1932

Abstract

Cryogenic electron microscopy (cryo-EM) has revolutionized the field of structural biology, particularly in solving the structures of large protein complexes or cellular machineries that play important biological functions. This review focuses on the contribution and future potential of cryo-EM in related emerging applications—enzymatic mechanisms and dynamic processes. Work on these subjects can benefit greatly from the capability of cryo-EM to solve the structures of specific protein complexes in multiple conditions, including variations in the buffer condition, ligands, and temperature, and to capture multiple conformational states, conformational change intermediates, and reaction intermediates. These studies can expand the structural landscape of specific proteins or protein complexes in multiple dimensions and drive new advances in the fields of enzymology and dynamic processes. The advantages and complementarity of cryo-EM relative to X-ray crystallography and nuclear magnetic resonance with regard to these applications are also addressed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-100121-075228
2022-05-09
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/biophys/51/1/annurev-biophys-100121-075228.html?itemId=/content/journals/10.1146/annurev-biophys-100121-075228&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Aibara S, Schilbach S, Cramer P. 2021. Structures of mammalian RNA polymerase II pre-initiation complexes. Nature 594:124–28
    [Google Scholar]
  2. 2.
    Alderson TR, Kay LE. 2020. Unveiling invisible protein states with NMR spectroscopy. Curr. Opin. Struct. Biol. 60:39–49
    [Google Scholar]
  3. 3.
    Bai R, Wan R, Wang L, Xu K, Zhang Q et al. 2021. Structure of the activated human minor spliceosome. Science 371:eabg0879
    [Google Scholar]
  4. 4.
    Banerjee S, Bartesaghi A, Merk A, Rao P, Bulfer SL et al. 2016. 2.3 Å resolution cryo-EM structure of human p97 and mechanism of allosteric inhibition. Science 351:871–75
    [Google Scholar]
  5. 5.
    Bansia H, Catalano C, Melville Z, Guo Y, Marks AR, des Georges A. 2021. Investigating gating mechanisms of ion channels using temperature-resolved cryoEM. Microsc. Microanal. 27:1690–94
    [Google Scholar]
  6. 6.
    Baretić D, Jenkyn-Bedford M, Aria V, Cannone G, Skehel M, Yeeles JTP. 2020. Cryo-EM structure of the fork protection complex bound to CMG at a replication fork. Mol. Cell 78:926–40.e13
    [Google Scholar]
  7. 7.
    Bartesaghi A, Merk A, Banerjee S, Matthies D, Wu X et al. 2015. 2.2 Å resolution cryo-EM structure of β-galactosidase in complex with a cell-permeant inhibitor. Science 348:1147–51
    [Google Scholar]
  8. 8.
    Bell JC, Kowalczykowski SC. 2016. RecA: regulation and mechanism of a molecular search engine. Trends Biochem. Sci. 41:491–507
    [Google Scholar]
  9. 9.
    Bhatt PR, Scaiola A, Loughran G, Leibundgut M, Kratzel A et al. 2021. Structural basis of ribosomal frameshifting during translation of the SARS-CoV-2 RNA genome. Science 372:1306–13
    [Google Scholar]
  10. 10.
    Bishop DK, Park D, Xu L, Kleckner N. 1992. DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell 69:439–56
    [Google Scholar]
  11. 11.
    Bisson C, Britton KL, Sedelnikova SE, Rodgers HF, Eadsforth TC et al. 2016. Mirror-image packing provides a molecular basis for the nanomolar equipotency of enantiomers of an experimental herbicide. Angew. Chem. Int. Ed. 55:13485–89
    [Google Scholar]
  12. 12.
    Borsellini A, Kunetsky V, Friedhoff P, Lamers MH 2021. Cryo-EM structures reveal how ATP and DNA binding in MutS coordinate the sequential steps of DNA mismatch repair. bioRxiv 2021.06.03.446775. https://doi.org/10.1101/2021.06.03.446775
    [Crossref]
  13. 13.
    Bostock MJ, Solt AS, Nietlispach D. 2019. The role of NMR spectroscopy in mapping the conformational landscape of GPCRs. Curr. Opin. Struct. Biol. 57:145–56
    [Google Scholar]
  14. 14.
    Bous J, Orcel H, Floquet N, Leyrat C, Lai-Kee-Him J et al. 2021. Cryo–electron microscopy structure of the antidiuretic hormone arginine-vasopressin V2 receptor signaling complex. Sci. Adv. 7:eabg5628
    [Google Scholar]
  15. 15.
    Brown A, Shao S. 2018. Ribosomes and cryo-EM: a duet. Curr. Opin. Struct. Biol. 52:1–7
    [Google Scholar]
  16. 16.
    Callender TL, Laureau R, Wan L, Chen X, Sandhu R et al. 2016. Mek1 down regulates Rad51 activity during yeast meiosis by phosphorylation of Hed1. PLOS Genet 12:e1006226
    [Google Scholar]
  17. 17.
    Chang W-H, Lin H-H, Tsai I-K, Huang S-H, Chung S-C et al. 2021. Copper centers in the cryo-EM structure of particulate methane monooxygenase reveal the catalytic machinery of methane oxidation. J. Am. Chem. Soc. 143:9922–32
    [Google Scholar]
  18. 18.
    Chang Y-C, Chen C-Y, Tsai M-D. 2021. Preparation of high-temperature sample grids for cryo-EM. JoVE 173:e62772
    [Google Scholar]
  19. 19.
    Chang Y-K, Huang Y-P, Liu X-X, Ko T-P, Bessho Y et al. 2019. Human DNA polymerase μ can use a noncanonical mechanism for multiple Mn2+-mediated functions. J. Am. Chem. Soc. 141:8489–502
    [Google Scholar]
  20. 20.
    Chen B, Kaledhonkar S, Sun M, Shen B, Lu Z et al. 2015. Structural dynamics of ribosome subunit association studied by mixing-spraying time-resolved cryogenic electron microscopy. Structure 23:1097–105
    [Google Scholar]
  21. 21.
    Chen C-Y, Chang Y-C, Lin B-L, Huang C-H, Tsai M-D. 2019. Temperature-resolved cryo-EM uncovers structural bases of temperature-dependent enzyme functions. J. Am. Chem. Soc. 141:19983–87
    [Google Scholar]
  22. 22.
    Chen C-Y, Chang Y-C, Lin B-L, Lin K-F, Huang C-H et al. 2019. Use of cryo-EM to uncover structural bases of pH effect and cofactor bispecificity of ketol-acid reductoisomerase. J. Am. Chem. Soc. 141:6136–40
    [Google Scholar]
  23. 23.
    Cheng A, Eng ET, Alink L, Rice WJ, Jordan KD et al. 2018. High resolution single particle cryo-electron microscopy using beam-image shift. J. Struct. Biol. 204:270–75
    [Google Scholar]
  24. 24.
    Choe H, Farzan M. 2021. How SARS-CoV-2 first adapted in humans. Science 372:466–67
    [Google Scholar]
  25. 25.
    Colletier JP, Bourgeois D, Sanson B, Fournier D, Sussman JL et al. 2008. Shoot-and-trap: use of specific x-ray damage to study structural protein dynamics by temperature-controlled cryo-crystallography. PNAS 105:11742–47
    [Google Scholar]
  26. 26.
    Cox MM. 2007. Motoring along with the bacterial RecA protein. Nat. Rev. Mol. Cell Biol. 8:127–38
    [Google Scholar]
  27. 27.
    Crickard JB, Greene EC. 2018. The biochemistry of early meiotic recombination intermediates. Cell Cycle 17:2520–30
    [Google Scholar]
  28. 28.
    Cunha ES, Chen X, Sanz-Gaitero M, Mills DJ, Luecke H. 2021. Cryo-EM structure of Helicobacter pylori urease with an inhibitor in the active site at 2.0Å resolution. Nat. Commun. 12:230
    [Google Scholar]
  29. 29.
    Dandey VP, Budell WC, Wei H, Bobe D, Maruthi K et al. 2020. Time-resolved cryo-EM using Spotiton. Nat. Methods 17:897–900
    [Google Scholar]
  30. 30.
    Dong Y, Zhang S, Wu Z, Li X, Wang WL et al. 2019. Cryo-EM structures and dynamics of substrate-engaged human 26S proteasome. Nature 565:49–55
    [Google Scholar]
  31. 31.
    Drulyte I, Johnson RM, Hesketh EL, Hurdiss DL, Scarff CA et al. 2018. Approaches to altering particle distributions in cryo-electron microscopy sample preparation. Acta Crystallogr. D 74:560–71
    [Google Scholar]
  32. 32.
    Dubochet J, Adrian M, Chang JJ, Homo JC, Lepault J et al. 1988. Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys. 21:129–228
    [Google Scholar]
  33. 33.
    Dutka P, Mukherjee S, Gao X, Kang Y, de Waal PW et al. 2019. Development of “plug and play” fiducial marks for structural studies of GPCR signaling complexes by single-particle cryo-EM. Structure 27:1862–74.e7
    [Google Scholar]
  34. 34.
    Efremov RG, Stroobants A. 2021. Coma-corrected rapid single-particle cryo-EM data collection on the CRYO ARM 300. Acta Crystallogr. D 77:555–64
    [Google Scholar]
  35. 35.
    Fica SM, Nagai K. 2017. Cryo-electron microscopy snapshots of the spliceosome: structural insights into a dynamic ribonucleoprotein machine. Nat. Struct. Mol. Biol. 24:791–99
    [Google Scholar]
  36. 36.
    Fischer N, Konevega AL, Wintermeyer W, Rodnina MV, Stark H. 2010. Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy. Nature 466:329–33
    [Google Scholar]
  37. 37.
    Flores JA, Haddad BG, Dolan KA, Myers JB, Yoshioka CC et al. 2020. Connexin-46/50 in a dynamic lipid environment resolved by CryoEM at 1.9Å. Nat. Commun. 11:4331
    [Google Scholar]
  38. 38.
    Frank J. 2017. Time-resolved cryo-electron microscopy: recent progress. J. Struct. Biol. 200:303–6
    [Google Scholar]
  39. 39.
    Frauenfelder H, Petsko GA, Tsernoglou D. 1979. Temperature-dependent X-ray diffraction as a probe of protein structural dynamics. Nature 280:558–63
    [Google Scholar]
  40. 40.
    Frei JN, Broadhurst RW, Bostock MJ, Solt A, Jones AJY et al. 2020. Conformational plasticity of ligand-bound and ternary GPCR complexes studied by 19F NMR of the β1-adrenergic receptor. Nat. Commun. 11:669
    [Google Scholar]
  41. 41.
    Gao Y, Cui Y, Fox T, Lin S, Wang H et al. 2019. Structures and operating principles of the replisome. Science 363:eaav7003
    [Google Scholar]
  42. 42.
    Gao Y, Yan L, Huang Y, Liu F, Zhao Y et al. 2020. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science 368:779–82
    [Google Scholar]
  43. 43.
    García-Nafría J, Lee Y, Bai X, Carpenter B, Tate CG 2018. Cryo-EM structure of the adenosine A2A receptor coupled to an engineered heterotrimeric G protein. eLife 7:e35946
    [Google Scholar]
  44. 44.
    García-Nafría J, Tate CG. 2020. Cryo-electron microscopy: moving beyond X-ray crystal structures for drug receptors and drug development. Annu. Rev. Pharmacol. Toxicol. 60:51–71
    [Google Scholar]
  45. 45.
    Gauto DF, Estrozi LF, Schwieters CD, Effantin G, Macek P et al. 2019. Integrated NMR and cryo-EM atomic-resolution structure determination of a half-megadalton enzyme complex. Nat. Commun. 10:2697
    [Google Scholar]
  46. 46.
    Glaeser RM, Nogales E, Chiu W 2021. Single-Particle Cryo-EM of Biological Macromolecules Bristol: IOP Publ.
  47. 47.
    Haselbach D, Komarov I, Agafonov DE, Hartmuth K, Graf B et al. 2018. Structure and conformational dynamics of the human spliceosomal Bact complex. Cell 172:454–64.e11
    [Google Scholar]
  48. 48.
    He Y, Wang Y, Liu B, Helmling C, Sušac L et al. 2021. Structures of telomerase at several steps of telomere repeat synthesis. Nature 593:454–59
    [Google Scholar]
  49. 49.
    Hurdiss DL, Drulyte I, Lang Y, Shamorkina TM, Pronker MF et al. 2020. Cryo-EM structure of coronavirus-HKU1 haemagglutinin esterase reveals architectural changes arising from prolonged circulation in humans. Nat. Commun. 11:4646
    [Google Scholar]
  50. 50.
    Jackson SM, Manolaridis I, Kowal J, Zechner M, Taylor NMI et al. 2018. Structural basis of small-molecule inhibition of human multidrug transporter ABCG2. Nat. Struct. Mol. Biol. 25:333–40
    [Google Scholar]
  51. 51.
    Jin M, Han W, Liu C, Zang Y, Li J et al. 2019. An ensemble of cryo-EM structures of TRiC reveal its conformational landscape and subunit specificity. PNAS 116:19513–22
    [Google Scholar]
  52. 52.
    Kaledhonkar S, Fu Z, Caban K, Li W, Chen B et al. 2019. Late steps in bacterial translation initiation visualized using time-resolved cryo-EM. Nature 570:400–4
    [Google Scholar]
  53. 53.
    Kampjut D, Sazanov LA. 2019. Structure and mechanism of mitochondrial proton-translocating transhydrogenase. Nature 573:291–95
    [Google Scholar]
  54. 54.
    Kampjut D, Steiner J, Sazanov LA 2021. Cryo-EM grid optimization for membrane proteins. iScience 24:102139
    [Google Scholar]
  55. 55.
    Kang G, Taguchi AT, Stubbe J, Drennan CL. 2020. Structure of a trapped radical transfer pathway within a ribonucleotide reductase holocomplex. Science 368:424–27
    [Google Scholar]
  56. 56.
    Kim KH, Kim JG, Nozawa S, Sato T, Oang KY et al. 2015. Direct observation of bond formation in solution with femtosecond X-ray scattering. Nature 518:385–89
    [Google Scholar]
  57. 57.
    Kimsey IJ, Szymanski ES, Zahurancik WJ, Shakya A, Xue Y et al. 2018. Dynamic basis for dG·dT misincorporation via tautomerization and ionization. Nature 554:195–201
    [Google Scholar]
  58. 58.
    Koclega KD, Chruszcz M, Zimmerman MD, Bujacz G, Minor W. 2010.. “ Hot” macromolecular crystals. Crystal Growth Des 10:580–86
    [Google Scholar]
  59. 59.
    Kofuku Y, Ueda T, Okude J, Shiraishi Y, Kondo K et al. 2012. Efficacy of the β2-adrenergic receptor is determined by conformational equilibrium in the transmembrane region. Nat. Commun. 3:1045
    [Google Scholar]
  60. 60.
    Kontziampasis D, Klebl DP, Iadanza MG, Scarff CA, Kopf F et al. 2019. A cryo-EM grid preparation device for time-resolved structural studies. IUCrJ 6:1024–31
    [Google Scholar]
  61. 61.
    Kwon DH, Zhang F, Suo Y, Bouvette J, Borgnia MJ, Lee S-Y. 2021. Heat-dependent opening of TRPV1 in the presence of capsaicin. Nat. Struct. Mol. Biol. 28:554–63
    [Google Scholar]
  62. 62.
    Lao JP, Cloud V, Huang CC, Grubb J, Thacker D et al. 2013. Meiotic crossover control by concerted action of Rad51-Dmc1 in homolog template bias and robust homeostatic regulation. PLOS Genet 9:e1003978
    [Google Scholar]
  63. 63.
    Leung EWW, Guddat LW. 2009. Conformational changes in a plant ketol-acid reductoisomerase upon Mg2+ and NADPH binding as revealed by two crystal structures. J. Mol. Biol. 389:167–82
    [Google Scholar]
  64. 64.
    Levantino M, Yorke BA, Monteiro DCF, Cammarata M, Pearson AR 2015. Using synchrotrons and XFELs for time-resolved X-ray crystallography and solution scattering experiments on biomolecules. Curr. Opin. Struct. Biol. 35:41–48
    [Google Scholar]
  65. 65.
    Lieberman RL, Rosenzweig AC. 2005. Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane. Nature 434:177–82
    [Google Scholar]
  66. 66.
    Linsky TW, Vergara R, Codina N, Nelson JW, Walker MJ et al. 2020. De novo design of potent and resilient hACE2 decoys to neutralize SARS-CoV-2. Science 370:1208–14
    [Google Scholar]
  67. 67.
    Lisi GP, Loria JP. 2016. Solution NMR spectroscopy for the study of enzyme allostery. Chem. Rev. 116:6323–69
    [Google Scholar]
  68. 68.
    Long T, Sun Y, Hassan A, Qi X, Li X 2020. Structure of nevanimibe-bound tetrameric human ACAT1. Nature 581:339–43
    [Google Scholar]
  69. 69.
    Lu Z, Shaikh TR, Barnard D, Meng X, Mohamed H et al. 2009. Monolithic microfluidic mixing–spraying devices for time-resolved cryo-electron microscopy. J. Struct. Biol. 168:388–95
    [Google Scholar]
  70. 70.
    Luo S-C, Yeh H-Y, Lan W-H, Wu Y-M, Yang C-H et al. 2021. Identification of fidelity-governing factors in human recombinases DMC1 and RAD51 from cryo-EM structures. Nat. Commun. 12:115
    [Google Scholar]
  71. 71.
    Mäeots M-E, Lee B, Nans A, Jeong S-G, Esfahani MMN et al. 2020. Modular microfluidics enables kinetic insight from time-resolved cryo-EM. Nat. Commun. 11:3465
    [Google Scholar]
  72. 72.
    Manolaridis I, Jackson SM, Taylor NMI, Kowal J, Stahlberg H, Locher KP. 2018. Cryo-EM structures of a human ABCG2 mutant trapped in ATP-bound and substrate-bound states. Nature 563:426–30
    [Google Scholar]
  73. 73.
    Matsumoto S, Ishida S, Araki M, Kato T, Terayama K, Okuno Y 2021. Extraction of protein dynamics information from cryo-EM maps using deep learning. Nat. Mach. Intel. 3:153–60
    [Google Scholar]
  74. 74.
    Meshcheryakov VA, Shibata S, Schreiber MT, Villar-Briones A, Jarrell KF et al. 2019. High-resolution archaellum structure reveals a conserved metal-binding site. EMBO Rep 20:e46340
    [Google Scholar]
  75. 75.
    Miyaji A, Nitta M, Baba T. 2019. Influence of copper ions removal from membrane-bound form of particulate methane monooxygenase from Methylosinus trichosporium OB3b on its activity for methane hydroxylation. J. Biotechnol 306S:100001
    [Google Scholar]
  76. 76.
    Moffat K. 2019. Laue diffraction and time-resolved crystallography: a personal history. Philos. Trans. R. Soc. A 377:20180243
    [Google Scholar]
  77. 77.
    Murphy BJ, Klusch N, Langer J, Mills DJ, Yildiz Ö, Kühlbrandt W. 2019. Rotary substates of mitochondrial ATP synthase reveal the basis of flexible F1-Fo coupling. Science 364:eaaw9128
    [Google Scholar]
  78. 78.
    Nakamura T, Zhao Y, Yamagata Y, Hua YJ, Yang W. 2012. Watching DNA polymerase eta make a phosphodiester bond. Nature 487:196–201
    [Google Scholar]
  79. 79.
    Nakane T, Kotecha A, Sente A, McMullan G, Masiulis S et al. 2020. Single-particle cryo-EM at atomic resolution. Nature 587:152–56
    [Google Scholar]
  80. 80.
    Nango E, Royant A, Kubo M, Nakane T, Wickstrand C et al. 2016. A three-dimensional movie of structural changes in bacteriorhodopsin. Science 354:1552–57
    [Google Scholar]
  81. 81.
    Nguyen H-HT, Elliott SJ, Yip JH-K, Chan SI. 1998. The particulate methane monooxygenase from Methylococcus capsulatus (Bath) is a novel copper-containing three-subunit enzyme: isolation and characterization. J. Biol. Chem. 273:7957–66
    [Google Scholar]
  82. 82.
    Nogly P, Weinert T, James D, Carbajo S, Ozerov D et al. 2018. Retinal isomerization in bacteriorhodopsin captured by a femtosecond X-ray laser. Science 361:eaat0094
    [Google Scholar]
  83. 83.
    Ognjenović J, Grisshammer R, Subramaniam S. 2019. Frontiers in cryo electron microscopy of complex macromolecular assemblies. Annu. Rev. Biomed. Eng. 21:395–415
    [Google Scholar]
  84. 84.
    Palmer AG. 2015. Enzyme dynamics from NMR spectroscopy. Acc. Chem. Res. 48:457–65
    [Google Scholar]
  85. 85.
    Passmore LA, Russo CJ. 2016. Specimen preparation for high-resolution cryo-EM. Methods Enzymol 579:51–86
    [Google Scholar]
  86. 86.
    Patel KM, Teran D, Zheng S, Kandale A, Garcia M et al. 2017. Crystal structures of Staphylococcus aureus ketol-acid reductoisomerase in complex with two transition state analogues that have biocidal activity. Chemistry 23:18289–95
    [Google Scholar]
  87. 87.
    Peier AM, Reeve AJ, Andersson DA, Moqrich A, Earley TJ et al. 2002. A heat-sensitive TRP channel expressed in keratinocytes. Science 296:2046–49
    [Google Scholar]
  88. 88.
    Pramanick I, Sengupta N, Mishra S, Pandey S, Girish N et al. 2021. Conformational flexibility and structural variability of SARS-CoV2 S protein. Structure 29:834–45.e5
    [Google Scholar]
  89. 89.
    Puchades C, Ding B, Song A, Wiseman RL, Lander GC, Glynn SE. 2019. Unique structural features of the mitochondrial AAA+ protease AFG3L2 reveal the molecular basis for activity in health and disease. Mol. Cell 75:1073–85.e6
    [Google Scholar]
  90. 90.
    Qian H, Zhao X, Yan R, Yao X, Gao S et al. 2020. Structural basis for catalysis and substrate specificity of human ACAT1. Nature 581:333–38
    [Google Scholar]
  91. 91.
    Rawson S, Bisson C, Hurdiss DL, Fazal A, McPhillie MJ et al. 2018. Elucidating the structural basis for differing enzyme inhibitor potency by cryo-EM. PNAS 115:1795–800
    [Google Scholar]
  92. 92.
    Rengachari S, Schilbach S, Aibara S, Dienemann C, Cramer P. 2021. Structure of the human Mediator–RNA polymerase II pre-initiation complex. Nature 594:129–33
    [Google Scholar]
  93. 93.
    Roh S-H, Hryc CF, Jeong H-H, Fei X, Jakana J et al. 2017. Subunit conformational variation within individual GroEL oligomers resolved by Cryo-EM. PNAS 114:8259–64
    [Google Scholar]
  94. 94.
    Rundlet EJ, Holm M, Schacherl M, Natchiar SK, Altman RB et al. 2021. Structural basis of early translocation events on the ribosome. Nature 595:741–45
    [Google Scholar]
  95. 95.
    Sekhar A, Kay LE. 2019. An NMR view of protein dynamics in health and disease. Annu. Rev. Biophys. 48:297–319
    [Google Scholar]
  96. 96.
    Shi H, Ling W, Zhu D, Zhang X 2019. Increasing vitrification temperature improves the cryo-electron microscopy reconstruction. bioRxiv 824698. https://doi.org/10.1101/824698
    [Crossref]
  97. 97.
    Shimada I, Ueda T, Kofuku Y, Eddy MT, Wüthrich K. 2019. GPCR drug discovery: integrating solution NMR data with crystal and cryo-EM structures. Nat. Rev. Drug Discov. 18:59–82
    [Google Scholar]
  98. 98.
    Shin M, Puchades C, Asmita A, Puri N, Adjei E et al. 2020. Structural basis for distinct operational modes and protease activation in AAA+ protease Lon. Sci. Adv. 6:eaba8404
    [Google Scholar]
  99. 99.
    Singh AK, McGoldrick LL, Demirkhanyan L, Leslie M, Zakharian E, Sobolevsky AI 2019. Structural basis of temperature sensation by the TRP channel TRPV3. Nat. Struct. Mol. Biol. 26:994–98
    [Google Scholar]
  100. 100.
    Smith GD, Gunthorpe MJ, Kelsell RE, Hayes PD, Reilly P et al. 2002. TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature 418:186–90
    [Google Scholar]
  101. 101.
    Sobti M, Ueno H, Noji H, Stewart AG. 2021. The six steps of the complete F1-ATPase rotary catalytic cycle. Nat. Commun. 12:4690
    [Google Scholar]
  102. 102.
    Solt AS, Bostock MJ, Shrestha B, Kumar P, Warne T et al. 2017. Insight into partial agonism by observing multiple equilibria for ligand-bound and Gs-mimetic nanobody-bound β1-adrenergic receptor. Nat. Commun. 8:1795
    [Google Scholar]
  103. 103.
    Steinfeld JB, Belan O, Kwon Y, Terakawa T, Al-Zain A et al. 2019. Defining the influence of Rad51 and Dmc1 lineage-specific amino acids on genetic recombination. Genes Dev 33:1191–207
    [Google Scholar]
  104. 104.
    Sui X, Wang K, Gluchowski NL, Elliott SD, Liao M et al. 2020. Structure and catalytic mechanism of a human triacylglycerol-synthesis enzyme. Nature 581:323–28
    [Google Scholar]
  105. 105.
    Szymanski ES, Kimsey IJ, Al-Hashimi HM. 2017. Direct NMR evidence that transient tautomeric and anionic states in dG·dT form Watson-Crick-like base pairs. J. Am. Chem. Soc. 139:4326–29
    [Google Scholar]
  106. 106.
    Tilton RF, Dewan JC, Petsko GA. 1992. Effects of temperature on protein structure and dynamics: X-ray crystallographic studies of the protein ribonuclease-A at nine different temperatures from 98 to 320K. Biochemistry 31:2469–81
    [Google Scholar]
  107. 107.
    Tsai M-D 2020. Cryo-EM in enzymology. Comprehensive Natural Products III: Chemistry and Biology H-W Liu, TP Begley 368–74 Amsterdam: Elsevier
    [Google Scholar]
  108. 108.
    Unwin N, Fujiyoshi Y. 2012. Gating movement of acetylcholine receptor caught by plunge-freezing. J. Mol. Biol. 422:617–34
    [Google Scholar]
  109. 109.
    Vallurupalli P, Bouvignies G, Kay LE. 2012. Studying “invisible” excited protein states in slow exchange with a major state conformation. J. Am. Chem. Soc. 134:8148–61
    [Google Scholar]
  110. 110.
    Velyvis A, Kay LE. 2013. Measurement of active site ionization equilibria in the 670 kDa proteasome core particle using methyl-TROSY NMR. J. Am. Chem. Soc. 135:9259–62
    [Google Scholar]
  111. 111.
    Wang H-W, Wang J-W. 2017. How cryo-electron microscopy and X-ray crystallography complement each other. Protein Sci 26:32–39
    [Google Scholar]
  112. 112.
    Wang L, Qian H, Nian Y, Han Y, Ren Z et al. 2020. Structure and mechanism of human diacylglycerol O-acyltransferase 1. Nature 581:329–32
    [Google Scholar]
  113. 113.
    Wang L, Xu J, Cao S, Sun D, Liu H et al. 2021. Cryo-EM structure of the AVP–vasopressin receptor 2–Gs signaling complex. Cell Res 31:932–34
    [Google Scholar]
  114. 114.
    Weissenberger G, Henderikx RJM, Peters PJ. 2021. Understanding the invisible hands of sample preparation for cryo-EM. Nat. Methods 18:463–71
    [Google Scholar]
  115. 115.
    Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh C-L et al. 2020. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367:1260–63
    [Google Scholar]
  116. 116.
    Wu W-J, Yang W, Tsai M-D 2017. How DNA polymerases catalyse replication and repair with contrasting fidelity. Nat. Rev. Chem. 1:0068
    [Google Scholar]
  117. 117.
    Xing C, Zhuang Y, Xu T-H, Feng Z, Zhou XE et al. 2020. Cryo-EM structure of the human cannabinoid receptor CB2-Gi signaling complex. Cell 180:645–54.e13
    [Google Scholar]
  118. 118.
    Yang H, Zhou C, Dhar A, Pavletich NP. 2020. Mechanism of strand exchange from RecA–DNA synaptic and D-loop structures. Nature 586:801–6
    [Google Scholar]
  119. 119.
    Yang T-J, Chang Y-C, Ko T-P, Draczkowski P, Chien Y-C et al. 2020. Cryo-EM analysis of a feline coronavirus spike protein reveals a unique structure and camouflaging glycans. PNAS 117:1438–46
    [Google Scholar]
  120. 120.
    Yates LA, Williams RM, Hailemariam S, Ayala R, Burgers P, Zhang X. 2020. Cryo-EM structure of nucleotide-bound Tel1ATM unravels the molecular basis of inhibition and structural rationale for disease-associated mutations. Structure 28:96–104.e3
    [Google Scholar]
  121. 121.
    Yeates TO, Agdanowski MP, Liu Y. 2020. Development of imaging scaffolds for cryo-electron microscopy. Curr. Opin. Struct. Biol. 60:142–49
    [Google Scholar]
  122. 122.
    Yip KM, Fischer N, Paknia E, Chari A, Stark H. 2020. Atomic-resolution protein structure determination by cryo-EM. Nature 587:157–61
    [Google Scholar]
  123. 123.
    Yu SS-F, Chen KH-C, Tseng MY-H, Wang Y-S, Tseng C-F et al. 2003. Production of high-quality particulate methane monooxygenase in high yields from Methylococcus capsulatus (Bath) with a hollow-fiber membrane bioreactor. J. Bacteriol. 185:5915–24
    [Google Scholar]
  124. 124.
    Zhang J, Cai Y, Xiao T, Lu J, Peng H et al. 2021. Structural impact on SARS-CoV-2 spike protein by D614G substitution. Science 372:525–30
    [Google Scholar]
  125. 125.
    Zhang K, Pintilie GD, Li S, Schmid MF, Chiu W. 2020. Resolving individual atoms of protein complex by cryo-electron microscopy. Cell Res 30:1136–39
    [Google Scholar]
  126. 126.
    Zhuang Y, Xu P, Mao C, Wang L, Krumm B et al. 2021. Structural insights into the human D1 and D2 dopamine receptor signaling complexes. Cell 184:931–42.e18
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-100121-075228
Loading
/content/journals/10.1146/annurev-biophys-100121-075228
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error