1932

Abstract

Abstract

The fundamental process of adaptive immunity relies on the differentiation of self from nonself. Nucleated cells are continuously monitored by effector cells of the immune system, which police the peptide status presented via cell surface molecules. Recent integrative structural approaches have provided insights toward our understanding of how sophisticated cellular machineries shape such hierarchical immune surveillance. Biophysical and structural achievements were invaluable for defining the interconnection of many key factors during antigen processing and presentation, and helped to solve several conundrums that persisted for many years. In this review, we illuminate the numerous quality control machineries involved in different steps during the maturation of major histocompatibility complex class I (MHC I) proteins, from their synthesis in the endoplasmic reticulum to folding and trafficking via the secretory pathway, optimization of antigenic cargo, final release to the cell surface, and engagement with their cognate receptors on cytotoxic T lymphocytes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-121219-081643
2020-05-06
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/biophys/49/1/annurev-biophys-121219-081643.html?itemId=/content/journals/10.1146/annurev-biophys-121219-081643&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Abe F, Van Prooyen N, Ladasky JJ, Edidin M 2009. Interaction of Bap31 and MHC class I molecules and their traffic out of the endoplasmic reticulum. J. Immunol. 182:4776–83
    [Google Scholar]
  2. 2. 
    Ahn K, Gruhler A, Galocha B, Jones TR, Wiertz EJ et al. 1997. The ER-luminal domain of the HCMV glycoprotein US6 inhibits peptide translocation by TAP. Immunity 6:613–21
    [Google Scholar]
  3. 3. 
    Ahn K, Meyer TH, Uebel S, Sempe P, Djaballah H et al. 1996. Molecular mechanism and species specificity of TAP inhibition by herpes simplex virus ICP47. EMBO J 15:3247–55
    [Google Scholar]
  4. 4. 
    Aisenbrey C, Sizun C, Koch J, Herget M, Abele R et al. 2006. Structure and dynamics of membrane-associated ICP47, a viral inhibitor of the MHC I antigen-processing machinery. J. Biol. Chem. 281:30365–72
    [Google Scholar]
  5. 5. 
    Alzhanova D, Edwards DM, Hammarlund E, Scholz IG, Horst D et al. 2009. Cowpox virus inhibits the transporter associated with antigen processing to evade T cell recognition. Cell Host Microbe 6:433–45
    [Google Scholar]
  6. 6. 
    Androlewicz MJ, Cresswell P. 1994. Human transporters associated with antigen processing possess a promiscuous peptide-binding site. Immunity 1:7–14
    [Google Scholar]
  7. 7. 
    Armstrong KM, Insaidoo FK, Baker BM 2008. Thermodynamics of T-cell receptor-peptide/MHC interactions: progress and opportunities. J. Mol. Recognit. 21:275–87
    [Google Scholar]
  8. 8. 
    Armstrong KM, Piepenbrink KH, Baker BM 2008. Conformational changes and flexibility in T-cell receptor recognition of peptide–MHC complexes. Biochem. J. 415:183–96
    [Google Scholar]
  9. 9. 
    Arshad N, Cresswell P. 2018. Tumor-associated calreticulin variants functionally compromise the peptide loading complex and impair its recruitment of MHC-I. J. Biol. Chem. 293:9555–69
    [Google Scholar]
  10. 10. 
    Ayres CM, Abualrous ET, Bailey A, Abraham C, Hellman LM et al. 2019. Dynamically driven allostery in MHC proteins: peptide-dependent tuning of class I MHC global flexibility. Front. Immunol. 10:966
    [Google Scholar]
  11. 11. 
    Ayres CM, Corcelli SA, Baker BM 2017. Peptide and peptide-dependent motions in MHC proteins: immunological implications and biophysical underpinnings. Front. Immunol. 8:935
    [Google Scholar]
  12. 12. 
    Bai L, Wang T, Zhao G, Kovach A, Li H 2018. The atomic structure of a eukaryotic oligosaccharyltransferase complex. Nature 555:328–33
    [Google Scholar]
  13. 13. 
    Bailey A, Dalchau N, Carter R, Emmott S, Phillips A et al. 2015. Selector function of MHC I molecules is determined by protein plasticity. Sci. Rep. 5:14928
    [Google Scholar]
  14. 14. 
    Baldauf C, Schrodt S, Herget M, Koch J, Tampé R 2010. Single residue within the antigen translocation complex TAP controls the epitope repertoire by stabilizing a receptive conformation. PNAS 107:9135–40
    [Google Scholar]
  15. 15. 
    Bard JAM, Goodall EA, Greene ER, Jonsson E, Dong KC, Martin A 2018. Structure and function of the 26S proteasome. Annu. Rev. Biochem. 87:697–724
    [Google Scholar]
  16. 16. 
    Barlowe C, Helenius A. 2016. Cargo capture and bulk flow in the early secretory pathway. Annu. Rev. Cell Dev. Biol. 32:197–222
    [Google Scholar]
  17. 17. 
    Beerbaum M, Ballaschk M, Erdmann N, Schnick C, Diehl A et al. 2013. NMR spectroscopy reveals unexpected structural variation at the protein-protein interface in MHC class I molecules. J. Biomol. NMR 57:167–78
    [Google Scholar]
  18. 18. 
    Beinert D, Neumann L, Uebel S, Tampé R 1997. Structure of the viral TAP-inhibitor ICP47 induced by membrane association. Biochemistry 36:4694–700
    [Google Scholar]
  19. 19. 
    Blees A, Januliene D, Hofmann T, Koller N, Schmidt C et al. 2017. Structure of the human MHC-I peptide-loading complex. Nature 551:525–28
    [Google Scholar]
  20. 20. 
    Blees A, Reichel K, Trowitzsch S, Fisette O, Bock C et al. 2015. Assembly of the MHC I peptide-loading complex determined by a conserved ionic lock-switch. Sci. Rep. 5:17341
    [Google Scholar]
  21. 21. 
    Blum JS, Wearsch PA, Cresswell P 2013. Pathways of antigen processing. Annu. Rev. Immunol. 31:443–73
    [Google Scholar]
  22. 22. 
    Borbulevych OY, Insaidoo FK, Baxter TK, Powell DJ Jr., Johnson LA et al. 2007. Structures of MART-126/27-35 peptide/HLA-A2 complexes reveal a remarkable disconnect between antigen structural homology and T cell recognition. J. Mol. Biol. 372:1123–36
    [Google Scholar]
  23. 23. 
    Borbulevych OY, Piepenbrink KH, Baker BM 2011. Conformational melding permits a conserved binding geometry in TCR recognition of foreign and self molecular mimics. J. Immunol. 186:2950–58
    [Google Scholar]
  24. 24. 
    Boyle LH, Hermann C, Boname JM, Porter KM, Patel PA et al. 2013. Tapasin-related protein TAPBPR is an additional component of the MHC class I presentation pathway. PNAS 110:3465–70
    [Google Scholar]
  25. 25. 
    Bräuer P, Parker JL, Gerondopoulos A, Zimmermann I, Seeger MA et al. 2019. Structural basis for pH-dependent retrieval of ER proteins from the Golgi by the KDEL receptor. Science 363:1103–7
    [Google Scholar]
  26. 26. 
    Byun M, Verweij MC, Pickup DJ, Wiertz EJ, Hansen TH, Yokoyama WM 2009. Two mechanistically distinct immune evasion proteins of cowpox virus combine to avoid antiviral CD8 T cells. Cell Host Microbe 6:422–32
    [Google Scholar]
  27. 27. 
    Campbell JL, Schekman R. 1997. Selective packaging of cargo molecules into endoplasmic reticulum-derived COPII vesicles. PNAS 94:837–42
    [Google Scholar]
  28. 28. 
    Cascio P, Hilton C, Kisselev AF, Rock KL, Goldberg AL 2001. 26S proteasomes and immunoproteasomes produce mainly N-extended versions of an antigenic peptide. EMBO J 20:2357–66
    [Google Scholar]
  29. 29. 
    Chang SC, Momburg F, Bhutani N, Goldberg AL 2005. The ER aminopeptidase, ERAP1, trims precursors to lengths of MHC class I peptides by a “molecular ruler” mechanism. PNAS 102:17107–12
    [Google Scholar]
  30. 30. 
    Chapman DC, Williams DB. 2010. ER quality control in the biogenesis of MHC class I molecules. Semin. Cell Dev. Biol. 21:512–19
    [Google Scholar]
  31. 31. 
    Chen H, Li L, Weimershaus M, Evnouchidou I, van Endert P, Bouvier M 2016. ERAP1-ERAP2 dimers trim MHC 1-bound precursor peptides: implications for understanding peptide editing. Sci. Rep. 6:28902
    [Google Scholar]
  32. 32. 
    Collins EJ, Garboczi DN, Wiley DC 1994. Three-dimensional structure of a peptide extending from one end of a class I MHC binding site. Nature 371:626–29
    [Google Scholar]
  33. 33. 
    Croft NP, Shannon-Lowe C, Bell AI, Horst D, Kremmer E et al. 2009. Stage-specific inhibition of MHC class I presentation by the Epstein-Barr virus BNLF2a protein during virus lytic cycle. PLOS Pathog 5:e1000490
    [Google Scholar]
  34. 34. 
    Crotzer VL, Blum JS. 2009. Autophagy and its role in MHC-mediated antigen presentation. J. Immunol. 182:3335–41
    [Google Scholar]
  35. 35. 
    Dancourt J, Barlowe C. 2010. Protein sorting receptors in the early secretory pathway. Annu. Rev. Biochem. 79:777–802
    [Google Scholar]
  36. 36. 
    Del Cid N, Jeffery E, Rizvi SM, Stamper E, Peters LR et al. 2010. Modes of calreticulin recruitment to the major histocompatibility complex class I assembly pathway. J. Biol. Chem. 285:4520–35
    [Google Scholar]
  37. 37. 
    Dolan BP, Li L, Veltri CA, Ireland CM, Bennink JR, Yewdell JW 2011. Distinct pathways generate peptides from defective ribosomal products for CD8+ T cell immunosurveillance. J. Immunol. 186:2065–72
    [Google Scholar]
  38. 38. 
    Dong G, Wearsch PA, Peaper DR, Cresswell P, Reinisch KM 2009. Insights into MHC class I peptide loading from the structure of the tapasin-ERp57 thiol oxidoreductase heterodimer. Immunity 30:21–32
    [Google Scholar]
  39. 39. 
    Dugan GE, Hewitt EW. 2008. Structural and functional dissection of the human cytomegalovirus immune evasion protein US6. J. Virol. 82:3271–82
    [Google Scholar]
  40. 40. 
    Ellgaard L, Helenius A. 2003. Quality control in the endoplasmic reticulum. Nat. Rev. Mol. Cell Biol. 4:181–91
    [Google Scholar]
  41. 41. 
    Elliott T, van Hateren A 2018. Protein plasticity and peptide editing in the MHC I antigen processing pathway. Biochemistry 57:1423–25
    [Google Scholar]
  42. 42. 
    Evnouchidou I, van Endert P 2019. Peptide trimming by endoplasmic reticulum aminopeptidases: role of MHC class I binding and ERAP dimerization. Hum. Immunol. 80:290–95
    [Google Scholar]
  43. 43. 
    Fleischmann G, Fisette O, Thomas C, Wieneke R, Tumulka F et al. 2015. Mechanistic basis for epitope proofreading in the peptide-loading complex. J. Immunol. 195:4503–13
    [Google Scholar]
  44. 44. 
    Frickel EM, Frei P, Bouvier M, Stafford WF, Helenius A et al. 2004. ERp57 is a multifunctional thiol-disulfide oxidoreductase. J. Biol. Chem. 279:18277–87
    [Google Scholar]
  45. 45. 
    Frickel EM, Riek R, Jelesarov I, Helenius A, Wüthrich K, Ellgaard L 2002. TROSY-NMR reveals interaction between ERp57 and the tip of the calreticulin P-domain. PNAS 99:1954–59
    [Google Scholar]
  46. 46. 
    Fritzsche S, Abualrous ET, Borchert B, Momburg F, Springer S 2015. Release from endoplasmic reticulum matrix proteins controls cell surface transport of MHC class I molecules. Traffic 16:591–603
    [Google Scholar]
  47. 47. 
    Fruci D, Ferracuti S, Limongi MZ, Cunsolo V, Giorda E et al. 2006. Expression of endoplasmic reticulum aminopeptidases in EBV-B cell lines from healthy donors and in leukemia/lymphoma, carcinoma, and melanoma cell lines. J. Immunol. 176:4869–79
    [Google Scholar]
  48. 48. 
    Früh K, Ahn K, Djaballah H, Sempé P, van Endert PM et al. 1995. A viral inhibitor of peptide transporters for antigen presentation. Nature 375:415–18
    [Google Scholar]
  49. 49. 
    Gagnon SJ, Borbulevych OY, Davis-Harrison RL, Turner RV, Damirjian M et al. 2006. T cell receptor recognition via cooperative conformational plasticity. J. Mol. Biol. 363:228–43
    [Google Scholar]
  50. 50. 
    Galocha B, Hill A, Barnett BC, Dolan A, Raimondi A et al. 1997. The active site of ICP47, a herpes simplex virus-encoded inhibitor of the major histocompatibility complex (MHC)-encoded peptide transporter associated with antigen processing (TAP), maps to the NH2-terminal 35 residues. J. Exp. Med. 185:1565–72
    [Google Scholar]
  51. 51. 
    Garboczi DN, Ghosh P, Utz U, Fan QR, Biddison WE, Wiley DC 1996. Structure of the complex between human T-cell receptor, viral peptide and HLA-A2. Nature 384:134–41
    [Google Scholar]
  52. 52. 
    Garcia KC, Degano M, Stanfield RL, Brunmark A, Jackson MR et al. 1996. An αβ T cell receptor structure at 2.5 Å and its orientation in the TCR-MHC complex. Science 274:209–19
    [Google Scholar]
  53. 53. 
    Garrett TP, Saper MA, Bjorkman PJ, Strominger JL, Wiley DC 1989. Specificity pockets for the side chains of peptide antigens in HLA-Aw68. Nature 342:692–96
    [Google Scholar]
  54. 54. 
    Garstka M, Borchert B, Al-Balushi M, Praveen PV, Kuhl N et al. 2007. Peptide-receptive major histocompatibility complex class I molecules cycle between endoplasmic reticulum and cis-Golgi in wild-type lymphocytes. J. Biol. Chem. 282:30680–90
    [Google Scholar]
  55. 55. 
    Garstka MA, Fritzsche S, Lenart I, Hein Z, Jankevicius G et al. 2011. Tapasin dependence of major histocompatibility complex class I molecules correlates with their conformational flexibility. FASEB J 25:3989–98
    [Google Scholar]
  56. 56. 
    Ghanem E, Fritzsche S, Al-Balushi M, Hashem J, Ghuneim L et al. 2010. The transporter associated with antigen processing (TAP) is active in a post-ER compartment. J. Cell Sci. 123:4271–79
    [Google Scholar]
  57. 57. 
    Gomez-Navarro N, Miller E. 2016. Protein sorting at the ER-Golgi interface. J. Cell Biol. 215:769–78
    [Google Scholar]
  58. 58. 
    Gorbulev S, Abele R, Tampé R 2001. Allosteric crosstalk between peptide-binding, transport, and ATP hydrolysis of the ABC transporter TAP. PNAS 98:3732–37
    [Google Scholar]
  59. 59. 
    Guillaume P, Picaud S, Baumgaertner P, Montandon N, Schmidt J et al. 2018. The C-terminal extension landscape of naturally presented HLA-I ligands. PNAS 115:5083–88
    [Google Scholar]
  60. 60. 
    Hafstrand I, Sayitoglu EC, Apavaloaei A, Josey BJ, Sun R et al. 2019. Successive crystal structure snapshots suggest the basis for MHC class I peptide loading and editing by tapasin. PNAS 116:5055–60
    [Google Scholar]
  61. 61. 
    Halenius A, Momburg F, Reinhard H, Bauer D, Lobigs M, Hengel H 2006. Physical and functional interactions of the cytomegalovirus US6 glycoprotein with the transporter associated with antigen processing. J. Biol. Chem. 281:5383–90
    [Google Scholar]
  62. 62. 
    Hammond C, Braakman I, Helenius A 1994. Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control. PNAS 91:913–17
    [Google Scholar]
  63. 63. 
    Hansen TH, Bouvier M. 2009. MHC class I antigen presentation: learning from viral evasion strategies. Nat. Rev. Immunol. 9:503–13
    [Google Scholar]
  64. 64. 
    Harris MR, Yu YY, Kindle CS, Hansen TH, Solheim JC 1998. Calreticulin and calnexin interact with different protein and glycan determinants during the assembly of MHC class I. J. Immunol. 160:5404–9
    [Google Scholar]
  65. 65. 
    Harvey IB, Wang X, Fremont DH 2019. Molluscum contagiosum virus MC80 sabotages MHC-I antigen presentation by targeting tapasin for ER-associated degradation. PLOS Pathog 15:e1007711
    [Google Scholar]
  66. 66. 
    Hawse WF, De S, Greenwood AI, Nicholson LK, Zajicek J et al. 2014. TCR scanning of peptide/MHC through complementary matching of receptor and ligand molecular flexibility. J. Immunol. 192:2885–91
    [Google Scholar]
  67. 67. 
    Hee CS, Beerbaum M, Loll B, Ballaschk M, Schmieder P et al. 2013. Dynamics of free versus complexed β2-microglobulin and the evolution of interfaces in MHC class I molecules. Immunogenetics 65:157–72
    [Google Scholar]
  68. 68. 
    Heemels MT, Ploegh HL. 1994. Substrate specificity of allelic variants of the TAP peptide transporter. Immunity 1:775–84
    [Google Scholar]
  69. 69. 
    Helenius A, Aebi M. 2004. Roles of N-linked glycans in the endoplasmic reticulum. Annu. Rev. Biochem. 73:1019–49
    [Google Scholar]
  70. 70. 
    Hengel H, Koopmann JO, Flohr T, Muranyi W, Goulmy E et al. 1997. A viral ER-resident glycoprotein inactivates the MHC-encoded peptide transporter. Immunity 6:623–32
    [Google Scholar]
  71. 71. 
    Herbring V, Bäucker A, Trowitzsch S, Tampé R 2016. A dual inhibition mechanism of herpesviral ICP47 arresting a conformationally thermostable TAP complex. Sci. Rep. 6:36907
    [Google Scholar]
  72. 72. 
    Hermann C, Strittmatter LM, Deane JE, Boyle LH 2013. The binding of TAPBPR and tapasin to MHC class I is mutually exclusive. J. Immunol. 191:5743–50
    [Google Scholar]
  73. 73. 
    Hermann C, Trowsdale J, Boyle LH 2015. TAPBPR: a new player in the MHC class I presentation pathway. Tissue Antigens 85:155–66
    [Google Scholar]
  74. 74. 
    Hermann C, van Hateren A, Trautwein N, Neerincx A, Duriez PJ et al. 2015. TAPBPR alters MHC class I peptide presentation by functioning as a peptide exchange catalyst. eLife 4:e09617
    [Google Scholar]
  75. 75. 
    Hewitt EW, Gupta SS, Lehner PJ 2001. The human cytomegalovirus gene product US6 inhibits ATP binding by TAP. EMBO J 20:387–96
    [Google Scholar]
  76. 76. 
    Hill A, Jugovic P, York I, Russ G, Bennink J et al. 1995. Herpes simplex virus turns off the TAP to evade host immunity. Nature 375:411–15
    [Google Scholar]
  77. 77. 
    Horst D, Favaloro V, Vilardi F, van Leeuwen HC, Garstka MA et al. 2011. EBV protein BNLF2a exploits host tail-anchored protein integration machinery to inhibit TAP. J. Immunol. 186:3594–605
    [Google Scholar]
  78. 78. 
    Horst D, van Leeuwen D, Croft NP, Garstka MA, Hislop AD et al. 2009. Specific targeting of the EBV lytic phase protein BNLF2a to the transporter associated with antigen processing results in impairment of HLA class I-restricted antigen presentation. J. Immunol. 182:2313–24
    [Google Scholar]
  79. 79. 
    Howe C, Garstka M, Al-Balushi M, Ghanem E, Antoniou AN et al. 2009. Calreticulin-dependent recycling in the early secretory pathway mediates optimal peptide loading of MHC class I molecules. EMBO J 28:3730–44
    [Google Scholar]
  80. 80. 
    Hsu VW, Yuan LC, Nuchtern JG, Lippincott-Schwartz J, Hämmerling GJ, Klausner RD 1991. A recycling pathway between the endoplasmic reticulum and the Golgi apparatus for retention of unassembled MHC class I molecules. Nature 352:441–44
    [Google Scholar]
  81. 81. 
    Hu Q, Ye Y, Chan LC, Li Y, Liang K et al. 2019. Oncogenic lncRNA downregulates cancer cell antigen presentation and intrinsic tumor suppression. Nat. Immunol. 20:835–51
    [Google Scholar]
  82. 82. 
    Hughes EA, Cresswell P. 1998. The thiol oxidoreductase ERp57 is a component of the MHC class I peptide-loading complex. Curr. Biol. 8:709–12
    [Google Scholar]
  83. 83. 
    Hulpke S, Tampé R. 2013. The MHC I loading complex: a multitasking machinery in adaptive immunity. Trends Biochem. Sci. 38:412–20
    [Google Scholar]
  84. 84. 
    Ihara Y, Cohen-Doyle MF, Saito Y, Williams DB 1999. Calnexin discriminates between protein conformational states and functions as a molecular chaperone in vivo. Mol. Cell 4:331–41
    [Google Scholar]
  85. 85. 
    Ilca FT, Neerincx A, Hermann C, Marcu A, Stevanovic S et al. 2018. TAPBPR mediates peptide dissociation from MHC class I using a leucine lever. eLife 7:e40126
    [Google Scholar]
  86. 86. 
    Insaidoo FK, Borbulevych OY, Hossain M, Santhanagopolan SM, Baxter TK, Baker BM 2011. Loss of T cell antigen recognition arising from changes in peptide and major histocompatibility complex protein flexibility: implications for vaccine design. J. Biol. Chem. 286:40163–73
    [Google Scholar]
  87. 87. 
    Insaidoo FK, Zajicek J, Baker BM 2009. A general and efficient approach for NMR studies of peptide dynamics in class I MHC peptide binding grooves. Biochemistry 48:9708–10
    [Google Scholar]
  88. 88. 
    Jiang J, Natarajan K, Boyd LF, Morozov GI, Mage MG, Margulies DH 2017. Crystal structure of a TAPBPR–MHC I complex reveals the mechanism of peptide editing in antigen presentation. Science 358:1064–68
    [Google Scholar]
  89. 89. 
    Joffre OP, Segura E, Savina A, Amigorena S 2012. Cross-presentation by dendritic cells. Nat. Rev. Immunol. 12:557–69
    [Google Scholar]
  90. 90. 
    Kanaseki T, Blanchard N, Hammer GE, Gonzalez F, Shastri N 2006. ERAAP synergizes with MHC class I molecules to make the final cut in the antigenic peptide precursors in the endoplasmic reticulum. Immunity 25:795–806
    [Google Scholar]
  91. 91. 
    Kanaseki T, Lind KC, Escobar H, Nagarajan N, Reyes-Vargas E et al. 2013. ERAAP and tapasin independently edit the amino and carboxyl termini of MHC class I peptides. J. Immunol. 191:1547–55
    [Google Scholar]
  92. 92. 
    Khan S, de Giuli R, Schmidtke G, Bruns M, Buchmeier M et al. 2001. Cutting edge: neosynthesis is required for the presentation of a T cell epitope from a long-lived viral protein. J. Immunol. 167:4801–4
    [Google Scholar]
  93. 93. 
    Kienast A, Preuss M, Winkler M, Dick TP 2007. Redox regulation of peptide receptivity of major histocompatibility complex class I molecules by ERp57 and tapasin. Nat. Immunol. 8:864–72
    [Google Scholar]
  94. 94. 
    Kim KM, Adachi T, Nielsen PJ, Terashima M, Lamers MC et al. 1994. Two new proteins preferentially associated with membrane immunoglobulin D. EMBO J 13:3793–800
    [Google Scholar]
  95. 95. 
    Kim S, Lee S, Shin J, Kim Y, Evnouchidou I et al. 2011. Human cytomegalovirus microRNA miR-US4-1 inhibits CD8+ T cell responses by targeting the aminopeptidase ERAP1. Nat. Immunol. 12:984–91
    [Google Scholar]
  96. 96. 
    Kloetzel PM. 2001. Antigen processing by the proteasome. Nat. Rev. Mol. Cell Biol. 2:179–87
    [Google Scholar]
  97. 97. 
    Kochan G, Krojer T, Harvey D, Fischer R, Chen L et al. 2011. Crystal structures of the endoplasmic reticulum aminopeptidase-1 (ERAP1) reveal the molecular basis for N-terminal peptide trimming. PNAS 108:7745–50
    [Google Scholar]
  98. 98. 
    Koopmann JO, Post M, Neefjes JJ, Hämmerling GJ, Momburg F 1996. Translocation of long peptides by transporters associated with antigen processing (TAP). Eur. J. Immunol. 26:1720–28
    [Google Scholar]
  99. 99. 
    Koppers-Lalic D, Reits EA, Ressing ME, Lipinska AD, Abele R et al. 2005. Varicelloviruses avoid T cell recognition by UL49.5-mediated inactivation of the transporter associated with antigen processing. PNAS 102:5144–49
    [Google Scholar]
  100. 100. 
    Kozlov G, Pocanschi CL, Rosenauer A, Bastos-Aristizabal S, Gorelik A et al. 2010. Structural basis of carbohydrate recognition by calreticulin. J. Biol. Chem. 285:38612–20
    [Google Scholar]
  101. 101. 
    Kyritsis C, Gorbulev S, Hutschenreiter S, Pawlitschko K, Abele R, Tampé R 2001. Molecular mechanism and structural aspects of transporter associated with antigen processing inhibition by the cytomegalovirus protein US6. J. Biol. Chem. 276:48031–39
    [Google Scholar]
  102. 102. 
    Ladasky JJ, Boyle S, Seth M, Li H, Pentcheva T et al. 2006. Bap31 enhances the endoplasmic reticulum export and quality control of human class I MHC molecules. J. Immunol. 177:6172–81
    [Google Scholar]
  103. 103. 
    Lehner PJ, Karttunen JT, Wilkinson GW, Cresswell P 1997. The human cytomegalovirus US6 glycoprotein inhibits transporter associated with antigen processing-dependent peptide translocation. PNAS 94:6904–9
    [Google Scholar]
  104. 104. 
    Lehnert E, Tampé R. 2017. Structure and dynamics of antigenic peptides in complex with TAP. Front. Immunol. 8:10
    [Google Scholar]
  105. 105. 
    Li X, Lamothe PA, Walker BD, Wang JH 2017. Crystal structure of HLA-B*5801 with a TW10 HIV Gag epitope reveals a novel mode of peptide presentation. Cell Mol. Immunol. 14:631–34
    [Google Scholar]
  106. 106. 
    Lin J, Eggensperger S, Hank S, Wycisk AI, Wieneke R et al. 2014. A negative feedback modulator of antigen processing evolved from a frameshift in the cowpox virus genome. PLOS Pathog 10:e1004554
    [Google Scholar]
  107. 107. 
    Lindquist JA, Hämmerling GJ, Trowsdale J 2001. ER60/ERp57 forms disulfide-bonded intermediates with MHC class I heavy chain. FASEB J 15:1448–50
    [Google Scholar]
  108. 108. 
    Loch S, Klauschies F, Scholz C, Verweij MC, Wiertz EJ et al. 2008. Signaling of a varicelloviral factor across the endoplasmic reticulum membrane induces destruction of the peptide-loading complex and immune evasion. J. Biol. Chem. 283:13428–36
    [Google Scholar]
  109. 109. 
    Luteijn RD, Hoelen H, Kruse E, van Leeuwen WF, Grootens J et al. 2014. Cowpox virus protein CPXV012 eludes CTLs by blocking ATP binding to TAP. J. Immunol. 193:1578–89
    [Google Scholar]
  110. 110. 
    Madden DR, Gorga JC, Strominger JL, Wiley DC 1992. The three-dimensional structure of HLA-B27 at 2.1 Å resolution suggests a general mechanism for tight peptide binding to MHC. Cell 70:1035–48
    [Google Scholar]
  111. 111. 
    Mage MG, Dolan MA, Wang R, Boyd LF, Revilleza MJ et al. 2012. The peptide-receptive transition state of MHC class I molecules: insight from structure and molecular dynamics. J. Immunol. 189:1391–99
    [Google Scholar]
  112. 112. 
    Matschulla T, Berry R, Gerke C, Döring M, Busch J et al. 2017. A highly conserved sequence of the viral TAP inhibitor ICP47 is required for freezing of the peptide transport cycle. Sci. Rep. 7:2933
    [Google Scholar]
  113. 113. 
    Mayerhofer PU, Tampé R. 2015. Antigen translocation machineries in adaptive immunity and viral immune evasion. J. Mol. Biol. 427:1102–18
    [Google Scholar]
  114. 114. 
    McMurtrey C, Trolle T, Sansom T, Remesh SG, Kaever T et al. 2016. Toxoplasma gondii peptide ligands open the gate of the HLA class I binding groove. eLife 5:e12556
    [Google Scholar]
  115. 115. 
    McShan AC, Natarajan K, Kumirov VK, Flores-Solis D, Jiang J et al. 2018. Peptide exchange on MHC-I by TAPBPR is driven by a negative allostery release cycle. Nat. Chem. Biol. 14:811–20
    [Google Scholar]
  116. 116. 
    Mezzacasa A, Helenius A. 2002. The transitional ER defines a boundary for quality control in the secretion of tsO45 VSV glycoprotein. Traffic 3:833–49
    [Google Scholar]
  117. 117. 
    Michalak M, Groenendyk J, Szabo E, Gold LI, Opas M 2009. Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem. J. 417:651–66
    [Google Scholar]
  118. 118. 
    Molinari M, Eriksson KK, Calanca V, Galli C, Cresswell P et al. 2004. Contrasting functions of calreticulin and calnexin in glycoprotein folding and ER quality control. Mol. Cell 13:125–35
    [Google Scholar]
  119. 119. 
    Morozov GI, Zhao H, Mage MG, Boyd LF, Jiang J et al. 2016. Interaction of TAPBPR, a tapasin homolog, with MHC-I molecules promotes peptide editing. PNAS 113:E1006–15
    [Google Scholar]
  120. 120. 
    Murata S, Takahama Y, Kasahara M, Tanaka K 2018. The immunoproteasome and thymoproteasome: functions, evolution and human disease. Nat. Immunol. 19:923–31
    [Google Scholar]
  121. 121. 
    Natarajan K, Jiang J, May NA, Mage MG, Boyd LF et al. 2018. The role of molecular flexibility in antigen presentation and T cell receptor-mediated signaling. Front. Immunol. 9:1657
    [Google Scholar]
  122. 122. 
    Natarajan K, McShan AC, Jiang J, Kumirov VK, Wang R et al. 2017. An allosteric site in the T-cell receptor Cβ domain plays a critical signalling role. Nat. Commun. 8:15260
    [Google Scholar]
  123. 123. 
    Neefjes JJ, Hämmerling GJ, Momburg F 1993. Folding and assembly of major histocompatibility complex class I heterodimers in the endoplasmic reticulum of intact cells precedes the binding of peptide. J. Exp. Med. 178:1971–80
    [Google Scholar]
  124. 124. 
    Neefjes JJ, Momburg F, Hämmerling GJ 1993. Selective and ATP-dependent translocation of peptides by the MHC-encoded transporter. Science 261:769–71
    [Google Scholar]
  125. 125. 
    Neerincx A, Boyle LH. 2019. Preferential interaction of MHC class I with TAPBPR in the absence of glycosylation. Mol. Immunol. 113:58–66
    [Google Scholar]
  126. 126. 
    Neerincx A, Hermann C, Antrobus R, van Hateren A, Cao H et al. 2017. TAPBPR bridges UDP-glucose: glycoprotein glucosyltransferase 1 onto MHC class I to provide quality control in the antigen presentation pathway. eLife 6:e23049
    [Google Scholar]
  127. 127. 
    Neumann L, Kraas W, Uebel S, Jung G, Tampé R 1997. The active domain of the herpes simplex virus protein ICP47: a potent inhibitor of the transporter associated with antigen processing. J. Mol. Biol. 272:484–92
    [Google Scholar]
  128. 128. 
    Nguyen TT, Chang SC, Evnouchidou I, York IA, Zikos C et al. 2011. Structural basis for antigenic peptide precursor processing by the endoplasmic reticulum aminopeptidase ERAP1. Nat. Struct. Mol. Biol. 18:604–13
    [Google Scholar]
  129. 129. 
    Oldham ML, Grigorieff N, Chen J 2016. Structure of the transporter associated with antigen processing trapped by herpes simplex virus. eLife 5:e21829
    [Google Scholar]
  130. 130. 
    Oldham ML, Hite RK, Steffen AM, Damko E, Li Z et al. 2016. A mechanism of viral immune evasion revealed by cryo-EM analysis of the TAP transporter. Nature 529:537–40
    [Google Scholar]
  131. 131. 
    Ortmann B, Androlewicz MJ, Cresswell P 1994. MHC class I/β2-microglobulin complexes associate with TAP transporters before peptide binding. Nature 368:864–67
    [Google Scholar]
  132. 132. 
    Ortmann B, Copeman J, Lehner PJ, Sadasivan B, Herberg JA et al. 1997. A critical role for tapasin in the assembly and function of multimeric MHC class I-TAP complexes. Science 277:1306–9
    [Google Scholar]
  133. 133. 
    Papadopoulos M, Momburg F. 2007. Multiple residues in the transmembrane helix and connecting peptide of mouse tapasin stabilize the transporter associated with the antigen-processing TAP2 subunit. J. Biol. Chem. 282:9401–10
    [Google Scholar]
  134. 134. 
    Paquet ME, Cohen-Doyle M, Shore GC, Williams DB 2004. Bap29/31 influences the intracellular traffic of MHC class I molecules. J. Immunol. 172:7548–55
    [Google Scholar]
  135. 135. 
    Paquet ME, Williams DB. 2002. Mutant MHC class I molecules define interactions between components of the peptide-loading complex. Int. Immunol. 14:347–58
    [Google Scholar]
  136. 136. 
    Parcej D, Tampé R. 2010. ABC proteins in antigen translocation and viral inhibition. Nat. Chem. Biol. 6:572–80
    [Google Scholar]
  137. 137. 
    Patil AR, Thomas CJ, Surolia A 2000. Kinetics and the mechanism of interaction of the endoplasmic reticulum chaperone, calreticulin, with monoglucosylated (Glc1Man9GlcNAc2) substrate. J. Biol. Chem. 275:24348–56
    [Google Scholar]
  138. 138. 
    Paulsson KM, Kleijmeer MJ, Griffith J, Jevon M, Chen S et al. 2002. Association of tapasin and COPI provides a mechanism for the retrograde transport of major histocompatibility complex (MHC) class I molecules from the Golgi complex to the endoplasmic reticulum. J. Biol. Chem. 277:18266–71
    [Google Scholar]
  139. 139. 
    Peaper DR, Cresswell P. 2008. Regulation of MHC class I assembly and peptide binding. Annu. Rev. Cell Dev. Biol. 24:343–68
    [Google Scholar]
  140. 140. 
    Peaper DR, Wearsch PA, Cresswell P 2005. Tapasin and ERp57 form a stable disulfide-linked dimer within the MHC class I peptide-loading complex. EMBO J 24:3613–23
    [Google Scholar]
  141. 141. 
    Petersen JL, Hickman-Miller HD, McIlhaney MM, Vargas SE, Purcell AW et al. 2005. A charged amino acid residue in the transmembrane/cytoplasmic region of tapasin influences MHC class I assembly and maturation. J. Immunol. 174:962–69
    [Google Scholar]
  142. 142. 
    Peterson JR, Helenius A. 1999. In vitro reconstitution of calreticulin-substrate interactions. J. Cell Sci. 112:2775–84
    [Google Scholar]
  143. 143. 
    Pfänder R, Neumann L, Zweckstetter M, Seger C, Holak TA, Tampé R 1999. Structure of the active domain of the herpes simplex virus protein ICP47 in water/sodium dodecyl sulfate solution determined by nuclear magnetic resonance spectroscopy. Biochemistry 38:13692–98
    [Google Scholar]
  144. 144. 
    Pohlmann T, Bockmann RA, Grubmüller H, Uchanska-Ziegler B, Ziegler A, Alexiev U 2004. Differential peptide dynamics is linked to major histocompatibility complex polymorphism. J. Biol. Chem. 279:28197–201
    [Google Scholar]
  145. 145. 
    Praest P, Liaci AM, Förster F, Wiertz EJHJ 2019. New insights into the structure of the MHC class I peptide-loading complex and mechanisms of TAP inhibition by viral immune evasion proteins. Mol. Immunol. 113:103–14
    [Google Scholar]
  146. 146. 
    Pymm P, Illing PT, Ramarathinam SH, O'Connor GM, Hughes VA et al. 2017. MHC-I peptides get out of the groove and enable a novel mechanism of HIV-1 escape. Nat. Struct. Mol. Biol. 24:387–94
    [Google Scholar]
  147. 147. 
    Reits EA, Vos JC, Gromme M, Neefjes J 2000. The major substrates for TAP in vivo are derived from newly synthesized proteins. Nature 404:774–78
    [Google Scholar]
  148. 148. 
    Remesh SG, Andreatta M, Ying G, Kaever T, Nielsen M et al. 2017. Unconventional peptide presentation by major histocompatibility complex (MHC) class I allele HLA-A*02:01: breaking confinement. J. Biol. Chem. 292:5262–70
    [Google Scholar]
  149. 149. 
    Ressing ME, Keating SE, van Leeuwen D, Koppers-Lalic D, Pappworth IY et al. 2005. Impaired transporter associated with antigen processing-dependent peptide transport during productive EBV infection. J. Immunol. 174:6829–38
    [Google Scholar]
  150. 150. 
    Roche PA, Furuta K. 2015. The ins and outs of MHC class II-mediated antigen processing and presentation. Nat. Rev. Immunol. 15:203–16
    [Google Scholar]
  151. 151. 
    Rock KL, Gramm C, Rothstein L, Clark K, Stein R et al. 1994. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78:761–71
    [Google Scholar]
  152. 152. 
    Sadasivan B, Lehner PJ, Ortmann B, Spies T, Cresswell P 1996. Roles for calreticulin and a novel glycoprotein, tapasin, in the interaction of MHC class I molecules with TAP. Immunity 5:103–14
    [Google Scholar]
  153. 153. 
    Saric T, Chang SC, Hattori A, York IA, Markant S et al. 2002. An IFN-gamma-induced aminopeptidase in the ER, ERAP1, trims precursors to MHC class I-presented peptides. Nat. Immunol. 3:1169–76
    [Google Scholar]
  154. 154. 
    Saveanu L, Carroll O, Lindo V, Del Val M, Lopez D et al. 2005. Concerted peptide trimming by human ERAP1 and ERAP2 aminopeptidase complexes in the endoplasmic reticulum. Nat. Immunol. 6:689–97
    [Google Scholar]
  155. 155. 
    Schubert U, Anton LC, Gibbs J, Norbury CC, Yewdell JW, Bennink JR 2000. Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 404:770–74
    [Google Scholar]
  156. 156. 
    Schuren AB, Costa AI, Wiertz EJ 2016. Recent advances in viral evasion of the MHC class I processing pathway. Curr. Opin. Immunol. 40:43–50
    [Google Scholar]
  157. 157. 
    Serwold T, Gonzalez F, Kim J, Jacob R, Shastri N 2002. ERAAP customizes peptides for MHC class I molecules in the endoplasmic reticulum. Nature 419:480–83
    [Google Scholar]
  158. 158. 
    Spel L, Luteijn RD, Drijfhout JW, Nierkens S, Boes M, Wiertz EJH 2018. Endocytosed soluble cowpox virus protein CPXV012 inhibits antigen cross-presentation in human monocyte-derived dendritic cells. Immunol. Cell Biol. 96:137–48
    [Google Scholar]
  159. 159. 
    Spiliotis ET, Manley H, Osorio M, Zuniga MC, Edidin M 2000. Selective export of MHC class I molecules from the ER after their dissociation from TAP. Immunity 13:841–51
    [Google Scholar]
  160. 160. 
    Springer S. 2015. Transport and quality control of MHC class I molecules in the early secretory pathway. Curr. Opin. Immunol. 34:83–90
    [Google Scholar]
  161. 161. 
    Stepensky D, Bangia N, Cresswell P 2007. Aggregate formation by ERp57-deficient MHC class I peptide-loading complexes. Traffic 8:1530–42
    [Google Scholar]
  162. 162. 
    Stone JD, Chervin AS, Kranz DM 2009. T-cell receptor binding affinities and kinetics: impact on T-cell activity and specificity. Immunology 126:165–76
    [Google Scholar]
  163. 163. 
    Stone JD, Kranz DM. 2013. Role of T cell receptor affinity in the efficacy and specificity of adoptive T cell therapies. Front. Immunol. 4:244
    [Google Scholar]
  164. 164. 
    Sugita M, Brenner MB. 1994. An unstable β2-microglobulin: Major histocompatibility complex class I heavy chain intermediate dissociates from calnexin and then is stabilized by binding peptide. J. Exp. Med. 180:2163–71
    [Google Scholar]
  165. 165. 
    Tan P, Kropshofer H, Mandelboim O, Bulbuc N, Hämmerling GJ, Momburg F 2002. Recruitment of MHC class I molecules by tapasin into the transporter associated with antigen processing-associated complex is essential for optimal peptide loading. J. Immunol. 168:1950–60
    [Google Scholar]
  166. 166. 
    Tannous A, Pisoni GB, Hebert DN, Molinari M 2015. N-linked sugar-regulated protein folding and quality control in the ER. Semin. Cell Dev. Biol. 41:79–89
    [Google Scholar]
  167. 167. 
    Teng MS, Stephens R, Du Pasquier L, Freeman T, Lindquist JA, Trowsdale J 2002. A human TAPBP (TAPASIN)-related gene, TAPBP-R. Eur. J. Immunol. 32:1059–68
    [Google Scholar]
  168. 168. 
    Tenzer S, Wee E, Burgevin A, Stewart-Jones G, Friis L et al. 2009. Antigen processing influences HIV-specific cytotoxic T lymphocyte immunodominance. Nat. Immunol. 10:636–46
    [Google Scholar]
  169. 169. 
    Thomas C, Tampé R. 2017. Proofreading of peptide-MHC complexes through dynamic multivalent interactions. Front. Immunol. 8:65
    [Google Scholar]
  170. 170. 
    Thomas C, Tampé R. 2017. Structure of the TAPBPR-MHC I complex defines the mechanism of peptide loading and editing. Science 358:1060–64
    [Google Scholar]
  171. 171. 
    Thomas C, Tampé R. 2018. Multifaceted structures and mechanisms of ABC transport systems in health and disease. Curr. Opin. Struct. Biol. 51:116–28
    [Google Scholar]
  172. 172. 
    Tomazin R, Hill AB, Jugovic P, York I, van Endert P et al. 1996. Stable binding of the herpes simplex virus ICP47 protein to the peptide binding site of TAP. EMBO J 15:3256–66
    [Google Scholar]
  173. 173. 
    Trowitzsch S, Tampé R. 2018. ABC transporters in dynamic macromolecular assemblies. J. Mol. Biol. 430:4481–95
    [Google Scholar]
  174. 174. 
    Turnquist HR, Vargas SE, McIlhaney MM, Li S, Wang P, Solheim JC 2002. Calreticulin binds to the alpha1 domain of MHC class I independently of tapasin. Tissue Antigens 59:18–24
    [Google Scholar]
  175. 175. 
    Uebel S, Kraas W, Kienle S, Wiesmüller KH, Jung G, Tampé R 1997. Recognition principle of the TAP transporter disclosed by combinatorial peptide libraries. PNAS 94:8976–81
    [Google Scholar]
  176. 176. 
    Uebel S, Meyer TH, Kraas W, Kienle S, Jung G et al. 1995. Requirements for peptide binding to the human transporter associated with antigen processing revealed by peptide scans and complex peptide libraries. J. Biol. Chem. 270:18512–16
    [Google Scholar]
  177. 177. 
    van de Weijer ML, Luteijn RD, Wiertz EJ 2015. Viral immune evasion: lessons in MHC class I antigen presentation. Semin. Immunol. 27:125–37
    [Google Scholar]
  178. 178. 
    van Endert PM, Tampé R, Meyer TH, Tisch R, Bach JF, McDevitt HO 1994. A sequential model for peptide binding and transport by the transporters associated with antigen processing. Immunity 1:491–500
    [Google Scholar]
  179. 179. 
    van Hateren A, Bailey A, Elliott T 2017. Recent advances in major histocompatibility complex (MHC) class I antigen presentation: plastic MHC molecules and TAPBPR-mediated quality control. F1000Res 6:158
    [Google Scholar]
  180. 180. 
    van Hateren A, Bailey A, Werner JM, Elliott T 2015. Plasticity of empty major histocompatibility complex class I molecules determines peptide-selector function. Mol. Immunol. 68:98–101
    [Google Scholar]
  181. 181. 
    Vassilakos A, Michalak M, Lehrman MA, Williams DB 1998. Oligosaccharide binding characteristics of the molecular chaperones calnexin and calreticulin. Biochemistry 37:3480–90
    [Google Scholar]
  182. 182. 
    Verweij MC, Koppers-Lalic D, Loch S, Klauschies F, de la Salle H et al. 2008. The varicellovirus UL49.5 protein blocks the transporter associated with antigen processing (TAP) by inhibiting essential conformational transitions in the 6+6 transmembrane TAP core complex. J. Immunol. 181:4894–907
    [Google Scholar]
  183. 183. 
    Wang X, Ye Y, Lencer W, Hansen TH 2006. The viral E3 ubiquitin ligase mK3 uses the derlin/p97 endoplasmic reticulum-associated degradation pathway to mediate down-regulation of major histocompatibility complex class I proteins. J. Biol. Chem. 281:8636–44
    [Google Scholar]
  184. 184. 
    Ware FE, Vassilakos A, Peterson PA, Jackson MR, Lehrman MA, Williams DB 1995. The molecular chaperone calnexin binds Glc1Man9GlcNAc2 oligosaccharide as an initial step in recognizing unfolded glycoproteins. J. Biol. Chem. 270:4697–704
    [Google Scholar]
  185. 185. 
    Wearsch PA, Cresswell P. 2007. Selective loading of high-affinity peptides onto major histocompatibility complex class I molecules by the tapasin-ERp57 heterodimer. Nat. Immunol. 8:873–81
    [Google Scholar]
  186. 186. 
    Wearsch PA, Peaper DR, Cresswell P 2011. Essential glycan-dependent interactions optimize MHC class I peptide loading. PNAS 108:4950–55
    [Google Scholar]
  187. 187. 
    Wieczorek M, Abualrous ET, Sticht J, Alvaro-Benito M, Stolzenberg S et al. 2017. Major histocompatibility complex (MHC) class I and MHC class II proteins: conformational plasticity in antigen presentation. Front. Immunol. 8:292
    [Google Scholar]
  188. 188. 
    Wieneke R, Raulf A, Kollmannsperger A, Heilemann M, Tampé R 2015. SLAP: small labeling pair for single-molecule super-resolution imaging. Angew. Chem. Int. Ed. Engl. 54:10216–19
    [Google Scholar]
  189. 189. 
    Wild R, Kowal J, Eyring J, Ngwa EM, Aebi M, Locher KP 2018. Structure of the yeast oligosaccharyltransferase complex gives insight into eukaryotic N-glycosylation. Science 359:545–50
    [Google Scholar]
  190. 190. 
    Williams AP, Peh CA, Purcell AW, McCluskey J, Elliott T 2002. Optimization of the MHC class I peptide cargo is dependent on tapasin. Immunity 16:509–20
    [Google Scholar]
  191. 191. 
    Williams DB. 2006. Beyond lectins: the calnexin/calreticulin chaperone system of the endoplasmic reticulum. J. Cell Sci. 119:615–23
    [Google Scholar]
  192. 192. 
    Wycisk AI, Lin J, Loch S, Hobohm K, Funke J et al. 2011. Epstein-Barr viral BNLF2a protein hijacks the tail-anchored protein insertion machinery to block antigen processing by the transport complex TAP. J. Biol. Chem. 286:41402–12
    [Google Scholar]
  193. 193. 
    Yang Z, Bjorkman PJ. 2008. Structure of UL18, a peptide-binding viral MHC mimic, bound to a host inhibitory receptor. PNAS 105:10095–100
    [Google Scholar]
  194. 194. 
    York IA, Chang SC, Saric T, Keys JA, Favreau JM et al. 2002. The ER aminopeptidase ERAP1 enhances or limits antigen presentation by trimming epitopes to 8-9 residues. Nat. Immunol. 3:1177–84
    [Google Scholar]
  195. 195. 
    Zhang W, Wearsch PA, Zhu Y, Leonhardt RM, Cresswell P 2011. A role for UDP-glucose glycoprotein glucosyltransferase in expression and quality control of MHC class I molecules. PNAS 108:4956–61
    [Google Scholar]
  196. 196. 
    Zhang Y, Kozlov G, Pocanschi CL, Brockmeier U, Ireland BS et al. 2009. ERp57 does not require interactions with calnexin and calreticulin to promote assembly of class I histocompatibility molecules, and it enhances peptide loading independently of its redox activity. J. Biol. Chem. 284:10160–73
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-121219-081643
Loading
/content/journals/10.1146/annurev-biophys-121219-081643
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error