1932

Abstract

Immune-based therapies have now been credentialed for pediatric cancers with the robust efficacy of chimeric antigen receptor (CAR) T cells for pediatric B cell acute lymphocytic leukemia (ALL), offering a chance of a cure for children with previously lethal disease and a potentially more targeted therapy to limit treatment-related morbidities. The developmental origins of most pediatric cancers make them ideal targets for immune-based therapies that capitalize on the differential expression of lineage-specific cell surface molecules such as antibodies, antibody-drug conjugates, or CAR T cells, while the efficacy of other therapies that depend on tumor immunogenicity such as immune checkpoint inhibitors has been limited to date. Here we review the current status of immune-based therapies for childhood cancers, discuss challenges to developing immunotherapeutics for these diseases, and outline future directions of pediatric immunotherapy discovery and development.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-030419-033436
2020-03-04
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/4/1/annurev-cancerbio-030419-033436.html?itemId=/content/journals/10.1146/annurev-cancerbio-030419-033436&mimeType=html&fmt=ahah

Literature Cited

  1. Ahmed M, Cheng M, Zhao Q, Goldgur Y, Cheal SM et al. 2015. Humanized affinity-matured monoclonal antibody 8H9 has potent antitumor activity and binds to FG loop of tumor antigen B7-H3. J. Biol. Chem. 290:30018–29
    [Google Scholar]
  2. Ahmed N, Brawley VS, Hegde M, Bielamowicz K, Kalra M et al. 2017. HER2-specific chimeric antigen receptor-modified virus-specific T cells for progressive glioblastoma: a phase 1 dose-escalation trial. JAMA Oncol 3:1094–101
    [Google Scholar]
  3. Ahmed N, Brawley VS, Hegde M, Robertson C, Ghazi A et al. 2015. Human epidermal growth factor receptor 2 (HER2)–specific chimeric antigen receptor–modified T cells for the immunotherapy of HER2-positive sarcoma. J. Clin. Oncol. 33:1688–96
    [Google Scholar]
  4. Aldoss I, Song J, Stiller T, Nguyen T, Palmer J et al. 2017. Correlates of resistance and relapse during blinatumomab therapy for relapsed/refractory acute lymphoblastic leukemia. Am. J. Hematol. 92:858–65
    [Google Scholar]
  5. Amirghofran Z, Asiaee E, Kamazani FM 2016. Soluble CD44 and CD44v6 and prognosis in children with B-cell acute lymphoblastic leukemia. Asia Pac. J. Clin. Oncol. 12:e375–82
    [Google Scholar]
  6. Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC et al. 2015. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma. N. Engl. J. Med. 372:311–19
    [Google Scholar]
  7. Aplenc R, Alonzo TA, Gerbing RB, Lange BJ, Hurwitz CA et al. 2008. Safety and efficacy of gemtuzumab ozogamicin in combination with chemotherapy for pediatric acute myeloid leukemia: a report from the Children's Oncology Group. J. Clin. Oncol. 26:2390–95
    [Google Scholar]
  8. Bagashev A, Sotillo E, Tang CA, Black KL, Perazzelli J et al. 2018. CD19 alterations emerging after CD19-directed immunotherapy cause retention of the misfolded protein in the endoplasmic reticulum. Mol. Cell. Biol. 38:e00383–18
    [Google Scholar]
  9. Balducci E, Nivaggioni V, Boudjarane J, Bouriche L, Rahal I et al. 2017. Lineage switch from B acute lymphoblastic leukemia to acute monocytic leukemia with persistent t(4;11)(q21;q23) and cytogenetic evolution under CD19-targeted therapy. Ann. Hematol. 96:1579–81
    [Google Scholar]
  10. Bekoz H, Karadurmus N, Paydas S, Turker A, Toptas T et al. 2017. Nivolumab for relapsed or refractory Hodgkin lymphoma: real-life experience. Ann. Oncol. 28:2496–502
    [Google Scholar]
  11. Bhojwani D, Sposto R, Shah NN, Rodriguez V, Yuan C et al. 2018. Inotuzumab ozogamicin in pediatric patients with relapsed/refractory acute lymphoblastic leukemia. Leukemia 33:884–92
    [Google Scholar]
  12. Blumenthal DT, Yalon M, Vainer GW, Lossos A, Yust S et al. 2016. Pembrolizumab: first experience with recurrent primary central nervous system (CNS) tumors. J. Neurooncol. 129:453–60
    [Google Scholar]
  13. Bosse KR, Raman P, Zhu Z, Lane M, Martinez D et al. 2017. Identification of GPC2 as an oncoprotein and candidate immunotherapeutic target in high-risk neuroblastoma. Cancer Cell 32:295–309.e12
    [Google Scholar]
  14. Bouffet E, Larouche V, Campbell BB, Merico D, de Borja R et al. 2016. Immune checkpoint inhibition for hypermutant glioblastoma multiforme resulting from germline biallelic mismatch repair deficiency. J. Clin. Oncol. 34:2206–11
    [Google Scholar]
  15. Braig F, Brandt A, Goebeler M, Tony HP, Kurze AK et al. 2017. Resistance to anti-CD19/CD3 BiTE in acute lymphoblastic leukemia may be mediated by disrupted CD19 membrane trafficking. Blood 129:100–4
    [Google Scholar]
  16. Brentjens RJ, Santos E, Nikhamin Y, Yeh R, Matsushita M et al. 2007. Genetically targeted T cells eradicate systemic acute lymphoblastic leukemia xenografts. Clin. Cancer Res. 13:5426–35
    [Google Scholar]
  17. Campbell BB, Light N, Fabrizio D, Zatzman M, Fuligni F et al. 2017. Comprehensive analysis of hypermutation in human cancer. Cell 171:1042–56.e10
    [Google Scholar]
  18. Casucci M, Nicolis di Robilant B, Falcone L, Camisa B, Norelli M et al. 2013. CD44v6-targeted T cells mediate potent antitumor effects against acute myeloid leukemia and multiple myeloma. Blood 122:3461–72
    [Google Scholar]
  19. Chalmers ZR, Connelly CF, Fabrizio D, Gay L, Ali SM et al. 2017. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med 9:34
    [Google Scholar]
  20. Chang HR, Cordon-Cardo C, Houghton AN, Cheung NK, Brennan MF 1992. Expression of disialogangliosides GD2 and GD3 on human soft tissue sarcomas. Cancer 70:633–38
    [Google Scholar]
  21. Chen R, Zinzani PL, Fanale MA, Armand P, Johnson NA et al. 2017. Phase II study of the efficacy and safety of pembrolizumab for relapsed/refractory classic Hodgkin lymphoma. J. Clin. Oncol. 35:2125–32
    [Google Scholar]
  22. Cheresh DA, Rosenberg J, Mujoo K, Hirschowitz L, Reisfeld RA 1986. Biosynthesis and expression of the disialoganglioside GD2, a relevant target antigen on small cell lung carcinoma for monoclonal antibody-mediated cytolysis. Cancer Res 46:5112–18
    [Google Scholar]
  23. Chun HE, Lim EL, Heravi-Moussavi A, Saberi S, Mungall KL et al. 2016. Genome-wide profiles of extra-cranial malignant rhabdoid tumors reveal heterogeneity and dysregulated developmental pathways. Cancer Cell 29:394–406
    [Google Scholar]
  24. Connors JM, Jurczak W, Straus DJ, Ansell SM, Kim WS et al. 2018. Brentuximab vedotin with chemotherapy for stage III or IV Hodgkin's lymphoma. N. Engl. J. Med. 378:331–44
    [Google Scholar]
  25. D'Angelo SP, Melchiori L, Merchant MS, Bernstein D, Glod J et al. 2018. Antitumor activity associated with prolonged persistence of adoptively transferred NY-ESO-1 c259T Cells in synovial sarcoma. Cancer Discov 8:944–57
    [Google Scholar]
  26. de Vries JF, Zwaan CM, De Bie M, Voerman JS, den Boer ML et al. 2012. The novel calicheamicin-conjugated CD22 antibody inotuzumab ozogamicin (CMC-544) effectively kills primary pediatric acute lymphoblastic leukemia cells. Leukemia 26:255–64
    [Google Scholar]
  27. Ebb D, Meyers P, Grier H, Bernstein M, Gorlick R et al. 2012. Phase II trial of trastuzumab in combination with cytotoxic chemotherapy for treatment of metastatic osteosarcoma with human epidermal growth factor receptor 2 overexpression: a report from the children's oncology group. J. Clin. Oncol. 30:2545–51
    [Google Scholar]
  28. Feng Y, Wang Y, Zhu Z, Li W, Sussman RT et al. 2016. Differential killing of CD56-expressing cells by drug-conjugated human antibodies targeting membrane-distal and membrane-proximal non-overlapping epitopes. mAbs 8:799–810
    [Google Scholar]
  29. Fischer J, Paret C, El Malki K, Alt F, Wingerter A et al. 2017. CD19 isoforms enabling resistance to CART-19 immunotherapy are expressed in B-ALL patients at initial diagnosis. J. Immunother. 40:187–95
    [Google Scholar]
  30. Foran AE, Nadel HR, Lee AF, Savage KJ, Deyell RJ 2017. Nivolumab in the treatment of refractory pediatric Hodgkin lymphoma. J. Pediatr. Hematol. Oncol. 39:e263–66
    [Google Scholar]
  31. Friend SH, Bernards R, Rogelj S, Weinberg RA, Rapaport JM et al. 1986. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323:643–66
    [Google Scholar]
  32. Fry TJ, Shah NN, Orentas RJ, Stetler-Stevenson M, Yuan CM et al. 2018. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat. Med. 24:20–28
    [Google Scholar]
  33. Galili N, Davis RJ, Fredericks WJ, Mukhopadhyay S, Rauscher FJ III et al. 1993. Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma. Nat. Genet. 5:230–35
    [Google Scholar]
  34. Gamis AS, Alonzo TA, Meshinchi S, Sung L, Gerbing RB et al. 2014. Gemtuzumab ozogamicin in children and adolescents with de novo acute myeloid leukemia improves event-free survival by reducing relapse risk: results from the randomized phase III Children's Oncology Group trial AAML0531. J. Clin. Oncol. 32:3021–32
    [Google Scholar]
  35. Garcia-Alonso S, Ocana A, Pandiella A 2018. Resistance to antibody-drug conjugates. Cancer Res 78:2159–65
    [Google Scholar]
  36. Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS et al. 2015. Pembrolizumab for the treatment of non-small-cell lung cancer. N. Engl. J. Med. 372:2018–28
    [Google Scholar]
  37. Goel S, DeCristo MJ, Watt AC, BrinJones H, Sceneay J et al. 2017. CDK4/6 inhibition triggers anti-tumour immunity. Nature 548:471–75
    [Google Scholar]
  38. Golfier S, Kopitz C, Kahnert A, Heisler I, Schatz CA et al. 2014. Anetumab ravtansine: a novel mesothelin-targeting antibody-drug conjugate cures tumors with heterogeneous target expression favored by bystander effect. Mol. Cancer Ther. 13:1537–48
    [Google Scholar]
  39. Gore L, Locatelli F, Zugmaier G, Handgretinger R, O'Brien MM et al. 2018. Survival after blinatumomab treatment in pediatric patients with relapsed/refractory B-cell precursor acute lymphoblastic leukemia. Blood Cancer J 8:80
    [Google Scholar]
  40. Green MR, Monti S, Rodig SJ, Juszczynski P, Currie T et al. 2010. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood 116:3268–77
    [Google Scholar]
  41. Green MR, Rodig S, Juszczynski P, Ouyang J, Sinha P et al. 2012. Constitutive AP-1 activity and EBV infection induce PD-L1 in Hodgkin lymphomas and posttransplant lymphoproliferative disorders: implications for targeted therapy. Clin. Cancer Res. 18:1611–18
    [Google Scholar]
  42. Grobner SN, Worst BC, Weischenfeldt J, Buchhalter I, Kleinheinz K et al. 2018. The landscape of genomic alterations across childhood cancers. Nature 555:7696321–27
    [Google Scholar]
  43. Guest EM, Aplenc R, Sung L, Raimondi SC, Hirsch BA et al. 2017. Gemtuzumab ozogamicin in infants with AML: results from the Children's Oncology Group trials AAML03P1 and AAML0531. Blood 130:943–45
    [Google Scholar]
  44. Haverkos BM, Abbott D, Hamadani M, Armand P, Flowers ME et al. 2017. PD-1 blockade for relapsed lymphoma post-allogeneic hematopoietic cell transplant: high response rate but frequent GVHD. Blood 130:221–28
    [Google Scholar]
  45. Haylock AK, Nilvebrant J, Mortensen A, Velikyan I, Nestor M, Falk R 2017. Generation and evaluation of antibody agents for molecular imaging of CD44v6-expressing cancers. Oncotarget 8:65152–70
    [Google Scholar]
  46. Heczey A, Louis CU, Savoldo B, Dakhova O, Durett A et al. 2017. CAR T cells administered in combination with lymphodepletion and PD-1 inhibition to patients with neuroblastoma. Mol. Ther. 25:2214–24
    [Google Scholar]
  47. Heider KH, Kuthan H, Stehle G, Munzert G 2004. CD44v6: a target for antibody-based cancer therapy. Cancer Immunol. Immunother. 53:567–79
    [Google Scholar]
  48. Heitzeneder S, Sotillo E, Shern JF, Sindiri S, Xu P et al. 2019. Pregnancy-associated plasma protein-A (PAPP-A) in Ewing sarcoma: role in tumor growth and immune evasion. J. Natl. Cancer Inst. 111:970–82
    [Google Scholar]
  49. Herter-Sprie GS, Koyama S, Korideck H, Hai J, Deng J et al. 2016. Synergy of radiotherapy and PD-1 blockade in Kras-mutant lung cancer. JCI Insight 1:e87415
    [Google Scholar]
  50. Hills RK, Castaigne S, Appelbaum FR, Delaunay J, Petersdorf S et al. 2014. Addition of gemtuzumab ozogamicin to induction chemotherapy in adult patients with acute myeloid leukaemia: a meta-analysis of individual patient data from randomised controlled trials. Lancet Oncol 15:986–96
    [Google Scholar]
  51. Hong H, Stastny M, Brown C, Chang WC, Ostberg JR et al. 2014. Diverse solid tumors expressing a restricted epitope of L1-CAM can be targeted by chimeric antigen receptor redirected T lymphocytes. J. Immunother. 37:93–104
    [Google Scholar]
  52. Hu-Lieskovan S, Mok S, Homet Moreno B, Tsoi J, Robert L et al. 2015. Improved antitumor activity of immunotherapy with BRAF and MEK inhibitors in BRAFV600E melanoma. Sci. Transl. Med. 7:279ra41
    [Google Scholar]
  53. Jacoby E, Bielorai B, Avigdor A, Itzhaki O, Hutt D et al. 2018. Locally produced CD19 CAR T cells leading to clinical remissions in medullary and extramedullary relapsed acute lymphoblastic leukemia. Am. J. Hematol. 93:1485–92
    [Google Scholar]
  54. Jacoby E, Nguyen SM, Fountaine TJ, Welp K, Gryder B et al. 2016. CD19 CAR immune pressure induces B-precursor acute lymphoblastic leukaemia lineage switch exposing inherent leukaemic plasticity. Nat. Commun. 7:12320
    [Google Scholar]
  55. Kabir TF, Chauhan A, Anthony L, Hildebrandt GC 2018. Immune checkpoint inhibitors in pediatric solid tumors: status in 2018. Ochsner J 18:370–76
    [Google Scholar]
  56. Kahles A, Lehmann KV, Toussaint NC, Huser M, Stark SG et al. 2018. Comprehensive analysis of alternative splicing across tumors from 8,705 patients. Cancer Cell 34:211–24.e6
    [Google Scholar]
  57. Kantarjian HM, DeAngelo DJ, Stelljes M, Martinelli G, Liedtke M et al. 2016. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N. Engl. J. Med. 375:740–53
    [Google Scholar]
  58. Katano M, Sidell N, Irie RF 1983. Human monoclonal antibody to a neuroectodermal tumor antigen (OFA-I-2). Ann. N.Y. Acad. Sci. 417:427–34
    [Google Scholar]
  59. Kochenderfer JN, Yu Z, Frasheri D, Restifo NP, Rosenberg SA 2010. Adoptive transfer of syngeneic T cells transduced with a chimeric antigen receptor that recognizes murine CD19 can eradicate lymphoma and normal B cells. Blood 116:3875–86
    [Google Scholar]
  60. Kramer K, Kushner BH, Modak S, Pandit-Taskar N, Smith-Jones P et al. 2010. Compartmental intrathecal radioimmunotherapy: results for treatment for metastatic CNS neuroblastoma. J. Neurooncol. 97:409–18
    [Google Scholar]
  61. Kunkele A, Taraseviciute A, Finn LS, Johnson AJ, Berger C et al. 2017. Preclinical assessment of CD171-directed CAR T-cell adoptive therapy for childhood neuroblastoma: CE7 epitope target safety and product manufacturing feasibility. Clin. Cancer Res. 23:466–77
    [Google Scholar]
  62. Kuppers R. 2009. The biology of Hodgkin's lymphoma. Nat. Rev. Cancer 9:15–27
    [Google Scholar]
  63. Kushner BH, Cheung IY, Modak S, Basu EM, Roberts SS, Cheung NK 2018. Humanized 3F8 anti-GD2 monoclonal antibody dosing with granulocyte-macrophage colony-stimulating factor in patients with resistant neuroblastoma: a phase 1 clinical trial. JAMA Oncol 4:1729–35
    [Google Scholar]
  64. Labanieh L, Majzner RG, Mackall CL 2018. Programming CAR-T cells to kill cancer. Nat. Biomed. Eng. 2:377–91
    [Google Scholar]
  65. Lamba JK, Chauhan L, Shin M, Loken MR, Pollard JA et al. 2017. CD33 splicing polymorphism determines gemtuzumab ozogamicin response in de novo acute myeloid leukemia: report from randomized phase III Children's Oncology Group trial AAML0531. J. Clin. Oncol. 35:2674–82
    [Google Scholar]
  66. Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C et al. 2015. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385:517–28
    [Google Scholar]
  67. Lee DW, Santomasso BD, Locke FL, Ghobadi A, Turtle CJ et al. 2019. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol. Blood Marrow Transplant. 25:625–38
    [Google Scholar]
  68. Li F, Emmerton KK, Jonas M, Zhang X, Miyamoto JB et al. 2016. Intracellular released payload influences potency and bystander-killing effects of antibody-drug conjugates in preclinical models. Cancer Res 76:2710–19
    [Google Scholar]
  69. Locatelli F, Mauz-Koerholz C, Neville K, Llort A, Beishuizen A et al. 2018. Brentuximab vedotin for paediatric relapsed or refractory Hodgkin's lymphoma and anaplastic large-cell lymphoma: a multicentre, open-label, phase 1/2 study. Lancet Haematol 5:e450–61
    [Google Scholar]
  70. Loo D, Alderson RF, Chen FZ, Huang L, Zhang W et al. 2012. Development of an Fc-enhanced anti-B7-H3 monoclonal antibody with potent antitumor activity. Clin. Cancer Res. 18:3834–45
    [Google Scholar]
  71. Louis CU, Savoldo B, Dotti G, Pule M, Yvon E et al. 2011. Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood 118:6050–56
    [Google Scholar]
  72. Ma X, Liu Y, Liu Y, Alexandrov LB, Edmonson MN et al. 2018. Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours. Nature 555:7696371–76
    [Google Scholar]
  73. Magyarosy E, Sebestyen A, Timar J 2001. Expression of metastasis associated proteins, CD44v6 and NM23-H1, in pediatric acute lymphoblastic leukemia. Anticancer Res 21:819–23
    [Google Scholar]
  74. Majzner RG, Heitzeneder S, Mackall CL 2017. Harnessing the immunotherapy revolution for the treatment of childhood cancers. Cancer Cell 31:476–85
    [Google Scholar]
  75. Majzner RG, Mackall CL. 2018. Tumor antigen escape from CAR T-cell therapy. Cancer Discov 8:1219–26
    [Google Scholar]
  76. Majzner RG, Weber EW, Lynn RC, Xu P, Mackall CL 2018. Neurotoxicity associated with a high-affinity GD2 CAR—letter. Cancer Immunol. Res. 6:494–95
    [Google Scholar]
  77. Malempati S, Weigel BJ, Chi YY, Tian J, Anderson JR et al. 2019. The addition of cixutumumab or temozolomide to intensive multiagent chemotherapy is feasible but does not improve outcome for patients with metastatic rhabdomyosarcoma: a report from the Children's Oncology Group. Cancer 125:290–97
    [Google Scholar]
  78. Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM et al. 2014. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371:1507–17
    [Google Scholar]
  79. Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M et al. 2018. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 378:439–48
    [Google Scholar]
  80. Meinhardt A, Burkhardt B, Zimmermann M, Borkhardt A, Kontny U et al. 2010. Phase II window study on rituximab in newly diagnosed pediatric mature B-cell non-Hodgkin's lymphoma and Burkitt leukemia. J. Clin. Oncol. 28:3115–21
    [Google Scholar]
  81. Merchant MS, Wright M, Baird K, Wexler LH, Rodriguez-Galindo C et al. 2016. Phase I clinical trial of ipilimumab in pediatric patients with advanced solid tumors. Clin. Cancer Res. 22:1364–70
    [Google Scholar]
  82. Milone MC, Fish JD, Carpenito C, Carroll RG, Binder GK et al. 2009. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol. Ther. 17:1453–64
    [Google Scholar]
  83. Modak S, Guo HF, Humm JL, Smith-Jones PM, Larson SM, Cheung NK 2005. Radioimmunotargeting of human rhabdomyosarcoma using monoclonal antibody 8H9. Cancer Biother. Radiopharm. 20:534–46
    [Google Scholar]
  84. Mody R, Naranjo A, Van Ryn C, Yu AL, London WB et al. 2017. Irinotecan-temozolomide with temsirolimus or dinutuximab in children with refractory or relapsed neuroblastoma (COG ANBL1221): an open-label, randomised, phase 2 trial. Lancet Oncol 18:946–57
    [Google Scholar]
  85. Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA 2010. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol. Ther. 18:843–51
    [Google Scholar]
  86. Mortensen AC, Spiegelberg D, Haylock AK, Lundqvist H, Nestor M 2018. Preclinical evaluation of a novel engineered recombinant human anti-CD44v6 antibody for potential use in radio-immunotherapy. Int. J. Oncol. 52:1875–85
    [Google Scholar]
  87. Mosse YP, Laudenslager M, Longo L, Cole KA, Wood A et al. 2008. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature 455:930–35
    [Google Scholar]
  88. Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ et al. 2015. Nivolumab versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 373:1803–13
    [Google Scholar]
  89. Mount CW, Majzner RG, Sundaresh S, Arnold EP, Kadapakkam M et al. 2018. Potent antitumor efficacy of anti-GD2 CAR T cells in H3-K27M+ diffuse midline gliomas. Nat. Med. 24:572–79
    [Google Scholar]
  90. Muller P, Kreuzaler M, Khan T, Thommen DS, Martin K et al. 2015. Trastuzumab emtansine (T-DM1) renders HER2+ breast cancer highly susceptible to CTLA-4/PD-1 blockade. Sci. Transl. Med. 7:315ra188
    [Google Scholar]
  91. Oeffinger KC, Mertens AC, Sklar CA, Kawashima T, Hudson MM et al. 2006. Chronic health conditions in adult survivors of childhood cancer. N. Engl. J. Med. 355:1572–82
    [Google Scholar]
  92. Ogitani Y, Hagihara K, Oitate M, Naito H, Agatsuma T 2016. Bystander killing effect of DS-8201a, a novel anti-human epidermal growth factor receptor 2 antibody-drug conjugate, in tumors with human epidermal growth factor receptor 2 heterogeneity. Cancer Sci 107:1039–46
    [Google Scholar]
  93. Ohno T, Ouchida M, Lee L, Gatalica Z, Rao VN, Reddy ES 1994. The EWS gene, involved in Ewing family of tumors, malignant melanoma of soft parts and desmoplastic small round cell tumors, codes for an RNA binding protein with novel regulatory domains. Oncogene 9:3087–97
    [Google Scholar]
  94. Olombel G, Guerin E, Guy J, Perrot JY, Dumezy F et al. 2016. The level of blast CD33 expression positively impacts the effect of gemtuzumab ozogamicin in patients with acute myeloid leukemia. Blood 127:2157–60
    [Google Scholar]
  95. Onda M, Wang QC, Guo HF, Cheung NK, Pastan I 2004. In vitro and in vivo cytotoxic activities of recombinant immunotoxin 8H9(Fv)-PE38 against breast cancer, osteosarcoma, and neuroblastoma. Cancer Res 64:1419–24
    [Google Scholar]
  96. Orentas RJ, Nordlund J, He J, Sindiri S, Mackall C et al. 2014. Bioinformatic description of immunotherapy targets for pediatric T-cell leukemia and the impact of normal gene sets used for comparison. Front. Oncol. 4:134
    [Google Scholar]
  97. Orentas RJ, Yang JJ, Wen X, Wei JS, Mackall CL, Khan J 2012. Identification of cell surface proteins as potential immunotherapy targets in 12 pediatric cancers. Front. Oncol. 2:194
    [Google Scholar]
  98. Padovan-Merhar OM, Raman P, Ostrovnaya I, Kalletla K, Rubnitz KR et al. 2016. Enrichment of targetable mutations in the relapsed neuroblastoma genome. PLOS Genet 12:e1006501
    [Google Scholar]
  99. Pappo AS, Patel SR, Crowley J, Reinke DK, Kuenkele KP et al. 2011. R1507, a monoclonal antibody to the insulin-like growth factor 1 receptor, in patients with recurrent or refractory Ewing sarcoma family of tumors: results of a phase II Sarcoma Alliance for Research Through Collaboration study. J. Clin. Oncol. 29:4541–47
    [Google Scholar]
  100. Pappo AS, Vassal G, Crowley JJ, Bolejack V, Hogendoorn PC et al. 2014. A phase 2 trial of R1507, a monoclonal antibody to the insulin-like growth factor-1 receptor (IGF-1R), in patients with recurrent or refractory rhabdomyosarcoma, osteosarcoma, synovial sarcoma, and other soft tissue sarcomas: results of a Sarcoma Alliance for Research Through Collaboration study. Cancer 120:2448–56
    [Google Scholar]
  101. Pauken KE, Wherry EJ. 2015. Overcoming T cell exhaustion in infection and cancer. Trends Immunol 36:265–76
    [Google Scholar]
  102. Paul MR, Wong V, Aristizabal P, Kuo DJ 2019. Treatment of recurrent refractory pediatric Pre-B acute lymphoblastic leukemia using inotuzumab ozogamicin monotherapy resulting in CD22 antigen expression loss as a mechanism of therapy resistance. J. Pediatr. Hematol. Oncol. 41:e54649
    [Google Scholar]
  103. Picarda E, Ohaegbulam KC, Zang X 2016. Molecular pathways: targeting B7-H3 (CD276) for human cancer immunotherapy. Clin. Cancer Res. 22:3425–31
    [Google Scholar]
  104. Pinto N, Kuenkele A, Gardner R, Finney O, Brakke H et al. 2018. ENCIT-01: A phase 1 study of autologous T-cells lentivirally transduced to express CD171-specific chimeric antigen receptors for recurrent/refractory high-risk neuroblastoma Abstract presented at Advances in Neuroblastoma Research Association (ANRA) meeting San Francisco: Abstr 133
  105. Pollard JA, Loken M, Gerbing RB, Raimondi SC, Hirsch BA et al. 2016. CD33 expression and its association with gemtuzumab ozogamicin response: results from the randomized phase III Children's Oncology Group trial AAML0531. J. Clin. Oncol. 34:747–55
    [Google Scholar]
  106. Pule MA, Savoldo B, Myers GD, Rossig C, Russell HV et al. 2008. Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat. Med. 14:1264–70
    [Google Scholar]
  107. Rayes A, McMasters RL, O'Brien MM 2016. Lineage switch in MLL-rearranged infant leukemia following CD19-directed therapy. Pediatr. Blood Cancer 63:1113–15
    [Google Scholar]
  108. Richman SA, Milone MC. 2018. Neurotoxicity associated with a high-affinity GD2 CAR—response. Cancer Immunol. Res. 6:496–97
    [Google Scholar]
  109. Richman SA, Nunez-Cruz S, Moghimi B, Li LZ, Gershenson ZT et al. 2018. High-affinity GD2-specific CAR T cells induce fatal encephalitis in a preclinical neuroblastoma model. Cancer Immunol. Res. 6:36–46
    [Google Scholar]
  110. Rios-Doria J, Harper J, Rothstein R, Wetzel L, Chesebrough J et al. 2017. Antibody-drug conjugates bearing pyrrolobenzodiazepine or tubulysin payloads are immunomodulatory and synergize with multiple immunotherapies. Cancer Res 77:2686–98
    [Google Scholar]
  111. Rytting M, Triche L, Thomas D, O'Brien S, Kantarjian H 2014. Initial experience with CMC-544 (inotuzumab ozogamicin) in pediatric patients with relapsed B-cell acute lymphoblastic leukemia. Pediatr. Blood Cancer 61:369–72
    [Google Scholar]
  112. Sano R, Krytska K, Larmour CE, Raman P, Martinez D et al. 2019. An antibody-drug conjugate directed to the ALK receptor demonstrates efficacy in preclinical models of neuroblastoma. Sci. Transl. Med. 11:eaau9732
    [Google Scholar]
  113. Schulz G, Cheresh DA, Varki NM, Yu A, Staffileno LK, Reisfeld RA 1984. Detection of ganglioside GD2 in tumor tissues and sera of neuroblastoma patients. Cancer Res 44:5914–20
    [Google Scholar]
  114. Schumacher-Kuckelkorn R, Hero B, Ernestus K, Berthold F 2005. Lacking immunocytological GD2 expression in neuroblastoma: report of 3 cases. Pediatr. Blood Cancer 45:195–201
    [Google Scholar]
  115. Schumacher-Kuckelkorn R, Volland R, Gradehandt A, Hero B, Simon T, Berthold F 2017. Lack of immunocytological GD2 expression on neuroblastoma cells in bone marrow at diagnosis, during treatment, and at recurrence. Pediatr. Blood Cancer 64:46–56
    [Google Scholar]
  116. Schwab M, Alitalo K, Klempnauer KH, Varmus HE, Bishop JM et al. 1983. Amplified DNA with limited homology to myc cellular oncogene is shared by human neuroblastoma cell lines and a neuroblastoma tumour. Nature 305:5931245–48
    [Google Scholar]
  117. Seaman S, Zhu Z, Saha S, Zhang XM, Yang MY et al. 2017. Eradication of tumors through simultaneous ablation of CD276/B7-H3-positive tumor cells and tumor vasculature. Cancer Cell 31:501–15.e8
    [Google Scholar]
  118. Shah NN, Stevenson MS, Yuan CM, Richards K, Delbrook C et al. 2015. Characterization of CD22 expression in acute lymphoblastic leukemia. Pediatr. Blood Cancer 62:964–69
    [Google Scholar]
  119. Shlien A, Campbell BB, de Borja R, Alexandrov LB, Merico D et al. 2015. Combined hereditary and somatic mutations of replication error repair genes result in rapid onset of ultra-hypermutated cancers. Nat. Genet. 47:257–62
    [Google Scholar]
  120. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V et al. 2001. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344:783–92
    [Google Scholar]
  121. Sliwkowski MX, Mellman I. 2013. Antibody therapeutics in cancer. Science 341:1192–98
    [Google Scholar]
  122. Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM et al. 2014. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med. 371:2189–99
    [Google Scholar]
  123. Sotillo E, Barrett DM, Black KL, Bagashev A, Oldridge D et al. 2015. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov 5:1282–95
    [Google Scholar]
  124. Souweidane MM, Kramer K, Pandit-Taskar N, Zhou Z, Haque S et al. 2018. Convection-enhanced delivery for diffuse intrinsic pontine glioma: a single-centre, dose-escalation, phase 1 trial. Lancet Oncol 19:1040–50
    [Google Scholar]
  125. Suzuki M, Cheung NK. 2015. Disialoganglioside GD2 as a therapeutic target for human diseases. Expert Opin. Ther. Targets 19:349–62
    [Google Scholar]
  126. Tarlock K, Alonzo TA, Gerbing RB, Raimondi SC, Hirsch BA et al. 2016. Gemtuzumab ozogamicin reduces relapse risk in FLT3/ITD acute myeloid leukemia: a report from the Children's Oncology Group. Clin. Cancer Res. 22:1951–57
    [Google Scholar]
  127. Topalian SL, Drake CG, Pardoll DM 2015. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27:450–61
    [Google Scholar]
  128. Topp MS, Gokbuget N, Zugmaier G, Klappers P, Stelljes M et al. 2014. Phase II trial of the anti-CD19 bispecific T cell-engager blinatumomab shows hematologic and molecular remissions in patients with relapsed or refractory B-precursor acute lymphoblastic leukemia. J. Clin. Oncol. 32:4134–40
    [Google Scholar]
  129. Tsuchida T, Saxton RE, Morton DL, Irie RF 1987. Gangliosides of human melanoma. J. Natl. Cancer Inst. 78:45–54
    [Google Scholar]
  130. von Stackelberg A, Locatelli F, Zugmaier G, Handgretinger R, Trippett TM et al. 2016. Phase I/phase II study of blinatumomab in pediatric patients with relapsed/refractory acute lymphoblastic leukemia. J. Clin. Oncol. 34:4381–89
    [Google Scholar]
  131. Wagner LM, Fouladi M, Ahmed A, Krailo MD, Weigel B et al. 2015. Phase II study of cixutumumab in combination with temsirolimus in pediatric patients and young adults with recurrent or refractory sarcoma: a report from the Children's Oncology Group. Pediatr. Blood Cancer 62:440–44
    [Google Scholar]
  132. Walker AJ, Majzner RG, Zhang L, Wanhainen K, Long AH et al. 2017. Tumor antigen and receptor densities regulate efficacy of a chimeric antigen receptor targeting anaplastic lymphoma kinase. Mol. Ther. 25:2189–201
    [Google Scholar]
  133. Walter RB, Gooley TA, van der Velden VH, Loken MR, van Dongen JJ et al. 2007. CD33 expression and P-glycoprotein-mediated drug efflux inversely correlate and predict clinical outcome in patients with acute myeloid leukemia treated with gemtuzumab ozogamicin monotherapy. Blood 109:4168–70
    [Google Scholar]
  134. Weigel B, Malempati S, Reid JM, Voss SD, Cho SY et al. 2014. Phase 2 trial of cixutumumab in children, adolescents, and young adults with refractory solid tumors: a report from the Children's Oncology Group. Pediatr. Blood Cancer 61:452–56
    [Google Scholar]
  135. Weiss GJ, Beck J, Braun DP, Bornemann-Kolatzki K, Barilla H et al. 2017. Tumor cell-free DNA copy number instability predicts therapeutic response to immunotherapy. Clin. Cancer Res. 23:5074–81
    [Google Scholar]
  136. Wimmer K, Kratz CP. 2010. Constitutional mismatch repair-deficiency syndrome. Haematologica 95:699–701
    [Google Scholar]
  137. Wood AC, Maris JM, Gorlick R, Kolb EA, Keir ST et al. 2013. Initial testing (stage 1) of the antibody-maytansinoid conjugate, IMGN901 (Lorvotuzumab mertansine), by the pediatric preclinical testing program. Pediatr. Blood Cancer 60:1860–67
    [Google Scholar]
  138. Wu G, Broniscer A, McEachron TA, Lu C, Paugh BS et al. 2012. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat. Genet. 44:251–53
    [Google Scholar]
  139. Yoon DH, Osborn MJ, Tolar J, Kim CJ 2018. Incorporation of immune checkpoint blockade into chimeric antigen receptor T cells (CAR-Ts): combination or built-in CAR-T. Int. J. Mol. Sci. 19:e340
    [Google Scholar]
  140. Younes A, Bartlett NL, Leonard JP, Kennedy DA, Lynch CM et al. 2010. Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N. Engl. J. Med. 363:1812–21
    [Google Scholar]
  141. Yu AL, Gilman AL, Ozkaynak MF, London WB, Kreissman SG et al. 2010. Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N. Engl. J. Med. 363:1324–34
    [Google Scholar]
  142. Zoghbi A, Zur Stadt U, Winkler B, Muller I, Escherich G 2017. Lineage switch under blinatumomab treatment of relapsed common acute lymphoblastic leukemia without MLL rearrangement. Pediatr. Blood Cancer 64:e26594
    [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-030419-033436
Loading
/content/journals/10.1146/annurev-cancerbio-030419-033436
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error