb1-Ter complex of Schizosaccharomyces pombe. PNAS 113:E2267–76
    [Google Scholar]
  62. 62.  Jennebach S, Herzog F, Aebersold R, Cramer P 2012. Crosslinking-MS analysis reveals RNA polymerase I domain architecture and basis of rRNA cleavage. Nucleic Acids Res 40:5591–601
    [Google Scholar]
  63. 63.  Kastner B, Fischer N, Golas MM, Sander B, Dube P et al. 2008. GraFix: sample preparation for single-particle electron cryomicroscopy. Nat. Methods 5:53–55
    [Google Scholar]
  64. 64.  Keener J, Josaitis CA, Dodd JA, Nomura M 1998. Reconstitution of yeast RNA polymerase I transcription in vitro from purified components. TATA-binding protein is not required for basal transcription. J. Biol. Chem. 273:33795–802
    [Google Scholar]
  65. 65.  Kettenberger H, Armache K-J, Cramer P 2003. Architecture of the RNA polymerase II-TFIIS complex and implications for mRNA cleavage. Cell 114:347–57
    [Google Scholar]
  66. 66.  Kettenberger H, Armache K-J, Cramer P 2004. Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS. Mol. Cell 16:955–65
    [Google Scholar]
  67. 67.  Khoo S-K, Wu C-C, Lin Y-C, Lee J-C, Chen H-T 2014. Mapping the protein interaction network for TFIIB-related factor Brf1 in the RNA polymerase III preinitiation complex. Mol. Cell. Biol. 34:551–59
    [Google Scholar]
  68. 68.  Kimanius D, Forsberg BO, Scheres SHW, Lindahl E 2016. Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2. eLife 5:e18722
    [Google Scholar]
  69. 69.  Knutson BA, Hahn S 2011. Yeast Rrn7 and human TAF1B are TFIIB-related RNA polymerase I general transcription factors. Science 333:1637–40
    [Google Scholar]
  70. 70.  Knutson BA, Hahn S 2013. TFIIB-related factors in RNA polymerase I transcription. Biochim. Biophys. Acta 1829:265–73
    [Google Scholar]
  71. 71.  Knutson BA, Luo J, Ranish J, Hahn S 2014. Architecture of the Saccharomyces cerevisiae RNA polymerase I Core Factor complex. Nat. Struct. Mol. Biol. 21:810–16
    [Google Scholar]
  72. 72.  Korkhin Y, Unligil UM, Littlefield O, Nelson PJ, Stuart DI et al. 2009. Evolution of complex RNA polymerases: the complete archaeal RNA polymerase structure. PLOS Biol 7:e1000102
    [Google Scholar]
  73. 73.  Kostrewa D, Kuhn CD, Engel C, Cramer P 2015. An alternative RNA polymerase I structure reveals a dimer hinge. Acta Crystallogr. D Biol. Crystallogr. 71:1850–55
    [Google Scholar]
  74. 74.  Kostrewa D, Zeller ME, Armache K-J, Seizl M, Leike K et al. 2009. RNA polymerase II–TFIIB structure and mechanism of transcription initiation. Nature 462:323–30
    [Google Scholar]
  75. 75.  Kownin P, Bateman E, Paule MR 1987. Eukaryotic RNA polymerase I promoter binding is directed by protein contacts with transcription initiation factor and is DNA sequence-independent. Cell 50:693–99
    [Google Scholar]
  76. 76.  Kühlbrandt W. 2014. The resolution revolution. Science 343:1443–44
    [Google Scholar]
  77. 77.  Kuhn CD, Geiger SR, Baumli S, Gartmann M, Gerber J et al. 2007. Functional architecture of RNA polymerase I. Cell 131:1260–72
    [Google Scholar]
  78. 78.  Kulkens T, Riggs DL, Heck JD, Planta RJ, Nomura M 1991. The yeast RNA polymerase I promoter: ribosomal DNA sequences involved in transcription initiation and complex formation in vitro. Nucleic Acids Res 19:5363–70
    [Google Scholar]
  79. 79.  Kusser AG, Bertero MG, Naji S, Becker T, Thomm M et al. 2008. Structure of an archaeal RNA polymerase. J. Mol. Biol. 376:303–7
    [Google Scholar]
  80. 80.  Laferté A, Favry E, Sentenac A, Riva M, Carles C, Chédin S 2006. The transcriptional activity of RNA polymerase I is a key determinant for the level of all ribosome components. Genes Dev 20:2030–40
    [Google Scholar]
  81. 81.  Lee MG-S, Van der Ploeg LHT 1997. Transcription of protein-coding genes in trypanosomes by RNA polymerase I. Annu. Rev. Microbiol. 51:463–89
    [Google Scholar]
  82. 82.  Lin CW, Moorefield B, Payne J, Aprikian P, Mitomo K, Reeder RH 1996. A novel 66-kilodalton protein complexes with Rrn6, Rrn7, and TATA-binding protein to promote polymerase I transcription initiation in Saccharomyces cerevisiae. Mol. Cell. Biol. 16:6436–43
    [Google Scholar]
  83. 83.  Lisica A, Engel C, Jahnel M, Roldan E, Galburt EA et al. 2016. Mechanisms of backtrack recovery by RNA polymerases I and II. PNAS 113:2946–51
    [Google Scholar]
  84. 84.  Liu X, Bushnell DA, Kornberg RD 2013. RNA Polymerase II transcription: structure and mechanism. Biochim. Biophys. Acta 1829:2–8
    [Google Scholar]
  85. 85.  Martinez-Rucobo FW, Cramer P 2013. Structural basis of transcription elongation. Biochim. Biophys. Acta 1829:9–19
    [Google Scholar]
  86. 86.  McMullan G, Clark AT, Turchetta R, Faruqi AR 2009. Enhanced imaging in low dose electron microscopy using electron counting. Ultramicroscopy 109:1411–16
    [Google Scholar]
  87. 87.  McMullan G, Faruqi AR, Clare D, Henderson R 2014. Comparison of optimal performance at 300 keV of three direct electron detectors for use in low dose electron microscopy. Ultramicroscopy 147:156–63
    [Google Scholar]
  88. 88.  McMullan G, Faruqi AR, Henderson R, Guerrini N, Turchetta R et al. 2009. Experimental observation of the improvement in MTF from backthinning a CMOS direct electron detector. Ultramicroscopy 109:1144–47
    [Google Scholar]
  89. 89.  Merkl P, Perez-Fernandez J, Pilsl M, Reiter A, Williams L et al. 2014. Binding of the termination factor Nsi1 to its cognate DNA site is sufficient to terminate RNA polymerase I transcription in vitro and to induce termination in vivo. Mol. Cell. Biol. 34:3817–27
    [Google Scholar]
  90. 90.  Milkereit P, Schultz P, Tschochner H 1997. Resolution of RNA polymerase I into dimers and monomers and their function in transcription. Biol. Chem. 378:1433–43
    [Google Scholar]
  91. 91.  Milkereit P, Tschochner H 1998. A specialized form of RNA polymerase I, essential for initiation and growth-dependent regulation of rRNA synthesis, is disrupted during transcription. EMBO J 17:3692–703
    [Google Scholar]
  92. 92.  Miller G, Panov KI, Friedrich JK, Trinkle-Mulcahy L, Lamond AI, Zomerdijk JC 2001. hRRN3 is essential in the SL1-mediated recruitment of RNA Polymerase I to rRNA gene promoters. EMBO J 20:1373–82
    [Google Scholar]
  93. 93.  Miller OLJr., Beatty BR. 1969. Visualization of nucleolar genes. Science 164:955–57
    [Google Scholar]
  94. 94.  Moorefield B, Greene EA, Reeder RH 2000. RNA polymerase I transcription factor Rrn3 is functionally conserved between yeast and human. PNAS 97:4724–29
    [Google Scholar]
  95. 95.  Moss T, Langlois F, Gagnon-Kugler T, Stefanovsky V 2007. A housekeeper with power of attorney: the rRNA genes in ribosome biogenesis. Cell Mol. Life Sci. 64:29–49
    [Google Scholar]
  96. 96.  Naidu S, Friedrich JK, Russell J, Zomerdijk JC 2011. TAF1B is a TFIIB-like component of the basal transcription machinery for RNA polymerase I. Science 333:1640–42
    [Google Scholar]
  97. 97.  Neyer S, Kunz M, Geiss C, Hantsche M, Hodirnau V-V et al. 2016. Structure of RNA polymerase I transcribing ribosomal DNA genes. Nature 540:607–10Cryo-EM of monomeric and elongating Pol I shows contraction of the cleft upon activation; confirmed by electron tomography ex vivo.
    [Google Scholar]
  98. 98.  Nogales E, Louder RK, He Y 2017. Structural insights into the eukaryotic transcription initiation machinery. Annu. Rev. Biophys. 46:59–83
    [Google Scholar]
  99. 99.  Nogi Y, Vu L, Nomura M 1991. An approach for isolation of mutants defective in 35S ribosomal RNA synthesis in Saccharomyces cerevisiae. PNAS 88:7026–30
    [Google Scholar]
  100. 100.  Oakes M, Siddiqi I, Vu L, Aris J, Nomura M 1999. Transcription factor UAF, expansion and contraction of ribosomal DNA (rDNA) repeats, and RNA polymerase switch in transcription of yeast rDNA. Mol. Cell. Biol. 19:8559–69
    [Google Scholar]
  101. 101.  Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM et al. 2004. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25:1605–12
    [Google Scholar]
  102. 102.  Peyroche G, Milkereit P, Bischler N, Tschochner H, Schultz P et al. 2000. The recruitment of RNA polymerase I on rDNA is mediated by the interaction of the A43 subunit with Rrn3. EMBO J 19:5473–82
    [Google Scholar]
  103. 103.  Pilsl M, Crucifix C, Papai G, Krupp F, Steinbauer R et al. 2016. Structure of the initiation-competent RNA polymerase I and its implication for transcription. Nat. Commun. 7:12126Cryo-EM compares Rrn3-bound, monomeric, and dimeric Pol I; subunit A49 functions in initiation are discussed.
    [Google Scholar]
  104. 104.  Plaschka C, Hantsche M, Dienemann C, Burzinski C, Plitzko J, Cramer P 2016. Transcription initiation complex structures elucidate DNA opening. Nature 533:353–58
    [Google Scholar]
  105. 105.  Plaschka C, Larivière L, Wenzeck L, Seizl M, Hemann M et al. 2015. Architecture of the RNA polymerase II–Mediator core initiation complex. Nature 518:376–80
    [Google Scholar]
  106. 106.  Reiter A, Hamperl S, Seitz H, Merkl P, Perez-Fernandez J et al. 2012. The Reb1-homologue Ydr026c/Nsi1 is required for efficient RNA polymerase I termination in yeast. EMBO J 31:3480–93
    [Google Scholar]
  107. 107.  Robinson PJ, Trnka MJ, Bushnell DA, Davis RE, Mattei P-J et al. 2016. Structure of a complete Mediator-RNA polymerase II pre-initiation complex. Cell 166:1411–22.e16
    [Google Scholar]
  108. 108.  Roeder RG. 1996. The role of general initiation factors in transcription by RNA polymerase II. Trends Biochem. Sci. 21:327–35
    [Google Scholar]
  109. 109.  Roeder RG, Rutter WJ 1969. Multiple forms of DNA-dependent RNA polymerase in eukaryotic organisms. Nature 224:234–37
    [Google Scholar]
  110. 110.  Ruan W, Lehmann E, Thomm M, Kostrewa D, Cramer P 2011. Evolution of two modes of intrinsic RNA polymerase transcript cleavage. J. Biol. Chem. 286:18701–7
    [Google Scholar]
  111. 111.  Russell J, Zomerdijk JC 2006. The RNA polymerase I transcription machinery. Biochem. Soc. Symp. 73:203–16
    [Google Scholar]
  112. 112.  Sadian Y, Tafur L, Kosinski J, Jakobi AJ, Wetzel R et al. 2017. Structural insights into transcription initiation by yeast RNA polymerase I. EMBO J 36:2698–709Cryo-EM of Pol I PIC in early initiation stages confirms CF and upstream promoter DNA location.
    [Google Scholar]
  113. 113.  Sainsbury S, Bernecky C, Cramer P 2015. Structural basis of transcription initiation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 16:129–43
    [Google Scholar]
  114. 114.  Sainsbury S, Niesser J, Cramer P 2013. Structure and function of the initially transcribing RNA polymerase II–TFIIB complex. Nature 493:437–40
    [Google Scholar]
  115. 115.  Scheres SH. 2012. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180:519–30
    [Google Scholar]
  116. 116.  Schrodinger LLC. 2015. PyMOL Molecular Graphics System, Version 2.0. https://pymol.org/2/support.html
    [Google Scholar]
  117. 117.  Siddiqi IN, Dodd JA, Vu L, Eliason K, Oakes ML et al. 2001. Transcription of chromosomal rRNA genes by both RNA polymerase I and II in yeast uaf30 mutants lacking the 30 kDa subunit of transcription factor UAF. EMBO J 20:4512–21
    [Google Scholar]
  118. 118.  Siddiqi IN, Keener J, Vu L, Nomura M 2001. Role of TATA binding protein (TBP) in yeast ribosomal DNA transcription by RNA polymerase I: defects in the dual functions of transcription factor UAF cannot be suppressed by TBP. Mol. Cell. Biol. 21:2292–97
    [Google Scholar]
  119. 119.  Spahr H, Calero G, Bushnell DA, Kornberg RD 2009. Schizosacharomyces pombe RNA polymerase II at 3.6-Å resolution. PNAS 106:9185–90
    [Google Scholar]
  120. 120.  Steffan JS, Keys DA, Dodd JA, Nomura M 1996. The role of TBP in rDNA transcription by RNA polymerase I in Saccharomyces cerevisiae: TBP is required for upstream activation factor-dependent recruitment of core factor. Genes Dev 10:2551–63
    [Google Scholar]
  121. 121.  Steffan JS, Keys DA, Vu L, Nomura M 1998. Interaction of TATA-binding protein with upstream activation factor is required for activated transcription of ribosomal DNA by RNA polymerase I in Saccharomyces cerevisiae in vivo. Mol. Cell. Biol. 18:3752–61
    [Google Scholar]
  122. 122.  Svetlov V, Nudler E 2013. Basic mechanism of transcription by RNA polymerase II. Biochim. Biophys. Acta 1829:20–28
    [Google Scholar]
  123. 123.  Tafur L, Sadian Y, Hoffmann NA, Jakobi AJ, Wetzel R et al. 2016. Molecular structures of transcribing RNA polymerase I. Mol. Cell 64:1135–43Cryo-EM of elongating Pol I and a Pol I OC shows cleft contraction upon activation and location of A49-tWH.
    [Google Scholar]
  124. 124.  Tang G, Peng L, Baldwin PR, Mann DS, Jiang W et al. 2007. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157:38–46
    [Google Scholar]
  125. 125.  Thuillier V, Stettler S, Sentenac A, Thuriaux P, Werner M 1995. A mutation in the C31 subunit of Saccharomyces cerevisiae RNA polymerase III affects transcription initiation. EMBO J 14:351–59
    [Google Scholar]
  126. 126.  Torreira E, Louro JA, Pazos I, González-Polo N, Gil-Carton D et al. 2017. The dynamic assembly of distinct RNA polymerase I complexes modulates rDNA transcription. eLife 6:e20832Cryo-EM of monomeric and Rrn3-bound Pol I; existence of Pol I dimers confirmed in vivo.
    [Google Scholar]
  127. 127.  Vannini A, Cramer P 2012. Conservation between the RNA polymerase I, II, and III transcription initiation machineries. Mol. Cell 45:439–46
    [Google Scholar]
  128. 128.  Vannini A, Ringel R, Kusser AG, Berninghausen O, Kassavetis GA, Cramer P 2010. Molecular basis of RNA polymerase III transcription repression by Maf1. Cell 143:59–70
    [Google Scholar]
  129. 129.  Vassylyev DG, S-i Sekine, Laptenko O, Lee J, Vassylyeva MN et al. 2002. Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 Å resolution. Nature 417:712–19
    [Google Scholar]
  130. 130.  Vassylyev DG, Vassylyeva MN, Perederina A, Tahirov TH, Artsimovitch I 2007. Structural basis for transcription elongation by bacterial RNA polymerase. Nature 448:157–62
    [Google Scholar]
  131. 131.  Vassylyev DG, Vassylyeva MN, Zhang J, Palangat M, Artsimovitch I, Landick R 2007. Structural basis for substrate loading in bacterial RNA polymerase. Nature 448:163–68
    [Google Scholar]
  132. 132.  Viktorovskaya OV, Schneider DA 2015. Functional divergence of eukaryotic RNA polymerases: Unique properties of RNA polymerase I suit its cellular role. Gene 556:19–26
    [Google Scholar]
  133. 133.  Vorländer MK, Khatter H, Wetzel R, Hagen WJH, Müller CW 2018. Molecular mechanism of promoter opening by RNA polymerase III. Nature 553:295–300
    [Google Scholar]
  134. 134.  Vu L, Siddiqi I, Lee BS, Josaitis CA, Nomura M 1999. RNA polymerase switch in transcription of yeast rDNA: role of transcription factor UAF (upstream activation factor) in silencing rDNA transcription by RNA polymerase II. PNAS 96:4390–95
    [Google Scholar]
  135. 135.  Wang D, Bushnell DA, Huang X, Westover KD, Levitt M, Kornberg RD 2009. Structural basis of transcription: backtracked RNA polymerase II at 3.4 angstrom resolution. Science 324:1203–6
    [Google Scholar]
  136. 136.  Wang D, Bushnell DA, Westover KD, Kaplan CD, Kornberg RD 2006. Structural basis of transcription: role of the trigger loop in substrate specificity and catalysis. Cell 127:941–54
    [Google Scholar]
  137. 137.  Warner JR. 1999. The economics of ribosome biosynthesis in yeast. Trends Biochem. Sci. 24:437–40
    [Google Scholar]
  138. 138.  Werner F, Grohmann D 2011. Evolution of multisubunit RNA polymerases in the three domains of life. Nat. Rev. Microbiol. 9:85–98
    [Google Scholar]
  139. 139.  Westover KD, Bushnell DA, Kornberg RD 2004. Structural basis of transcription: nucleotide selection by rotation in the RNA polymerase II active center. Cell 119:481–89
    [Google Scholar]
  140. 140.  Westover KD, Bushnell DA, Kornberg RD 2004. Structural basis of transcription: separation of RNA from DNA by RNA polymerase II. Science 303:1014–16
    [Google Scholar]
  141. 141.  White RJ. 2011. Transcription by RNA polymerase III: more complex than we thought. Nat. Rev. Genet. 12:459–63
    [Google Scholar]
  142. 142.  Yuan X, Zhao J, Zentgraf H, Hoffmann-Rohrer U, Grummt I 2002. Multiple interactions between RNA polymerase I, TIF-IA and TAFI subunits regulate preinitiation complex assembly at the ribosomal gene promoter. EMBO Rep 3:1082–87
    [Google Scholar]
  143. 143.  Zhang G, Campbell EA, Minakhin L, Richter C, Severinov K, Darst SA 1999. Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 Å resolution. Cell 98:811–24
    [Google Scholar]
  144. 144.  Zomerdijk JC, Kieft R, Borst P 1991. Efficient production of functional mRNA mediated by RNA polymerase I in Trypanosoma brucei. Nature 353:772–75
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-070317-033058
Loading
/content/journals/10.1146/annurev-biophys-070317-033058
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error