1932

Abstract

The development of organisms starting from their zygotic state involves a tight integration of the myriad biochemical signaling interactions with the mechanical forces that eventually pattern and shape the resulting embryo. In the past decade, it has become increasingly evident that several important developmental processes involve mechanical forces in an essential manner. In this review, we highlight the multifaceted role of mechanics in pattern formation, from protein and cell sorting to the generation of tissue shape. We then review the ways in which the active cellular cytoskeleton self-organizes to form dynamic patterns. Finally, we focus on mechanochemical feedback, where signaling proteins can establish patterns via coupling to the activity of the cytoskeleton. Throughout the review, we focus on the generic physical principles of the establishment of active mechanochemical patterns and point toward future directions in studying how the principles of mechanics and chemistry combine to drive morphogenetic pattern formation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-070816-033602
2017-05-22
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/biophys/46/1/annurev-biophys-070816-033602.html?itemId=/content/journals/10.1146/annurev-biophys-070816-033602&mimeType=html&fmt=ahah

Literature Cited

  1. Abercrombie M. 1.  1980. The Croonian lecture, 1978: the crawling movement of Metazoan cells. Proc. R. Soc. Lond. B 207:129–47 [Google Scholar]
  2. Abu Shah E, Keren K. 2.  2014. Symmetry breaking in reconstituted actin cortices. eLife 3:e01433 [Google Scholar]
  3. Aigouy B, Farhadifar R, Staple DB, Sagner A, Roeper JC. 3.  et al. 2010. Cell flow reorients the axis of planar polarity in the wing epithelium of Drosophila. Cell 142:773–86 [Google Scholar]
  4. Amack JD, Manning ML. 4.  2012. Knowing the boundaries: extending the differential adhesion hypothesis in embryonic cell sorting. Science 338:212–15 [Google Scholar]
  5. Backouche F, Haviv L, Groswasser D, Bernheim-Groswasser A. 5.  2006. Active gels: dynamics of patterning and self-organization. Phys. Biol. 3:264–73 [Google Scholar]
  6. Begnaud S, Chen T, Delacour D, Mége RM, Ladoux B. 6.  2016. Mechanics of epithelial tissues during gap closure. Curr. Opin. Cell Biol. 42:52–62 [Google Scholar]
  7. Behrndt M, Salbreux G, Campinho P, Hauschild R, Oswald F. 7.  et al. 2012. Forces driving epithelial spreading in zebrafish gastrulation. Science 338:257–60 [Google Scholar]
  8. Beloussov LV. 8.  2008. Mechanically based generative laws of morphogenesis. Phys. Biol. 5:015009 [Google Scholar]
  9. Berthoumieux H, Maître J-L, Heisenberg C-P, Paluch EK, Jülicher F, Salbreux G. 9.  2014. Active elastic thin shell theory for cellular deformations. New J. Phys. 16:065005 [Google Scholar]
  10. Bi E, Park HO. 10.  2012. Cell polarization and cytokinesis in budding yeast. Genetics 191:347–87 [Google Scholar]
  11. Bois JS, Jülicher F, Grill S. 11.  2011. Pattern formation in active fluids. Phys. Rev. Lett. 106:028103 [Google Scholar]
  12. Boisvert FM, van Koningsbruggen S, Navascues J, Lamond AI. 12.  2007. The multifunctional nucleolus. Nat. Rev. Mol. Cell Biol. 8:574–85 [Google Scholar]
  13. Bose I, Irazoqui J, Moskow J, Bardes E, Zyla T, Lew D. 13.  2001. Assembly of scaffold-mediated complexes containing Cdc42p, the exchange factor Cdc24p, and the effector Cla4p required for cell cycle-regulated phosphorylation of Cdc24p. J. Biol. Chem. 276:7176–86 [Google Scholar]
  14. Bosveld F, Bonnet I, Guirao B, Tlili S, Wang Z. 14.  et al. 2012. Mechanical control of morphogenesis by Fat/Dachsous/Four-jointed planar cell polarity pathway. Science 336:724–27 [Google Scholar]
  15. Brangwynne CP, Eckmann CR, Courson DS, Rybarska A, Hoege C. 15.  et al. 2009. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324:1729–32 [Google Scholar]
  16. Briscoe J, Small S. 16.  2015. Morphogen rules: design principles of gradient-mediated embryo patterning. Development 142:3996–4009 [Google Scholar]
  17. Buchan JR, Parker R. 17.  2009. Eukaryotic stress granules: the ins and outs of translation. Mol. Cell 36:932–41 [Google Scholar]
  18. Butty A, Perrinjaquet N, Petit A, Jaquenoud M, Segall J. 18.  et al. 2002. A positive feedback loop stabilizes the guanine-nucleotide exchange factor Cdc24 at sites of polarization. EMBO J. 21:1565–76 [Google Scholar]
  19. Cerchiari AE, Garbe JC, Jee NY, Todhunter ME, Broaders KE. 19.  et al. 2015. A strategy for tissue self-organization that is robust to cellular heterogeneity and plasticity. PNAS 112:2287–92 [Google Scholar]
  20. Cheffings TH, Burroughs NJ, Balasubramanian MK. 20.  2016. Actomyosin ring formation and tension generation in eukaryotic cytokinesis. Curr. Biol. 26:R719–37 [Google Scholar]
  21. Cummings FW. 21.  2001. The interaction of surface geometry with morphogens. J. Theor. Biol. 212:303–13 [Google Scholar]
  22. de Gennes PG, Prost J. 22.  1995. The Physics of Liquid Crystals Int. Ser. Monogr. Phys Oxford, UK: Oxford Univ. Press
  23. DeCamp SJ, Redner GS, Baskaran A, Hagan MF, Dogic Z. 23.  2015. Orientational order of motile defects in active nematics. Nat. Mater. 14:1110–15 [Google Scholar]
  24. Denk J, Huber L, Reithmann E, Frey E. 24.  2016. Active curved polymers form vortex patterns on membranes. Phys. Rev. Lett. 116:178301 [Google Scholar]
  25. Dierkes K, Sumi A, Solon J, Salbreux G. 25.  2014. Spontaneous oscillations of elastic contractile materials with turnover. Phys. Rev. Lett. 113:148102 [Google Scholar]
  26. Driever W, Nüsslein-Volhard C. 26.  1988. The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner. Cell 54:95–104 [Google Scholar]
  27. Etournay R, Popović M, Merkel M, Nandi A, Blasse C. 27.  et al. 2015. Interplay of cell dynamics and epithelial tension during morphogenesis of the Drosophila pupal wing. eLife 4:e07090 [Google Scholar]
  28. Forgacs G, Newman S. 28.  2005. Biological Physics of the Developing Embryo Cambridge, UK: Cambridge Univ. Press
  29. Foty R, Steinberg M. 29.  2005. The differential adhesion hypothesis: a direct evaluation. Dev. Biol. 278:255–63 [Google Scholar]
  30. Freisinger T, Kluender B, Johnson J, Mueller N, Pichler G. 30.  et al. 2013. Establishment of a robust single axis of cell polarity by coupling multiple positive feedback loops. Nat. Commun. 4:1807 [Google Scholar]
  31. Fürthauer S, Strempel M, Grill SW, Jülicher F. 31.  2012. Active chiral fluids. Eur. Phys. J. E 35:89 [Google Scholar]
  32. Fürthauer S, Strempel M, Grill SW, Jülicher F. 32.  2013. Active chiral processes in thin films. Phys. Rev. Lett. 110:048103 [Google Scholar]
  33. Gall J. 33.  2003. The centennial of the Cajal body. Nat. Rev. Mol. Cell Biol. 4:975–80 [Google Scholar]
  34. Ganguly S, Williams LS, Palacios IM, Goldstein RE. 34.  2012. Cytoplasmic streaming in Drosophila oocytes varies with kinesin activity and correlates with the microtubule cytoskeleton architecture. PNAS 109:15109–14 [Google Scholar]
  35. Gilbert S. 35.  2013. Developmental Biology New York: Palgrave Macmillan
  36. Goehring NW, Grill SW. 36.  2012. Cell polarity: mechanochemical patterning. Trends Cell Biol. 23:72–80 [Google Scholar]
  37. Goehring NW, Trong PK, Bois JS, Chowdhury D, Nicola EM. 37.  et al. 2011. Polarization of PAR proteins by advective triggering of a pattern-forming system. Science 334:1137–41 [Google Scholar]
  38. Goswami D, Gowrishankar K, Bilgrami S, Ghosh S, Raghupathy R. 38.  et al. 2008. Nanoclusters of GPI-anchored proteins are formed by cortical actin-driven activity. Cell 135:1085–97 [Google Scholar]
  39. Green RA, Paluch E, Oegema K. 39.  2012. Cytokinesis in animal cells. Annu. Rev. Cell Dev. Biol. 28:29–58 [Google Scholar]
  40. Gustafson T, Wolpert L. 40.  1963. The cellular basis of morphogenesis and sea urchin development. Int. Rev. Cytol. 15:139–214 [Google Scholar]
  41. Hannezo E, Dong B, Recho P, Joanny JF, Hayashi S. 41.  2015. Cortical instability drives periodic supracellular actin pattern formation in epithelial tubes. PNAS 112:8620–25 [Google Scholar]
  42. Harris KP, Tepass U. 42.  2010. Cdc42 and vesicle trafficking in polarized cells. Traffic 11:1272–79 [Google Scholar]
  43. Heisenberg CP, Bellaïche Y. 43.  2013. Forces in tissue morphogenesis and patterning. Cell 153:948–62 [Google Scholar]
  44. Heller E, Fuchs E. 44.  2015. Tissue patterning and cellular mechanics. J. Cell Biol. 211:219–31 [Google Scholar]
  45. Heller E, Kumar KV, Grill SW, Fuchs E. 45.  2014. Forces generated by cell intercalation tow epidermal sheets in mammalian tissue morphogenesis. Dev. Cell 28:617–32 [Google Scholar]
  46. Howard J. 46.  2001. Mechanics of Motor Proteins and the Cytoskeleton Sunderland, MA: Sinauer Assoc.
  47. Howard J. 47.  2014. Quantitative cell biology: the essential role of theory. Mol. Biol. Cell 25:3438–40 [Google Scholar]
  48. Howard J, Grill SW, Bois JS. 48.  2011. Turing's next steps: the mechanochemical basis of morphogenesis. Nat. Rev. Mol. Cell Biol. 12:392–98 [Google Scholar]
  49. Husain K, Rao M. 49.  2016. Emergent structures in an active polar fluid: dynamics of shape, scattering and merger. arXiv:1605.00149 [physics.bio-ph]
  50. Hyman AA, Weber CA, Jülicher F. 50.  2014. Liquid-liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30:39–58 [Google Scholar]
  51. Jülicher F, Ajdari A, Prost J. 51.  1997. Modeling molecular motors. Rev. Mod. Phys. 69:1269 [Google Scholar]
  52. Jülicher F, Kruse K, Prost J, Joanny J-F. 52.  2007. Active behavior of the cytoskeleton. Phys. Rep. 449:3–28 [Google Scholar]
  53. Keber FC, Loiseau E, Sanchez T, DeCamp SJ, Giomi L. 53.  et al. 2014. Topology and dynamics of active nematic vesicles. Science 345:1135–39 [Google Scholar]
  54. Keller PJ. 54.  2013. Imaging morphogenesis: technological advances and biological insights. Science 340:1234168 [Google Scholar]
  55. Keren K, Yam PT, Kinkhabwala A, Mogilner A, Theriot JA. 55.  2009. Intracellular fluid flow in rapidly moving cells. Nat. Cell Biol. 11:1219–24 [Google Scholar]
  56. Kicheva A, Pantazis P, Bollenbach T, Kalaidzidis Y, Bittig T. 56.  et al. 2007. Kinetics of morphogen gradient formation. Science 315:521–25 [Google Scholar]
  57. Koch AJ, Meinhardt H. 57.  1994. Biological pattern formation: from basic mechanisms to complex structures. Rev. Mod. Phys. 66:1481–507 [Google Scholar]
  58. Koehler S, Schaller V, Bausch AR. 58.  2011. Structure formation in active networks. Nat. Mater. 10:462–68 [Google Scholar]
  59. Koester DV, Husain K, Iljazi E, Bhat A, Bieling P. 59.  et al. 2016. Actomyosin dynamics drive local membrane component organization in an in vitro active composite layer. PNAS 113:E1645–54 [Google Scholar]
  60. Kolomeisky A. 60.  2015. Motor Proteins and Molecular Motors Boca Raton, FL: CRC Press
  61. Kondo S, Miura T. 61.  2010. Reaction-diffusion model as a framework for understanding biological pattern formation. Science 329:1616–20 [Google Scholar]
  62. Kumar KV, Bois JS, Jülicher F, Grill SW. 62.  2014. Pulsatory patterns in active fluids. Phys. Rev. Lett. 112:208101 [Google Scholar]
  63. Landau L, Lifshitz E. 63.  1959. Course of Theoretical Physics, Vol. 6: Theory of Elasticity Oxford, UK: Pergamon Press [Google Scholar]
  64. Landau L, Lifshitz E. 64.  1959. Course of Theoretical Physics, Vol. 7: Fluid Mechanics Oxford, UK: Pergamon Press [Google Scholar]
  65. Layton AT, Savage NS, Howell AS, Carroll SY, Drubin DG, Lew DJ. 65.  2011. Modeling vesicle traffic reveals unexpected consequences for Cdc42p-mediated polarity establishment. Curr. Biol. 21:184–94 [Google Scholar]
  66. Lecuit T, Lenne PF, Munro E. 66.  2011. Force generation, transmission, and integration during cell and tissue morphogenesis. Annu. Rev. Cell Dev. Biol. 27:157–84 [Google Scholar]
  67. Lecuit T, Yap AS. 67.  2015. E-cadherin junctions as active mechanical integrators in tissue dynamics. Nat. Cell Biol. 17:533–39 [Google Scholar]
  68. LeGoff L, Lecuit T. 68.  2015. Mechanical forces and growth in animal tissues. Cold Spring Harb. Perspect. Biol. 8:a019232 [Google Scholar]
  69. Linsmeier I, Banerjee S, Oakes PW, Jung W, Kim T, Murrell MP. 69.  2016. Disordered actomyosin networks are sufficient to produce cooperative and telescopic contractility. Nat. Commun. 7:12615 [Google Scholar]
  70. Lo C, Wang H, Dembo M, Wang Y. 70.  2000. Cell movement is guided by the rigidity of the substrate. Biophys. J. 79:144–52 [Google Scholar]
  71. Loose M, Mitchison TJ. 71.  2014. The bacterial cell division proteins FtsA and FtsZ self-organize into dynamic cytoskeletal patterns. Nat. Cell Biol. 16:38–46 [Google Scholar]
  72. Mahen R, Venkitaraman AR. 72.  2012. Pattern formation in centrosome assembly. Curr. Opin. Cell Biol. 24:14–23 [Google Scholar]
  73. Maître JL, Turlier H, Illukkumbura R, Eismann B, Niwayama R. 73.  et al. 2016. Asymmetric division of contractile domains couples cell positioning and fate specification. Nature 536:344–48 [Google Scholar]
  74. Maiuri P, Rupprecht JF, Wieser S, Ruprecht V, Benichou O. 74.  et al. 2015. Actin flows mediate a universal coupling between cell speed and cell persistence. Cell 161:374–86 [Google Scholar]
  75. Mallik R, Gross S. 75.  2004. Molecular motors: strategies to get along. Curr. Biol. 14:R971–82 [Google Scholar]
  76. Marchetti MC, Joanny JF, Ramaswamy S, Liverpool TB, Prost J. 76.  et al. 2013. Hydrodynamics of soft active matter. Rev. Mod. Phys. 85:1143–89 [Google Scholar]
  77. Mayer M, Depken M, Bois JS, Jülicher F, Grill SW. 77.  2010. Anisotropies in cortical tension reveal the physical basis of polarizing cortical flows. Nature 467:617–21 [Google Scholar]
  78. Meier EL, Goley ED. 78.  2014. Form and function of the bacterial cytokinetic ring. Curr. Opin. Cell Biol. 26:19–27 [Google Scholar]
  79. Moore T, Wu S, Michael M, Yap A, Gomez G, Neufeld Z. 79.  2014. Self-organizing actomyosin patterns on the cell cortex at epithelial cell-cell junctions. Biophys. J. 107:2652–61 [Google Scholar]
  80. Munjal A, Lecuit T. 80.  2014. Actomyosin networks and tissue morphogenesis. Development 141:1789–93 [Google Scholar]
  81. Munjal A, Philippe JM, Munro E, Lecuit T. 81.  2015. A self-organized biomechanical network drives shape changes during tissue morphogenesis. Nature 524:351–55 [Google Scholar]
  82. 82.  Deleted in proof
  83. Munro E, Nance J, Priess J. 83.  2004. Cortical flows powered by asymmetrical contraction transport PAR proteins to establish and maintain anterior-posterior polarity in the early C. elegans embryo. Dev. Cell 7:413–24 [Google Scholar]
  84. Murray JD. 84.  2003. Mathematical Biology Berlin: Springer-Verlag, 3rd ed..
  85. Mussel M, Zeevy K, Diamant H, Nevo U. 85.  2014. Drag of the cytosol as a transport mechanism in neurons. Biophys. J. 106:2710–19 [Google Scholar]
  86. Naganathan SR, Fürthauer S, Nishikawa M, Jülicher F, Grill SW. 86.  2014. Active torque generation by the actomyosin cell cortex drives left–right symmetry breaking. eLife 3:e04165 [Google Scholar]
  87. Nedelec F, Surrey T, Maggs A, Leibler S. 87.  1997. Self-organization of microtubules and motors. Nature 389:305–8 [Google Scholar]
  88. Nelson CM. 88.  2016. On buckling morphogenesis. J. Biomech. Eng. 138:021005 [Google Scholar]
  89. Newman SA, Bhat R. 89.  2008. Dynamical patterning modules: physico-genetic determinants of morphological development and evolution. Phys. Biol. 5:015008 [Google Scholar]
  90. Newman SA, Comper WD. 90.  1990. `Generic’ physical mechanisms of morphogenesis and pattern formation. Development 110:1–18 [Google Scholar]
  91. Nishikawa M, Naganathan SR, Jülicher F, Grill SW. 91.  2017. Controlling contractile instabilities in the actomyosin cortex. eLife http://dx.doi.org/10.7554/eLife.19595
  92. Niwayama R, Shinohara K, Kimura A. 92.  2011. Hydrodynamic property of the cytoplasm is sufficient to mediate cytoplasmic streaming in the Caenorhabiditis elegans embryo. PNAS 108:11900–5 [Google Scholar]
  93. Oates AC, Gorfinkiel N, González-Gaitán M, Heisenberg CP. 93.  2009. Quantitative approaches in developmental biology. Nat. Rev. Genet. 10:517–30 [Google Scholar]
  94. Paluch E, Heisenberg CP. 94.  2009. Biology and physics of cell shape changes in development. Curr. Biol. 19:R790–99 [Google Scholar]
  95. Percus JK, Childress S. 95.  2015. Mathematical Models in Developmental Biology New York: Am. Math. Soc.
  96. Phillips R. 96.  2015. Theory in biology: figure 1 or figure 7?. Trends Cell Biol. 25:723–29 [Google Scholar]
  97. Prost J, Jülicher F, Joanny JF. 97.  2015. Active gel physics. Nat. Phys. 11:111–17 [Google Scholar]
  98. Pruyne D, Bretscher A. 98.  2000. Polarization of cell growth in yeast. II. The role of the cortical actin cytoskeleton. J. Cell Sci. 113:571–85 [Google Scholar]
  99. Radszuweit M, Alonso S, Engel H, Baer M. 99.  2013. Intracellular mechanochemical waves in an active poroelastic model. Phys. Rev. Lett. 110:138102 [Google Scholar]
  100. Radszuweit M, Engel H, Baer M. 100.  2014. An active poroelastic model for mechanochemical patterns in protoplasmic droplets of Physarum polycephalum. PLOS ONE 9:e99220 [Google Scholar]
  101. Ramaswamy S. 101.  2010. The mechanics and statistics of active matter. Annu. Rev. Condens. Matter Phys. 1:323–45 [Google Scholar]
  102. Raspopovic J, Marcon L, Russo L, Sharpe J. 102.  2014. Digit patterning is controlled by a Bmp-Sox9-Wnt Turing network modulated by morphogen gradients. Science 345:566–70 [Google Scholar]
  103. Rauzi M, Lenne PF, Lecuit T. 103.  2010. Planar polarized actomyosin contractile flows control epithelial junction remodelling. Nature 468:1110–14 [Google Scholar]
  104. Reymann AC, Boujemaa-Paterski R, Martiel JL, Guerin C, Cao W. 104.  et al. 2012. Actin network architecture can determine myosin motor activity. Science 336:1310–14 [Google Scholar]
  105. Reymann AC, Staniscia F, Erzberger A, Salbreux G, Grill SW. 105.  2016. Cortical flow aligns actin filaments to form a furrow. eLife 5:e17807 [Google Scholar]
  106. Richman D, Stewart R, Hutchinson J, Caviness V. 106.  1975. Mechanical model of brain convolutional development. Science 189:18–21 [Google Scholar]
  107. Rogers KW, Schier AF. 107.  2011. Morphogen gradients: from generation to interpretation. Annu. Rev. Cell Dev. Biol. 27:377–407 [Google Scholar]
  108. Ruprecht V, Wieser S, Callan-Jones A, Smutny M, Morita H. 108.  et al. 2015. Cortical contractility triggers a stochastic switch to fast amoeboid cell motility. Cell 160:673–85 [Google Scholar]
  109. Salbreux G, Charras G, Paluch E. 109.  2012. Actin cortex mechanics and cellular morphogenesis. Trends Cell Biol. 22:536–45 [Google Scholar]
  110. Salbreux G, Prost J, Joanny JF. 110.  2009. Hydrodynamics of cellular cortical flows and the formation of contractile rings. Phys. Rev. Lett. 103:058102 [Google Scholar]
  111. 111.  Deleted in proof
  112. Sankar Banerjee D, Munjal A, Lecuit T, Rao M. 112.  2016. Actomyosin pulsation and symmetry breaking flows in a confined active elastomer subject to affine and nonaffine deformations. arXiv:1605.07318 [physics.bio-ph]
  113. Savage NS, Layton AT, Lew DJ. 113.  2012. Mechanistic mathematical model of polarity in yeast. Mol. Biol. Cell 23:1998–2013 [Google Scholar]
  114. Savin T, Kurpios NA, Shyer AE, Florescu P, Liang H. 114.  et al. 2011. On the growth and form of the gut. Nature 476:57–62 [Google Scholar]
  115. Schaller V, Weber C, Semmrich C, Frey E, Bausch AR. 115.  2010. Polar patterns of driven filaments. Nature 467:73–77 [Google Scholar]
  116. Schoetz EM, Burdine RD, Jülicher F, Steinberg MS, Heisenberg CP, Foty RA. 116.  2008. Quantitative differences in tissue surface tension influence zebrafish germ layer positioning. HFSP J. 2:42–56 [Google Scholar]
  117. Sedzinski J, Biro M, Oswald A, Tinevez JY, Salbreux G, Paluch E. 117.  2011. Polar actomyosin contractility destabilizes the position of the cytokinetic furrow. Nature 476:462–66 [Google Scholar]
  118. Sheth R, Marcon L, Bastida MF, Junco M, Quintana L. 118.  et al. 2012. Hox genes regulate digit patterning by controlling the wavelength of a Turing-type mechanism. Science 338:1476–80 [Google Scholar]
  119. Shyer AE, Tallinen T, Nerurkar NL, Wei Z, Gil ES. 119.  et al. 2013. Villification: how the gut gets its villi. Science 342:212–18 [Google Scholar]
  120. Sit ST, Manser E. 120.  2011. Rho GTPases and their role in organizing the actin cytoskeleton. J. Cell Sci. 124:679–83 [Google Scholar]
  121. Slack JMW. 121.  2012. Essential Developmental Biology Hoboken, NJ: Wiley, 3rd ed..
  122. Smith D, Ziebert F, Humphrey D, Duggan C, Steinbeck M. 122.  et al. 2007. Molecular motor-induced instabilities and cross linkers determine biopolymer organization. Biophys. J. 93:4445–52 [Google Scholar]
  123. Soares e Silva M, Depken M, Stuhrmann B, Korsten M, MacKintosh FC, Koenderink GH. 123.  2011. Active multistage coarsening of actin networks driven by myosin motors. PNAS 108:9408–13 [Google Scholar]
  124. Spemann H, Mangold H. 124.  1924. Über Induktion von Embryonalagen durch Implantation artfremder Organisatoren. Roux Arch. Entw. Mech. 100:599–638 [Google Scholar]
  125. Srivastava P, Shlomovitz R, Gov N, Rao M. 125.  2013. Patterning of polar active filaments on a tense cylindrical membrane. Phys. Rev. Lett. 110:168104 [Google Scholar]
  126. Steinberg MS. 126.  2007. Differential adhesion in morphogenesis: a modern view. Curr. Opin. Genet. Dev. 17:281–86 [Google Scholar]
  127. Sumino Y, Nagai KH, Shitaka Y, Tanaka D, Yoshikawa K. 127.  et al. 2012. Large-scale vortex lattice emerging from collectively moving microtubules. Nature 483:448–52 [Google Scholar]
  128. Surrey T, Nedelec F, Leibler S, Karsenti E. 128.  2001. Physical properties determining self-organization of motors and microtubules. Science 292:1167–71 [Google Scholar]
  129. Taber LA. 129.  2014. Morphomechanics: transforming tubes into organs. Curr. Opin. Genet. Dev. 27:7–13 [Google Scholar]
  130. Takagi S, Ueda T. 130.  2008. Emergence and transitions of dynamic patterns of thickness oscillation of the plasmodium of the true slime mold Physarum polycephalum. Physica D Nonlinear Phenom. 237:420–27 [Google Scholar]
  131. Tallinen T, Chung JY, Rousseau F, Girard N, Lefevre J, Mahadevan L. 131.  2016. On the growth and form of cortical convolutions. Nat. Phys. 12:588–93 [Google Scholar]
  132. Thompson D. 132.  1917. On Growth and Form Cambridge, UK: Cambridge Univ. Press
  133. Townes P, Holtfreter J. 133.  1955. Directed movements and selective adhesion of embryonic amphibian cells. J. Exp. Zool. 128:53–120 [Google Scholar]
  134. Turing AM. 134.  1952. The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B 237:37–72 [Google Scholar]
  135. Turlier H, Audoly B, Prost J, Joanny JF. 135.  2014. Furrow constriction in animal cell cytokinesis. Biophys. J. 106:114–23 [Google Scholar]
  136. Varner VD, Gleghorn JP, Miller E, Radisky DC, Nelson CM. 136.  2015. Mechanically patterning the embryonic airway epithelium. PNAS 112:9230–35 [Google Scholar]
  137. Vogel SK, Petrasek Z, Heinemann F, Schwille P. 137.  2013. Myosin motors fragment and compact membrane-bound actin filaments. eLife 2:e00116 [Google Scholar]
  138. Volokh K. 138.  2006. Tissue morphogenesis: a surface buckling mechanism. Int. J. Dev. Biol. 50:359–65 [Google Scholar]
  139. Wedlich-Soldner R, Altschuler S, Wu L, Li R. 139.  2003. Spontaneous cell polarization through actomyosin-based delivery of the Cdc42 GTPase. Science 299:1231–35 [Google Scholar]
  140. Wedlich-Soldner R, Wai S, Schmidt T, Li R. 140.  2004. Robust cell polarity is a dynamic state established by coupling transport and GTPase signaling. J. Cell Biol. 166:889–900 [Google Scholar]
  141. Willits R, Skornia S. 141.  2004. Effect of collagen gel stiffness on neurite extension. J. Biomater. Sci. Polym. Ed. 15:1521–31 [Google Scholar]
  142. Wilson CA, Tsuchida MA, Allen GM, Barnhart EL, Applegate KT. 142.  et al. 2010. Myosin II contributes to cell-scale actin network treadmilling through network disassembly. Nature 465:373–77 [Google Scholar]
  143. Wolpert L. 143.  1969. Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25:1–47 [Google Scholar]
  144. Wolpert L, Tickle C, Arias AM. 144.  2015. Principles of Development Oxford, UK: Oxford Univ. Press, 5th ed..
  145. Yam PT, Wilson CA, Ji L, Hebert B, Barnhart EL. 145.  et al. 2007. Actin–myosin network reorganization breaks symmetry at the cell rear to spontaneously initiate polarized cell motility. J. Cell Biol. 178:1207–21 [Google Scholar]
  146. Yi K, Unruh JR, Deng M, Slaughter BD, Rubinstein B, Li R. 146.  2011. Dynamic maintenance of asymmetric meiotic spindle position through Arp2/3-complex-driven cytoplasmic streaming in mouse oocytes. Nat. Cell Biol. 13:1252–58 [Google Scholar]
  147. Zwicker D, Decker M, Jaensch S, Hyman AA, Jülicher F. 147.  2014. Centrosomes are autocatalytic droplets of pericentriolar material organized by centrioles. PNAS 111:E2636–45 [Google Scholar]
/content/journals/10.1146/annurev-biophys-070816-033602
Loading
/content/journals/10.1146/annurev-biophys-070816-033602
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error