1932

Abstract

Critical to viral infection are the multiple interactions between viral proteins and host-cell counterparts. The first such interaction is the recognition of viral envelope proteins by surface receptors that normally fulfil other physiological roles, a hijacking mechanism perfected over the course of evolution. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of coronavirus disease 2019 (COVID-19), has successfully adopted this strategy using its spike glycoprotein to dock on the membrane-bound metalloprotease angiotensin-converting enzyme 2 (ACE2). The crystal structures of several SARS-CoV-2 proteins alone or in complex with their receptors or other ligands were recently solved at an unprecedented pace. This accomplishment is partly due to the increasing availability of data on other coronaviruses and ACE2 over the past 18 years. Likewise, other key intervening actors and mechanisms of viral infection were elucidated with the aid of biophysical approaches. An understanding of the various structurally important motifs of the interacting partners provides key mechanistic information for the development of structure-based designer drugs able to inhibit various steps of the infective cycle, including neutralizing antibodies, small organic drugs, and vaccines. This review analyzes current progress and the outlook for future structural studies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-102620-080956
2021-05-06
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/biophys/50/1/annurev-biophys-102620-080956.html?itemId=/content/journals/10.1146/annurev-biophys-102620-080956&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Almeida JD, Tyrrell DA. 1967. The morphology of three previously uncharacterized human respiratory viruses that grow in organ culture. J. Gen. Virol. 1:175–78
    [Google Scholar]
  2. 2. 
    Balzarotti F, Eilers Y, Gwosch KC, Gynnå AH, Westphal V et al. 2017. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science355:606–12
    [Google Scholar]
  3. 3. 
    Barrantes FJ. 2020. While we wait for a vaccine against SARS-CoV-2, why not think about available drugs?. Front. Physiol. 11:820
    [Google Scholar]
  4. 4. 
    Brielle ES, Schneidman-Duhovny D, Linial M 2020. The SARS-CoV-2 exerts a distinctive strategy for interacting with the ACE2 human receptor. Viruses 12:497
    [Google Scholar]
  5. 5. 
    Bruchez A, Sha K, Johnson J, Chen L, Stefani C et al. 2020. MHC class II transactivator CIITA induces cell resistance to Ebola virus and SARS-like coronaviruses. Science 970:241–47
    [Google Scholar]
  6. 6. 
    Bzówka M, Mitusińska K, Raczyńska A, Samol A, Tuszyński JA, Góra A 2020. Structural and evolutionary analysis indicate that the SARS-CoV-2 Mpro is a challenging target for small-molecule inhibitor design. Int. J. Mol. Sci. 21:3099
    [Google Scholar]
  7. 7. 
    Cai Y, Zhang J, Xiao T, Peng H, Sterling SM et al. 2020. Distinct conformational states of SARS-CoV-2 spike protein. Science 369:1586–92
    [Google Scholar]
  8. 8. 
    Cao W, Dong C, Kim S, Hou D, Tai W et al. 2020. Biomechanical characterization of SARS-CoV-2 spike RBD and human ACE2 protein-protein interaction. bioRxiv 230730. https://doi.org/10.1101/2020.07.31.230730
    [Crossref]
  9. 9. 
    Castaño-Rodriguez C, Honrubia JM, Gutiérrez-Álvarez J, DeDiego ML, Nieto-Torres JL et al. 2018. Role of severe acute respiratory syndrome coronavirus viroporins E, 3a, and 8a in replication and pathogenesis. mBio9:e02325–17
    [Google Scholar]
  10. 10. 
    Chan KK, Dorosky D, Sharma P, Abbasi SA, Dye JM et al. 2020. Engineering human ACE2 to optimize binding to the spike protein of SARS coronavirus 2. Science 369:1261–65
    [Google Scholar]
  11. 11. 
    Chen C-C, Krüger J, Sramala I, Hsu H-J, Henklein P et al. 2011. ORF8a of SARS-CoV forms an ion channel: experiments and molecular dynamics simulations. Biochim. Biophys. Acta Biomembr. 1808:572–79
    [Google Scholar]
  12. 12. 
    Chen SH, Young MT, Gounley J, Stanley C, Bhowmik D 2020. Distinct structural flexibility within SARS-CoV-2 spike protein reveals potential therapeutic targets. bioRxiv 047548. https://doi.org/10.1101/2020.04.17.047548
    [Crossref]
  13. 13. 
    Chen Y, Guo Y, Pan Y, Zhao ZJ 2020. Structure analysis of the receptor binding of 2019-nCoV. Biochem. Biophys. Res. Commun. 525:135–40
    [Google Scholar]
  14. 14. 
    Chong MK, Chua AJ, Tan TT, Tan SH, Ng ML 2014. Microscopy techniques in flavivirus research. Micron 59:33–43
    [Google Scholar]
  15. 15. 
    Clevers H. 2016. Modeling development and disease with organoids. Cell 165:1586–97
    [Google Scholar]
  16. 16. 
    Colebatch HJ, Ng CK. 1992. Estimating alveolar surface area during life. Respir. Physiol. 88:163–70
    [Google Scholar]
  17. 17. 
    Corrêa Giron C, Laaksonen A, Barroso da Silva FL 2020. On the interactions of the receptor-binding domain of SARS-CoV-1 and SARS-CoV-2 spike proteins with monoclonal antibodies and the receptor ACE2. Virus Res. 285:198021
    [Google Scholar]
  18. 18. 
    Coutard B, Valle C, de Lamballerie X, Canard B, Seidah NG, Decroly E 2020. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antivir. Res. 176:104742
    [Google Scholar]
  19. 19. 
    Dai W, Zhang B, Su H, Li J, Zhao Y et al. 2020. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science 368:1331–35
    [Google Scholar]
  20. 20. 
    De Sancho D, Perez-Jimenez R, Gavira JA 2020. Coarse-grained molecular simulations of the binding of the SARS-CoV 2 spike protein RBD to the ACE2 cell receptor. bioRxiv 083212. https://doi.org/10.1101/2020.05.07.083212
    [Crossref]
  21. 21. 
    Díaz J. 2020. SARS-CoV-2 molecular network structure. Front. Physiol.11:870
    [Google Scholar]
  22. 22. 
    Fischer S. 2017. Minibrain storm: Cerebral organoids aren't real brains? But they provide a powerful platform for modeling brain diseases like Zika infection, Alzheimer's, and even autism. IEEE Pulse 8:31–34
    [Google Scholar]
  23. 23. 
    Fischer WB, Hsu H-J. 2011. Viral channel forming proteins. modeling the target. Biochim. Biophys. Acta Biomembr. 1808:561–71
    [Google Scholar]
  24. 24. 
    Frick DN, Virdi RS, Vuksanovic N, Dahal N, Silvaggi NR 2020. Molecular basis for ADP-ribose binding to the Mac1 domain of SARS-CoV-2 nsp3. Biochemistry 59:2608–15
    [Google Scholar]
  25. 25. 
    Gao Q, Bao L, Mao H, Wang L, Xu K et al. 2020. Rapid development of an inactivated vaccine candidate for SARS-CoV-2. Science 369:77–81
    [Google Scholar]
  26. 26. 
    Gao Y, Yan L, Huang Y, Liu F, Zhao Y et al. 2020. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science 368:779–82
    [Google Scholar]
  27. 27. 
    Ghosh S, Dellibovi-Ragheb TA, Kerviel A, Pak E, Qui Q et al. 2020. Β-Coronaviruses use lysosomes for egress instead of the biosynthetic secretory pathway. Cell 183:1520–35
    [Google Scholar]
  28. 28. 
    Gonzalez JM, Gomez-Puertas P, Cavanagh D, Gorbalenya AE, Enjuanes L 2003. A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae. Arch. Virol. 148:2207–35
    [Google Scholar]
  29. 29. 
    Gordon CJ, Tchesnokov EP, Woolner E, Perry JK, Feng JY et al. 2020. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. J. Biol. Chem. 295:6785–97
    [Google Scholar]
  30. 30. 
    Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K et al. 2020. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 583:459–68
    [Google Scholar]
  31. 31. 
    Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ et al. 2020. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 382:1708–20
    [Google Scholar]
  32. 32. 
    Gwosch KC, Pape JK, Balzarotti F, Hoess P, Ellenberg J et al. 2020. MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells. Nat. Methods 17:217–24
    [Google Scholar]
  33. 33. 
    Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H 2004. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus: a first step in understanding SARS pathogenesis. J. Pathol. 203:631–37
    [Google Scholar]
  34. 34. 
    Harrison SC. 2015. Viral membrane fusion. Virology 479:–80498–507
    [Google Scholar]
  35. 35. 
    Helander HF, Fändriks L. 2014. Surface area of the digestive tract—revisited. Scand. J. Gastroenterol. 49:681–89
    [Google Scholar]
  36. 36. 
    Hikmet F, Méar L, Edvinsson Å, Micke P, Uhlén M, Lindskog C 2020. The protein expression profile of ACE2 in human tissues. Mol. Syst. Biol 16:e9610
    [Google Scholar]
  37. 37. 
    Hillen HS, Kokic G, Farnung L, Dienemann C, Tegunov D, Cramer P 2020. Structure of replicating SARS-CoV-2 polymerase. Nature 584:154–56
    [Google Scholar]
  38. 38. 
    Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T et al. 2020. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181:271–80.e8
    [Google Scholar]
  39. 39. 
    Hsieh C-L, Goldsmith JA, Schaub JM, DiVenere AM, Kuo H-C et al. 2020. Structure-based design of prefusion-stabilized SARS-CoV-2 spikes. Science 369:1501–5
    [Google Scholar]
  40. 40. 
    Hwang WC, Lin Y, Santelli E, Sui J, Jaroszewski L et al. 2006. Structural basis of neutralization by a human anti-severe acute respiratory syndrome spike protein antibody, 80R. J. Biol. Chem. 281:34610–16
    [Google Scholar]
  41. 41. 
    Imai Y, Kuba K, Rao S, Huan Y, Guo F et al. 2005. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 436:112–16
    [Google Scholar]
  42. 42. 
    Jackson LA, Anderson EJ, Rouphael NG, Roberts PC, Makhene M et al. 2020. An mRNA vaccine against SARS-CoV-2—preliminary report. N. Engl. J. Med. 383:192031
    [Google Scholar]
  43. 43. 
    Jia HP, Look DC, Shi L, Hickey M, Pewe L et al. 2005. ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J. Virol. 79:14614–21
    [Google Scholar]
  44. 44. 
    Jiang S, Hillyer C, Du L 2020. Neutralizing antibodies against SARS-CoV-2 and other human coronaviruses. Trends Immunol. 41:355–59
    [Google Scholar]
  45. 45. 
    Jiang Z, Jin X, Li Y, Liu S, Liu X-M et al. 2020. Genetically encoded tags for direct synthesis of EM-visible gold nanoparticles in cells. Nat. Methods 17:937–46
    [Google Scholar]
  46. 46. 
    Jin X, Lian JS, Hu JH, Gao J, Zheng L et al. 2020. Epidemiological, clinical and virological characteristics of 74 cases of coronavirus-infected disease 2019 (COVID-19) with gastrointestinal symptoms. Gut 69:1002–9
    [Google Scholar]
  47. 47. 
    Jin Z, Du X, Xu Y, Deng Y, Liu M et al. 2020. Structure of M(pro) from SARS-CoV-2 and discovery of its inhibitors. Nature 582:289–93
    [Google Scholar]
  48. 48. 
    Kalathiya U, Padariya M, Mayordomo M, Lisowska M, Nicholson J et al. 2020. Highly conserved homotrimer cavity formed by the SARS-CoV-2 spike glycoprotein: a novel binding site. J. Clin. Med. 9:1473
    [Google Scholar]
  49. 49. 
    Kawase M, Shirato K, van der Hoek L, Taguchi F, Matsuyama S 2012. Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry. J. Virol. 86:6537–45
    [Google Scholar]
  50. 50. 
    Ke Z, Oton J, Qu K, Cortese M, Zila V et al. 2020. Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Nature 588:498–502
    [Google Scholar]
  51. 51. 
    Kern DM, Sorum B, Hoel CM, Sridharan S, Remis JP et al. 2020. Cryo-EM structure of the SARS-CoV-2 3a ion channel in lipid nanodiscs. bioRxiv 156554. https://doi.org/10.1101/2020.06.17.156554
    [Crossref]
  52. 52. 
    Kim J, Koo B-K, Knoblich JA 2020. Human organoids: model systems for human biology and medicine. Nat. Rev. Mol. Cell Biol. 21:571–84
    [Google Scholar]
  53. 53. 
    Kim Y, Jedrzejczak R, Maltseva NI, Wilamowski M, Endres M et al. 2020. Crystal structure of Nsp15 endoribonuclease NendoU from SARS-CoV-2. Protein Sci. 29:1596–605
    [Google Scholar]
  54. 54. 
    Kimura H, Francisco D, Conway M, Martinez FD, Vercelli D et al. 2020. Type 2 inflammation modulates ACE2 and TMPRSS2 in airway epithelial cells. J. Allergy Clin. Immunol. 146:80–88.e8
    [Google Scholar]
  55. 55. 
    Kirchdoerfer RN, Cottrell CA, Wang N, Pallesen J, Yassine HM et al. 2016. Pre-fusion structure of a human coronavirus spike protein. Nature 531:118–21
    [Google Scholar]
  56. 56. 
    Kirchdoerfer RN, Wang N, Pallesen J, Wrapp D, Turner HL et al. 2018. Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis. Sci. Rep. 8:15701
    [Google Scholar]
  57. 57. 
    Klaips CL, Jayaraj GG, Hartl FU 2018. Pathways of cellular proteostasis in aging and disease. J. Cell Biol. 217:51–63
    [Google Scholar]
  58. 58. 
    Kounatidis I, Stanifer ML, Phillips MA, Paul-Gilloteaux P, Heiligenstein X et al. 2020. 3D correlative cryo-structured illumination fluorescence and soft X-ray microscopy elucidates reovirus intracellular release pathway. Cell 182:515–30.e17
    [Google Scholar]
  59. 59. 
    Krijnse-Locker J, Ericsson M, Rottier PJ, Griffiths G 1994. Characterization of the budding compartment of mouse hepatitis virus: evidence that transport from the RER to the Golgi complex requires only one vesicular transport step. J. Cell Biol. 124:55–70
    [Google Scholar]
  60. 60. 
    Kubo H, Yamada YK, Taguchi F 1994. Localization of neutralizing epitopes and the receptor-binding site within the amino-terminal 330 amino acids of the murine coronavirus spike protein. J. Virol. 68:5403–10
    [Google Scholar]
  61. 61. 
    Lai MM, Cavanagh D. 1997. The molecular biology of coronaviruses. Adv. Virus Res. 48:1–100
    [Google Scholar]
  62. 62. 
    Lamers MM, Beumer J, van der Vaart J, Knoops K, Puschhof J et al. 2020. SARS-CoV-2 productively infects human gut enterocytes. Science 369:50–54
    [Google Scholar]
  63. 63. 
    Lan J, Ge J, Yu J, Shan S, Zhou H et al. 2020. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581:215–20
    [Google Scholar]
  64. 64. 
    Lee CT, Bendriem RM, Wu WW, Shen RF 2017. 3D brain organoids derived from pluripotent stem cells: promising experimental models for brain development and neurodegenerative disorders. J. Biomed. Sci. 24:59
    [Google Scholar]
  65. 65. 
    Letko M, Miazgowicz K, McMinn R, Seifert SN, Sola I et al. 2018. Adaptive evolution of MERS-CoV to species variation in DPP4. Cell Rep. 24:1730–37
    [Google Scholar]
  66. 66. 
    Li F. 2013. Receptor recognition and cross-species infections of SARS coronavirus. Antiv. Res. 100:246–54
    [Google Scholar]
  67. 67. 
    Li F. 2016. Structure, function, and evolution of coronavirus spike proteins. Annu. Rev. Virol. 3:237–61
    [Google Scholar]
  68. 68. 
    Li F, Berardi M, Li W, Farzan M, Dormitzer PR, Harrison SC 2006. Conformational states of the severe acute respiratory syndrome coronavirus spike protein ectodomain. J. Virol. 80:6794–800
    [Google Scholar]
  69. 69. 
    Li F, Li W, Farzan M, Harrison SC 2005. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science 309:1864–68
    [Google Scholar]
  70. 70. 
    Li W, Hulswit RJG, Kenney SP, Widjaja I, Jung K et al. 2018. Broad receptor engagement of an emerging global coronavirus may potentiate its diverse cross-species transmissibility. 115E5135–43
  71. 71. 
    Li W, Hulswit RJG, Widjaja I, Raj VS, McBride R et al. 2017. Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein. PNAS 114:E8508–17
    [Google Scholar]
  72. 72. 
    Li W, Moore MJ, Vasilieva N, Sui J, Wong SK et al. 2003. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426:450–54
    [Google Scholar]
  73. 73. 
    Li X, Giorgi EE, Marichannegowda MH, Foley B, Xiao C et al. 2020. Emergence of SARS-CoV-2 through recombination and strong purifying selection. Sci. Adv. 6:eabb9153
    [Google Scholar]
  74. 74. 
    Liao Y, Tam JP, Liu DX 2006. Viroporin activity of SARS-CoV E protein. Adv. Exp. Med. Biol. 581:199–202
    [Google Scholar]
  75. 75. 
    Lu G, Hu Y, Wang Q, Qi J, Gao F et al. 2013. Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26. Nature 500:227–31
    [Google Scholar]
  76. 76. 
    Lu W, Zheng BJ, Xu K, Schwarz W, Du L et al. 2006. Severe acute respiratory syndrome-associated coronavirus 3a protein forms an ion channel and modulates virus release. PNAS 103:12540–45
    [Google Scholar]
  77. 77. 
    Lv Z, Deng Y-Q, Ye Q, Cao L, Sun C-Y et al. 2020. Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a potent therapeutic antibody. Science 369:1505–9
    [Google Scholar]
  78. 78. 
    Macneughton MR, Davies HA. 1978. Ribonucleoprotein-like structures from coronavirus particles. J. Gen. Virol. 39:545–49
    [Google Scholar]
  79. 79. 
    Mahecic D, Testa I, Griffie J, Manley S 2019. Strategies for increasing the throughput of super-resolution microscopies. Curr. Opin. Chem. Biol. 51:84–91
    [Google Scholar]
  80. 80. 
    Mandala VS, McKay MJ, Shcherbakov AA, Dregni AJ, Kolokouris A, Hong M 2020. Structure and drug binding of the SARS-CoV-2 envelope protein in phospholipid bilayers. Nat. Struct. Mol. Biol. 27:12028
    [Google Scholar]
  81. 81. 
    Mathew D, Giles JR, Baxter AE, Oldridge DA, Greenplate AR et al. 2020. Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science 369:eabc8511
    [Google Scholar]
  82. 82. 
    Matsuyama S, Nagata N, Shirato K, Kawase M, Takeda M, Taguchi F 2010. Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. J. Virol. 84:12658–64
    [Google Scholar]
  83. 83. 
    Matsuyama S, Nao N, Shirato K, Kawase M, Saito S et al. 2020. Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. PNAS 117:7001–3
    [Google Scholar]
  84. 84. 
    McCallum M, Walls A, Bowen JE, Corti D, Veesler D 2020. Structure-guided covalent stabilization of coronavirus spike glycoprotein trimers in the closed conformation. Nat. Struct. Mol. Biol 27:942–49
    [Google Scholar]
  85. 85. 
    McCauley HA, Wells JM. 2017. Pluripotent stem cell-derived organoids: using principles of developmental biology to grow human tissues in a dish. Development 144:958–62
    [Google Scholar]
  86. 86. 
    Mehdipour AR, Hummer G. 2020. Dual nature of human ACE2 glycosylation in binding to SARS-CoV-2 spike. bioRxiv 193680. https://doi.org/10.1101/2020.07.09.193680
    [Crossref]
  87. 87. 
    Michalska K, Kim Y, Jedrzejczak R, Maltseva NI, Stols L et al. 2020. Crystal structures of SARS-CoV-2 ADP-ribose phosphatase: from the apo form to ligand complexes. IUCrJ7:814–24
    [Google Scholar]
  88. 88. 
    Millet JK, Whittaker GR. 2015. Host cell proteases: critical determinants of coronavirus tropism and pathogenesis. Virus Res. 202:120–34
    [Google Scholar]
  89. 89. 
    Mortola E, Roy P. 2004. Efficient assembly and release of SARS coronavirus-like particles by a heterologous expression system. FEBS Lett. 576:174–78
    [Google Scholar]
  90. 90. 
    Nakane T, Kotecha A, Sente A, McMullan G, Masiulis S et al. 2020. Single-particle cryo-EM at atomic resolution. Nature 58715256
  91. 91. 
    Natesh R, Schwager SLU, Sturrock ED, Acharya KR 2003. Crystal structure of the human angiotensin-converting enzyme-lisinopril complex. Nature 421:551–54
    [Google Scholar]
  92. 92. 
    Neuman BW, Adair BD, Yoshioka C, Quispe JD, Orca G et al. 2006. Supramolecular architecture of severe acute respiratory syndrome coronavirus revealed by electron cryomicroscopy. J. Virol. 80:7918–28
    [Google Scholar]
  93. 93. 
    Neuman BW, Buchmeier MJ. 2016. Supramolecular architecture of the coronavirus particle. Adv. Virus Res. 96:1–27
    [Google Scholar]
  94. 94. 
    Neuman BW, Kiss G, Kunding AH, Bhella D, Baksh MF et al. 2011. A structural analysis of M protein in coronavirus assembly and morphology. J. Struct. Biol. 174:11–22
    [Google Scholar]
  95. 95. 
    Ou X, Liu Y, Lei X, Li P, Mi D et al. 2020. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat. Commun. 11:1620
    [Google Scholar]
  96. 96. 
    Panda PK, Arul MN, Patel P, Verma SK, Luo W et al. 2020. Structure-based drug designing and immunoinformatics approach for SARS-CoV-2. Sci. Adv. 6:eabb8097
    [Google Scholar]
  97. 97. 
    Park YJ, Walls AC, Wang Z, Sauer MM, Li W et al. 2019. Structures of MERS-CoV spike glycoprotein in complex with sialoside attachment receptors. Nat. Struct. Mol. Biol. 26:1151–57
    [Google Scholar]
  98. 98. 
    Patel AB, Verma A. 2020. Nasal ACE2 levels and COVID-19 in children. JAMA 323:2386–87
    [Google Scholar]
  99. 99. 
    Pereiro E. 2019. Correlative cryo-soft X-ray tomography of cells. Biophys. Rev. 11:529–30
    [Google Scholar]
  100. 100. 
    Porotto M, Ferren M, Chen YW, Siu Y, Makhsous N et al. 2019. Authentic modeling of human respiratory virus infection in human pluripotent stem cell-derived lung organoids. mBio 10:3e00723–19
    [Google Scholar]
  101. 101. 
    Prabakaran P, Gan J, Feng Y, Zhu Z, Choudhry V et al. 2006. Structure of severe acute respiratory syndrome coronavirus receptor-binding domain complexed with neutralizing antibody. J. Biol. Chem. 281:15829–36
    [Google Scholar]
  102. 102. 
    Prabakaran P, Xiao X, Dimitrov DS 2004. A model of the ACE2 structure and function as a SARS-CoV receptor. Biochem. Biophys. Res. Commun. 314:235–41
    [Google Scholar]
  103. 103. 
    Qian X, Jacob F, Song MM, Nguyen HN, Song H, Ming GL 2018. Generation of human brain region-specific organoids using a miniaturized spinning bioreactor. Nat. Protoc. 13:565–80
    [Google Scholar]
  104. 104. 
    Qian X, Nguyen HN, Song MM, Hadiono C, Ogden SC et al. 2016. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165:1238–54
    [Google Scholar]
  105. 105. 
    Qian Z, Dominguez SR, Holmes KV 2013. Role of the spike glycoprotein of human Middle East respiratory syndrome coronavirus (MERS-CoV) in virus entry and syncytia formation. PLOS ONE 8:e76469
    [Google Scholar]
  106. 106. 
    Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T et al. 2020. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA 323:2052–59
    [Google Scholar]
  107. 107. 
    Rosenthal PB, Henderson R. 2003. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333:721–45
    [Google Scholar]
  108. 108. 
    Sahl SJ, Hell SW, Jakobs S 2017. Fluorescence nanoscopy in cell biology. Nat. Rev. Mol. Cell Biol. 18:685–701
    [Google Scholar]
  109. 109. 
    Scheller C, Krebs F, Minkner R, Astner I, Gil-Moles M, Wätzig H 2020. Physicochemical properties of SARS-CoV-2 for drug targeting, virus inactivation and attenuation, vaccine formulation and quality control. Electrophoresis 41:1137–51
    [Google Scholar]
  110. 110. 
    Shang J, Wan Y, Luo C, Ye G, Geng Q et al. 2020. Cell entry mechanisms of SARS-CoV-2. PNAS 117:11727–34
    [Google Scholar]
  111. 111. 
    Shang J, Ye G, Shi K, Wan Y, Luo C et al. 2020. Structural basis of receptor recognition by SARS-CoV-2. Nature 581:221–24
    [Google Scholar]
  112. 112. 
    Shirato K, Kawase M, Matsuyama S 2013. Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2. J. Virol. 87:12552–61
    [Google Scholar]
  113. 113. 
    Shrock E, Fujimura E, Kula T, Timms RT, Lee I-H et al. 2020. Viral epitope profiling of COVID-19 patients reveals cross-reactivity and correlates of severity. Science 370:6520eabd4250
    [Google Scholar]
  114. 114. 
    Sisay M. 2020. 3CL(pro) inhibitors as a potential therapeutic option for COVID-19: available evidence and ongoing clinical trials. Pharmacol. Res. 156:104779
    [Google Scholar]
  115. 115. 
    Snijder EJ, Limpens R, de Wilde AH, de Jong AWM, Zevenhoven-Dobbe JC et al. 2020. A unifying structural and functional model of the coronavirus replication organelle: tracking down RNA synthesis. PLOS Biol. 18:e3000715
    [Google Scholar]
  116. 116. 
    Sok D, Pauthner M, Briney B, Lee JH, Saye-Francisco KL et al. 2016. A prominent site of antibody vulnerability on HIV envelope incorporates a motif associated with CCR5 binding and its camouflaging glycans. Immunity 45:31–45
    [Google Scholar]
  117. 117. 
    Song E, Zhang C, Israelow B, Lu P, Weizman O-E et al. 2020. Neuroinvasive potential of SARS-CoV-2 revealed in a human brain organoid model. bioRxiv 169946. https://doi.org/10.1101/2020.06.25.169946
    [Crossref]
  118. 118. 
    Song W, Gui M, Wang X, Xiang Y 2018. Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLOS Pathog. 14:e1007236
    [Google Scholar]
  119. 119. 
    Sørensen B, Susrud A, Dalgleish AG 2020. Biovacc-19: a candidate vaccine for Covid-19 (SARS-CoV-2) developed from analysis of its general method of action for infectivity. QRB Discov. 1:e6
    [Google Scholar]
  120. 120. 
    Stoermer M. 2020. Homology models of the papain-like protease PLpro from coronavirus 2019-nCoV. chemRxiv. https://chemrxiv.org/articles/Homology_Models_of_the_Papain-Like_Protease_PLpro_from_Coronavirus_2019-nCoV/11799705
  121. 121. 
    Struck A-W, Axmann M, Pfefferle S, Drosten C, Meyer B 2012. A hexapeptide of the receptor-binding domain of SARS corona virus spike protein blocks viral entry into host cells via the human receptor ACE2. Antivir. Res. 94:288–96
    [Google Scholar]
  122. 122. 
    Su S, Wong G, Shi W, Liu J, Lai ACK et al. 2016. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol. 24:490–502
    [Google Scholar]
  123. 123. 
    Sun Z, Brodsky JL. 2019. Protein quality control in the secretory pathway. J. Cell Biol. 218:3171–87
    [Google Scholar]
  124. 124. 
    Supekar VM, Bruckmann C, Ingallinella P, Bianchi E, Pessi A, Carfí A 2004. Structure of a proteolytically resistant core from the severe acute respiratory syndrome coronavirus S2 fusion protein. PNAS 101:17958–63
    [Google Scholar]
  125. 125. 
    Surya W, Li Y, Torres J 2018. Structural model of the SARS coronavirus E channel in LMPG micelles. Biochim. Biophys. Acta Biomembr. 1860:1309–17
    [Google Scholar]
  126. 126. 
    Taguchi F, Hirai-Yuki A. 2012. Mouse hepatitis virus receptor as a determinant of the mouse susceptibility to MHV infection. Front. Microbiol. 3:68
    [Google Scholar]
  127. 127. 
    Tang T, Bidon M, Jaimes JA, Whittaker GR, Daniel S 2020. Coronavirus membrane fusion mechanism offers a potential target for antiviral development. Antivir. Res. 178:104792
    [Google Scholar]
  128. 128. 
    Tchesnokov EP, Feng JY, Porter DP, Götte M 2019. Mechanism of inhibition of Ebola virus RNA-dependent RNA polymerase by remdesivir. Viruses 11:326
    [Google Scholar]
  129. 129. 
    ter Meulen J, van den Brink EN, Poon LL, Marissen WE, Leung CS et al. 2006. Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants. PLOS Med. 3:e237
    [Google Scholar]
  130. 130. 
    Tilocca B, Soggiu A, Sanguinetti M, Babini G, De Maio F et al. 2020. Immunoinformatic analysis of the SARS-CoV-2 envelope protein as a strategy to assess cross-protection against COVID-19. Microbes Infect. 22:182–87
    [Google Scholar]
  131. 131. 
    To J, Surya W, Torres J 2016. Targeting the channel activity of viroporins. Adv. Protein Chem. Struct. Biol. 104307–55
    [Google Scholar]
  132. 132. 
    Toelzer C, Gupta K, Yadav SKN, Borucu U, Davidson AD et al. 2020. Free fatty acid binding pocket in the locked structure of SARS-CoV-2 spike protein. Science 370:72530
    [Google Scholar]
  133. 133. 
    Tortorici MA, Veesler D. 2019. Structural insights into coronavirus entry. Adv. Virus Res. 105:93–116
    [Google Scholar]
  134. 134. 
    Towler P, Staker B, Prasad SG, Menon S, Tang J et al. 2004. ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis. J. Biol. Chem. 279:17996–8007
    [Google Scholar]
  135. 135. 
    Varsano N, Dadosh T, Kapishnikov S, Pereiro E, Shimoni E et al. 2016. Development of correlative cryo-soft X-ray tomography and stochastic reconstruction microscopy: a study of cholesterol crystal early formation in cells. J. Am. Chem. Soc. 138:14931–40
    [Google Scholar]
  136. 136. 
    Venkatagopalan P, Daskalova SM, Lopez LA, Dolezal KA, Hogue BG 2015. Coronavirus envelope (E) protein remains at the site of assembly. Virology 478:75–85
    [Google Scholar]
  137. 137. 
    Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D 2020. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181:281–92
    [Google Scholar]
  138. 138. 
    Walls AC, Xiong X, Park YJ, Tortorici MA, Snijder J et al. 2019. Unexpected receptor functional mimicry elucidates activation of coronavirus fusion. Cell 176:1026–39.e15
    [Google Scholar]
  139. 139. 
    Wan Y, Shang J, Graham R, Baric RS, Li F 2020. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J. Virol. 94:e00127–20
    [Google Scholar]
  140. 140. 
    Wang C, Li W, Drabek D, Okba NMA, van Haperen R et al. 2020. A human monoclonal antibody blocking SARS-CoV-2 infection. Nat. Commun. 11:2251
    [Google Scholar]
  141. 141. 
    Wang K, Chen W, Zhou Y-S, Lian J-Q, Zhang Z et al. 2020. SARS-CoV-2 invades host cells via a novel route: CD147-spike protein. Signal Transduct. Target. Ther 5283
  142. 142. 
    Wang Q, Wu J, Wang H, Gao Y, Liu Q et al. 2020. Structural basis for RNA replication by the SARS-CoV-2 polymerase. Cell 182:417–28.e13
    [Google Scholar]
  143. 143. 
    Wang Q, Zhang Y, Wu L, Niu S, Song C et al. 2020. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell 181:894–904.e9
    [Google Scholar]
  144. 144. 
    Deleted in proof
  145. 145. 
    Watanabe Y, Allen JD, Wrapp D, McLellan JS, Crispin M 2020. Site-specific glycan analysis of the SARS-CoV-2 spike. Science 369:330–33
    [Google Scholar]
  146. 146. 
    Wells SA. 2020. Rigidity, normal modes and flexible motion of a SARS-CoV-2 (COVID-19) protease structure. bioRxiv 986190. https://doi.org/10.1101/2020.03.10.986190
    [Crossref]
  147. 147. 
    Wiener RS, Cao YX, Hinds A, Ramirez MI, Williams MC 2007. Angiotensin converting enzyme 2 is primarily epithelial and is developmentally regulated in the mouse lung. J. Cell Biochem. 101:1278–91
    [Google Scholar]
  148. 148. 
    Wolff G, Limpens RWAL, Zevenhoven-Dobbe JC, Laugks U, Zheng S et al. 2020. A molecular pore spans the double membrane of the coronavirus replication organelle. Science 369:1395–98
    [Google Scholar]
  149. 149. 
    Wong SK, Li W, Moore MJ, Choe H, Farzan M 2004. A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. J. Biol. Chem. 279:3197–201
    [Google Scholar]
  150. 150. 
    Woo PCY, Lau SKP, Lam CSF, Tsang AKL, Hui S-W et al. 2014. Discovery of a novel bottlenose dolphin coronavirus reveals a distinct species of marine mammal coronavirus in gammacoronavirus. J. Virol. 88:1318–31
    [Google Scholar]
  151. 151. 
    Wrapp D, McLellan JS. 2020. The 3.1-Angstrom cryo-electron microscopy structure of the porcine epidemic diarrhea virus spike protein in the prefusion conformation. J. Virol.93:e00923–19
    [Google Scholar]
  152. 152. 
    Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL et al. 2020. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367:1260–63
    [Google Scholar]
  153. 153. 
    Wu K, Li W, Peng G, Li F 2009. Crystal structure of NL63 respiratory coronavirus receptor-binding domain complexed with its human receptor. PNAS 106:19970–74
    [Google Scholar]
  154. 154. 
    Wu Y, Wang F, Shen C, Peng W, Li D et al. 2020. A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2. Science 368:1274–78
    [Google Scholar]
  155. 155. 
    Xiong X, Qu K, Ciazynska KA, Hosmillo M, Carter AP et al. 2020. A thermostable, closed SARS-CoV-2 spike protein trimer. Nat. Struct. Mol. Biol. 27:934–41
    [Google Scholar]
  156. 156. 
    Xu H, Zhong L, Deng J, Peng J, Dan H et al. 2020. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int. J. Oral Sci. 12:8
    [Google Scholar]
  157. 157. 
    Xue X, Yu H, Yang H, Xue F, Wu Z et al. 2008. Structures of two coronavirus main proteases: implications for substrate binding and antiviral drug design. J. Virol. 82:2515–27
    [Google Scholar]
  158. 158. 
    Yan B, Chu H, Yang D, Sze KH, Lai PM et al. 2019. Characterization of the lipidomic profile of human coronavirus-infected cells: implications for lipid metabolism remodeling upon coronavirus replication. Viruses11:73
    [Google Scholar]
  159. 159. 
    Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q 2020. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 367:1444–48
    [Google Scholar]
  160. 160. 
    Ye Y, Hogue BG. 2007. Role of the coronavirus E viroporin protein transmembrane domain in virus assembly. J. Virol. 81:3597–607
    [Google Scholar]
  161. 161. 
    Yin W, Mao C, Luan X, Shen D-D, Shen Q et al. 2020. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science 368:1499–504
    [Google Scholar]
  162. 162. 
    Yip KM, Fischer N, Paknia E, Chari A, Stark H 2020. Atomic resolution protein structure determination by cryo-EM. Nature. 587783215761
  163. 163. 
    Yu J, Qiao S, Guo R, Wang X 2020. Cryo-EM structures of HKU2 and SADS-CoV spike glycoproteins provide insights into coronavirus evolution. Nat. Commun. 11:3070
    [Google Scholar]
  164. 164. 
    Yuan M, Wu NC, Zhu X, Lee CD, So RTY et al. 2020. A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV. Science 368:630–33
    [Google Scholar]
  165. 165. 
    Yuan Y, Cao D, Zhang Y, Ma J, Qi J et al. 2017. Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains. Nat. Commun. 8:15092
    [Google Scholar]
  166. 166. 
    Zhang L, Lin D, Sun X, Curth U, Drosten C et al. 2020. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science 368:409–12
    [Google Scholar]
  167. 167. 
    Zhang P. 2019. Advances in cryo-electron tomography and subtomogram averaging and classification. Curr. Opin. Struct. Biol. 58:249–58
    [Google Scholar]
  168. 168. 
    Zhang R, Wang K, Lv W, Yu W, Xie S et al. 2014. The ORF4a protein of human coronavirus 229E functions as a viroporin that regulates viral production. Biochim. Biophys. Acta Biomembr. 1838:1088–95
    [Google Scholar]
  169. 169. 
    Zhang Y, Kutaleladze TG 2020. Molecular structure analyses suggest strategies to therapeutically target SARS-CoV-2. Nat. Commun. 11:2920
    [Google Scholar]
  170. 170. 
    Zhou H, Liu LP, Fang M, Li YM, Zheng YW 2020. A potential ex vivo infection model of human induced pluripotent stem cell-3D organoids beyond coronavirus disease 2019. Histol. Histopathol. 35:10107782
    [Google Scholar]
  171. 171. 
    Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L et al. 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579:270–73
    [Google Scholar]
  172. 172. 
    Zhou T, Tsybovsky Y, Gorman J, Rapp M, Cerutti Get al 2020. Cryo-EM structures of SARS-CoV-2 spike without and with ACE2 reveal a pH-dependent switch to mediate endosomal positioning of receptor-binding domains. Cell Host Microbe 2886779.e5
  173. 173. 
    Zhou Y, Vedantham P, Lu K, Agudelo J, Carrion R Jr. et al. 2015. Protease inhibitors targeting coronavirus and filovirus entry. Antivir. Res. 116:76–84
    [Google Scholar]
  174. 174. 
    Zhou Y, Yang Y, Huang J, Jiang S, Du L 2019. Advances in MERS-CoV vaccines and therapeutics based on the receptor-binding domain. Viruses11:60
    [Google Scholar]
  175. 175. 
    Ziebuhr J, Siddell SG. 1999. Processing of the human coronavirus 229E replicase polyproteins by the virus-encoded 3C-like proteinase: identification of proteolytic products and cleavage sites common to pp1a and pp1ab. J. Virol. 73:177–85
    [Google Scholar]
  176. 176. 
    Ziegler CGK, Allon SJ, Nyquist SK, Mbano IM, Miao VN et al. 2020. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell 181:1016–35.e19
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-102620-080956
Loading
/content/journals/10.1146/annurev-biophys-102620-080956
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error