1932

Abstract

Many essential biological processes are regulated through proximity, from membrane receptor signaling to transcriptional activity. The ubiquitin-proteasome system controls protein degradation, with ubiquitin ligases as the rate-limiting step. Ubiquitin ligases are commonly controlled at the level of substrate recruitment and, therefore, by proximity. There are natural and synthetic small molecules that also operate through induced proximity. For example, thalidomide is effective in treating multiple myeloma and functions as a molecular glue that stabilizes novel protein-protein interactions between a ubiquitin ligase and proteins not otherwise targeted by the ligase, leading to neo-substrate degradation. Emerging data on new degrader molecules have uncovered diverse mechanisms distinct from molecular glues, which often mirror the regulatory mechanisms that control substrate-ligase proximity in nature. In this review, we summarize our current understanding of biological and synthetic regulation of protein degradation and share our view on how these diverse mechanisms have inspired novel therapeutic directions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-051420-114114
2021-03-04
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/5/1/annurev-cancerbio-051420-114114.html?itemId=/content/journals/10.1146/annurev-cancerbio-051420-114114&mimeType=html&fmt=ahah

Literature Cited

  1. Ahn J, Hao C, Yan J, DeLucia M, Meherns J et al. 2012. HIV/SIV accessory virulence factor Vpx loads the host cell restriction factor SAMHD1 onto the E3 ubiquitin ligase complex CRL4DCAF1. J. Biol. Chem. 287:12550–58
    [Google Scholar]
  2. Ahn J, Vu T, Novince Z, Guerrero-Santoro J, Rapic-Otrin V, Gronenborn AM 2010. HIV-1 Vpr loads uracil DNA glycosylase-2 onto DCAF1, a substrate recognition subunit of a cullin 4A-RING E3 ubiquitin ligase for proteasome-dependent degradation. J. Biol. Chem. 285:37333–41
    [Google Scholar]
  3. An J, Ponthier CM, Sack R, Seebacher J, Stadler MB et al. 2017. pSILAC mass spectrometry reveals ZFP91 as IMiD-dependent substrate of the CRL4CRBN ubiquitin ligase. Nat. Commun. 8:15398
    [Google Scholar]
  4. Bayle JH, Grimley JS, Stankunas K, Gestwicki JE, Wandless TJ, Crabtree GR 2006. Rapamycin analogs with differential binding specificity permit orthogonal control of protein activity. Chem. Biol. 13:99–107
    [Google Scholar]
  5. Beke L, Kig C, Linders J, Boens S, Boeckx A et al. 2015. MELK-T1, a small-molecule inhibitor of protein kinase MELK, decreases DNA-damage tolerance in proliferating cancer cells. Biosci. Rep. 35:6e00267
    [Google Scholar]
  6. Bondeson DP, Crews CM. 2017. Targeted protein degradation by small molecules. Annu. Rev. Pharmacol. Toxicol. 57:107–23
    [Google Scholar]
  7. Bondeson DP, Mares A, Smith IE, Ko E, Campos S et al. 2015. Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat. Chem. Biol. 11:611–17
    [Google Scholar]
  8. Bouhamdan M, Benichou S, Rey F, Navarro J-M, Agostini I et al. 1996. Human immunodeficiency virus type 1 Vpr protein binds to the uracil DNA glycosylase DNA repair enzyme. J. Virol. 70:697–704
    [Google Scholar]
  9. Burslem GM, Crews CM. 2020. Proteolysis-targeting chimeras as therapeutics and tools for biological discovery. Cell 181:102–14
    [Google Scholar]
  10. Bussiere DE, Xie L, Srinivas H, Shu W, Burke A et al. 2020. Structural basis of indisulam-mediated RBM39 recruitment to DCAF15 E3 ligase complex. Nat. Chem. Biol. 16:15–23
    [Google Scholar]
  11. Chamberlain PP, Lopez-Girona A, Miller K, Carmel G, Pagarigan B et al. 2014. Structure of the human Cereblon–DDB1–lenalidomide complex reveals basis for responsiveness to thalidomide analogs. Nat. Struct. Mol. Biol. 21:803–9
    [Google Scholar]
  12. Choi WS, Jeong B-C, Joo YJ, Lee M-R, Kim J et al. 2010. Structural basis for the recognition of N-end rule substrates by the UBR box of ubiquitin ligases. Nat. Struct. Mol. Biol. 17:1175–81
    [Google Scholar]
  13. Connell P, Ballinger CA, Jiang J, Wu Y, Thompson LJ et al. 2001. The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins. Nat. Cell Biol. 3:93–96
    [Google Scholar]
  14. Dauvois S, Danielian PS, White R, Parker MG 1992. Antiestrogen ICI 164,384 reduces cellular estrogen receptor content by increasing its turnover. PNAS 89:4037–41
    [Google Scholar]
  15. de Wispelaere M, Du G, Donovan KA, Zhang T, Eleuteri NA et al. 2019. Small molecule degraders of the hepatitis C virus protease reduce susceptibility to resistance mutations. Nat. Commun. 10:3468
    [Google Scholar]
  16. Demand J, Alberti S, Patterson C, Höhfeld J 2001. Cooperation of a ubiquitin domain protein and an E3 ubiquitin ligase during chaperone/proteasome coupling. Curr. Biol. 11:1569–77
    [Google Scholar]
  17. Deshaies RJ, Crews C, Sakamoto KM 2006. Proteolysis targeting chimeric pharmaceutical Eur. Patent EP1322750A4
  18. Dharmasiri N, Dharmasiri S, Estelle M 2005. The F-box protein TIR1 is an auxin receptor. Nature 435:441–45
    [Google Scholar]
  19. Donovan KA, An J, Nowak RP, Yuan JC, Fink EC et al. 2018. Thalidomide promotes degradation of SALL4, a transcription factor implicated in Duane Radial Ray syndrome. eLife 7:e38430
    [Google Scholar]
  20. Donovan KA, Ferguson FM, Bushman JW, Eleuteri NA, Bhunia D et al. 2020. Mapping the degradable kinome provides a resource for expedited degrader development. Cell 183:171431.e10
    [Google Scholar]
  21. Drummond ML, Williams CI. 2019. In silico modeling of PROTAC-mediated ternary complexes: validation and application. J. Chem. Inf. Model. 59:1634–44
    [Google Scholar]
  22. Du X, Volkov OA, Czerwinski RM, Tan H, Huerta C et al. 2019. Structural basis and kinetic pathway of RBM39 recruitment to DCAF15 by a sulfonamide molecular glue E7820. Structure 27:1625–33.e3
    [Google Scholar]
  23. Dwane L, Gallagher WM, Chonghaile TN, O'Connor DP 2017. The emerging role of non-traditional ubiquitination in oncogenic pathways. J. Biol. Chem. 292:3543–51
    [Google Scholar]
  24. Farnaby W, Koegl M, Roy MJ, Whitworth C, Diers E et al. 2019. BAF complex vulnerabilities in cancer demonstrated via structure-based PROTAC design. Nat. Chem. Biol. 15:672–80
    [Google Scholar]
  25. Faust TB, Yoon H, Nowak RP, Donovan KA, Li Z et al. 2020. Structural complementarity facilitates E7820-mediated degradation of RBM39 by DCAF15. Nat. Chem. Biol. 16:7–14
    [Google Scholar]
  26. Fischer ES, Böhm K, Lydeard JR, Yang H, Stadler MB et al. 2014. Structure of the DDB1–CRBN E3 ubiquitin ligase in complex with thalidomide. Nature 512:49–53
    [Google Scholar]
  27. Fischer ES, Scrima A, Böhm K, Matsumoto S, Lingaraju GM et al. 2011. The molecular basis of CRL4DDB2/CSA ubiquitin ligase architecture, targeting, and activation. Cell 147:1024–39
    [Google Scholar]
  28. Fukuoka K, Usuda J, Iwamoto Y, Fukumoto H, Nakamura T et al. 2001. Mechanisms of action of the novel sulfonamide anticancer agent E7070 on cell cycle progression in human non-small cell lung cancer cells. Investig. New Drugs 19:219–27
    [Google Scholar]
  29. Galdeano C, Gadd MS, Soares P, Scaffidi S, Van Molle I et al. 2014. Structure-guided design and optimization of small molecules targeting the protein–protein interaction between the von Hippel–Lindau (VHL) E3 ubiquitin ligase and the hypoxia inducible factor (HIF) alpha subunit with in vitro nanomolar affinities. J. Med. Chem. 57:8657–63
    [Google Scholar]
  30. Gandhi AK, Kang J, Havens CG, Conklin T, Ning Y et al. 2014. Immunomodulatory agents lenalidomide and pomalidomide co‐stimulate T cells by inducing degradation of T cell repressors Ikaros and Aiolos via modulation of the E3 ubiquitin ligase complex CRL4CRBN. Br. J. Haematol. 164:811–21
    [Google Scholar]
  31. Garcia-Seisdedos H, Empereur-Mot C, Elad N, Levy ED 2017. Proteins evolve on the edge of supramolecular self-assembly. Nature 548:7666244–47
    [Google Scholar]
  32. Guan J, Zhou W, Hafner M, Blake RA, Chalouni C et al. 2019. Therapeutic ligands antagonize estrogen receptor function by impairing its mobility. Cell 178:949–63.e18
    [Google Scholar]
  33. Guilfoyle T, Hagen G, Larrieu A, Vernoux T 2015. Comparison of plant hormone signalling systems. Essays Biochem 58:165–81
    [Google Scholar]
  34. Gustafson JL, Neklesa TK, Cox CS, Roth AG, Buckley DL et al. 2015. Small‐molecule‐mediated degradation of the androgen receptor through hydrophobic tagging. Angew. Chem. Int. Ed. 54:9659–62
    [Google Scholar]
  35. Han T, Goralski M, Gaskill N, Capota E, Kim J et al. 2017. Anticancer sulfonamides target splicing by inducing RBM39 degradation via recruitment to DCAF15. Science 356:eaal3755
    [Google Scholar]
  36. Hansen JD, Correa M, Nagy MA, Alexander M, Plantevin V et al. 2020. Discovery of CRBN E3 ligase modulator CC-92480 for the treatment of relapsed and refractory multiple myeloma. J. Med. Chem. 63:136648–76
    [Google Scholar]
  37. Hao B, Oehlmann S, Sowa ME, Harper JW, Pavletich NP 2007. Structure of a Fbw7-Skp1-cyclin E complex: multisite-phosphorylated substrate recognition by SCF ubiquitin ligases. Mol. Cell 26:131–43
    [Google Scholar]
  38. Hao B, Zheng N, Schulman BA, Wu G, Miller JJ et al. 2005. Structural basis of the Cks1-dependent recognition of p27Kip1 by the SCFSkp2 ubiquitin ligase. Mol. Cell 20:9–19
    [Google Scholar]
  39. Hon W-C, Wilson MI, Harlos K, Claridge TD, Schofield CJ et al. 2002. Structural basis for the recognition of hydroxyproline in HIF-1α by pVHL. Nature 417:975–78
    [Google Scholar]
  40. Hrecka K, Hao C, Gierszewska M, Swanson SK, Kesik-Brodacka M et al. 2011. Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature 474:658–61
    [Google Scholar]
  41. Huang LE, Gu J, Schau M, Bunn HF 1998. Regulation of hypoxia-inducible factor 1α is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. PNAS 95:7987–92
    [Google Scholar]
  42. Hwang C-S, Shemorry A, Varshavsky A 2010. N-terminal acetylation of cellular proteins creates specific degradation signals. Science 327:973–77
    [Google Scholar]
  43. Ito T, Ando H, Suzuki T, Ogura T, Hotta K et al. 2010. Identification of a primary target of thalidomide teratogenicity. Science 327:1345–50
    [Google Scholar]
  44. Itoh Y, Ishikawa M, Naito M, Hashimoto Y 2010. Protein knockdown using methyl bestatin-ligand hybrid molecules: design and synthesis of inducers of ubiquitination-mediated degradation of cellular retinoic acid-binding proteins. J. Am. Chem. Soc. 132:5820–26
    [Google Scholar]
  45. Jiang B, Wang ES, Donovan KA, Liang Y, Fischer ES et al. 2019. Development of dual and selective degraders of cyclin‐dependent kinases 4 and 6. Angew. Chem. Int. Ed. 58:6321–26
    [Google Scholar]
  46. Jones LH. 2018. Small-molecule kinase downregulators. Cell Chem. Biol. 25:30–35
    [Google Scholar]
  47. Kaelin WG. 2018. The von Hippel–Lindau tumor suppressor protein. Annu. Rev. Cancer Biol. 2:91–109
    [Google Scholar]
  48. Kepinski S, Leyser O. 2004. Auxin-induced SCFTIR1–Aux/IAA interaction involves stable modification of the SCFTIR1 complex. PNAS 101:12381–86
    [Google Scholar]
  49. Kerres N, Steurer S, Schlager S, Bader G, Berger H et al. 2017. Chemically induced degradation of the oncogenic transcription factor BCL6. Cell Rep 20:2860–75
    [Google Scholar]
  50. Kohlhase J, Chitayat D, Kotzot D, Ceylaner S, Froster UG et al. 2005. SALL4 mutations in Okihiro syndrome (Duane‐radial ray syndrome), acro‐renal‐ocular syndrome, and related disorders. Hum. Mutat. 26:176–83
    [Google Scholar]
  51. Kohlhase J, Schubert L, Liebers M, Rauch A, Becker K et al. 2003. Mutations at the SALL4 locus on chromosome 20 result in a range of clinically overlapping phenotypes, including Okihiro syndrome, Holt-Oram syndrome, acro-renal-ocular syndrome, and patients previously reported to represent thalidomide embryopathy. J. Med. Genet. 40:473–78
    [Google Scholar]
  52. Koren I, Timms RT, Kula T, Xu Q, Li MZ, Elledge SJ 2018. The eukaryotic proteome is shaped by E3 ubiquitin ligases targeting C-terminal degrons. Cell 173:1622–35.e14
    [Google Scholar]
  53. Krönke J, Fink EC, Hollenbach PW, MacBeth KJ, Hurst SN et al. 2015. Lenalidomide induces ubiquitination and degradation of CK1α in del(5q) MDS. Nature 523:183–88
    [Google Scholar]
  54. Krönke J, Udeshi ND, Narla A, Grauman P, Hurst SN et al. 2014. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 343:301–5
    [Google Scholar]
  55. Laguette N, Brégnard C, Hue P, Basbous J, Yatim A et al. 2014. Premature activation of the SLX4 complex by Vpr promotes G2/M arrest and escape from innate immune sensing. Cell 156:134–45
    [Google Scholar]
  56. Lai AC, Crews CM. 2017. Induced protein degradation: an emerging drug discovery paradigm. Nat. Rev. Drug Discov. 16:101–14
    [Google Scholar]
  57. Lai AC, Toure M, Hellerschmied D, Salami J, Jaime-Figueroa S et al. 2016. Modular PROTAC design for the degradation of oncogenic BCR-ABL. Angew. Chem. Int. Ed. Engl. 55:807–10
    [Google Scholar]
  58. Lee J, Zhou P. 2007. DCAFs, the missing link of the CUL4-DDB1 ubiquitin ligase. Mol. Cell 26:775–80
    [Google Scholar]
  59. Leng F, Yu J, Zhang C, Alejo S, Hoang N et al. 2018. Methylated DNMT1 and E2F1 are targeted for proteolysis by L3MBTL3 and CRL4DCAF5 ubiquitin ligase. Nat. Commun. 9:1641
    [Google Scholar]
  60. Li P, Banjade S, Cheng H-C, Kim S, Chen B et al. 2012. Phase transitions in the assembly of multivalent signalling proteins. Nature 483:336–40
    [Google Scholar]
  61. Li T, Robert EI, Van Breugel PC, Strubin M, Zheng N 2010. A promiscuous α-helical motif anchors viral hijackers and substrate receptors to the CUL4–DDB1 ubiquitin ligase machinery. Nat. Struct. Mol. Biol. 17:105–11
    [Google Scholar]
  62. Lobbestael E, Civiero L, De Wit T, Taymans J-M, Greggio E, Baekelandt V 2016. Pharmacological LRRK2 kinase inhibition induces LRRK2 protein destabilization and proteasomal degradation. Sci. Rep. 6:33897
    [Google Scholar]
  63. Lu G, Middleton RE, Sun H, Naniong M, Ott CJ et al. 2014. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science 343:305–9
    [Google Scholar]
  64. Manasanch EE, Orlowski RZ. 2017. Proteasome inhibitors in cancer therapy. Nat. Rev. Clin. Oncol. 14:417–33
    [Google Scholar]
  65. Matyskiela ME, Clayton T, Zheng X, Mayne C, Tran E et al. 2020. Crystal structure of the SALL4–pomalidomide–cereblon–DDB1 complex. Nat. Struct. Mol. Biol. 27:319–22
    [Google Scholar]
  66. Matyskiela ME, Couto S, Zheng X, Lu G, Hui J et al. 2018a. SALL4 mediates teratogenicity as a thalidomide-dependent cereblon substrate. Nat. Chem. Biol. 14:981–87
    [Google Scholar]
  67. Matyskiela ME, Lu G, Ito T, Pagarigan B, Lu C-C et al. 2016. A novel cereblon modulator recruits GSPT1 to the CRL4CRBN ubiquitin ligase. Nature 535:252–57
    [Google Scholar]
  68. Matyskiela ME, Zhang W, Man H-W, Muller G, Khambatta G et al. 2018b. A cereblon modulator (CC-220) with improved degradation of Ikaros and Aiolos. J. Med. Chem. 61:535–42
    [Google Scholar]
  69. Mena EL, Kjolby RA, Saxton RA, Werner A, Lew BG et al. 2018. Dimerization quality control ensures neuronal development and survival. Science 362:eaap8236
    [Google Scholar]
  70. Mészáros B, Kumar M, Gibson TJ, Uyar B, Dosztányi Z 2017. Degrons in cancer. Sci. Signal. 10:eaak9982
    [Google Scholar]
  71. Min J-H, Yang H, Ivan M, Gertler F, Kaelin WG, Pavletich NP 2002. Structure of an HIF-1α-pVHL complex: hydroxyproline recognition in signaling. Science 296:1886–89
    [Google Scholar]
  72. Neklesa TK, Winkler JD, Crews CM 2017. Targeted protein degradation by PROTACs. Pharmacol. Ther. 174:138–44
    [Google Scholar]
  73. Nowak RP, DeAngelo SL, Buckley D, He Z, Donovan KA et al. 2018. Plasticity in binding confers selectivity in ligand-induced protein degradation. Nat. Chem. Biol. 14:706–14
    [Google Scholar]
  74. Okuhira K, Ohoka N, Sai K, Nishimaki-Mogami T, Itoh Y et al. 2011. Specific degradation of CRABP‐II via cIAP1‐mediated ubiquitylation induced by hybrid molecules that crosslink cIAP1 and the target protein. FEBS Lett 585:1147–52
    [Google Scholar]
  75. Osborne C, Wakeling A, Nicholson R 2004. Fulvestrant: an oestrogen receptor antagonist with a novel mechanism of action. Br. J. Cancer 90:S2–6
    [Google Scholar]
  76. Owa T, Yoshino H, Okauchi T, Yoshimatsu K, Ozawa Y et al. 1999. Discovery of novel antitumor sulfonamides targeting G1 phase of the cell cycle. J. Med. Chem. 42:3789–99
    [Google Scholar]
  77. Palumbo A, Hajek R, Delforge M, Kropff M, Petrucci MT et al. 2012. Continuous lenalidomide treatment for newly diagnosed multiple myeloma. New Engl. J. Med. 366:1759–69
    [Google Scholar]
  78. Petzold G, Fischer ES, Thomä NH 2016. Structural basis of lenalidomide-induced CK1α degradation by the CRL4CRBN ubiquitin ligase. Nature 532:127–30
    [Google Scholar]
  79. Pugh CW, O'Rourke JF, Nagao M, Gleadle JM, Ratcliffe PJ 1997. Activation of hypoxia-inducible factor-1; definition of regulatory domains within the α subunit. J. Biol. Chem. 272:11205–14
    [Google Scholar]
  80. Rogg LE, Bartel B. 2001. Auxin signaling: derepression through regulated proteolysis. Dev. Cell 1:595–604
    [Google Scholar]
  81. Rusnac D-V, Lin H-C, Canzani D, Tien KX, Hinds TR et al. 2018. Recognition of the diglycine C-end degron by CRL2KLHDC2 ubiquitin ligase. Mol. Cell 72:813–22.e4
    [Google Scholar]
  82. Sakamoto KM, Kim KB, Kumagai A, Mercurio F, Crews CM, Deshaies RJ 2001. Protacs: chimeric molecules that target proteins to the Skp1–Cullin–F box complex for ubiquitination and degradation. PNAS 98:8554–59
    [Google Scholar]
  83. Schneekloth AR, Pucheault M, Tae HS, Crews CM 2008. Targeted intracellular protein degradation induced by a small molecule: en route to chemical proteomics. Bioorg. Med. Chem. Lett. 18:5904–8
    [Google Scholar]
  84. Senior AW, Evans R, Jumper J, Kirkpatrick J, Sifre L et al. 2020. Improved protein structure prediction using potentials from deep learning. Nature 577:706–10
    [Google Scholar]
  85. Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G et al. 2010. Jasmonate perception by inositol-phosphate-potentiated COI1–JAZ co-receptor. Nature 468:400–5
    [Google Scholar]
  86. Sievers QL, Petzold G, Bunker RD, Renneville A, Słabicki M et al. 2018. Defining the human C2H2 zinc finger degrome targeted by thalidomide analogs through CRBN. Science 362:eaat0572
    [Google Scholar]
  87. Silva MC, Ferguson FM, Cai Q, Donovan KA, Nandi G et al. 2019. Targeted degradation of aberrant tau in frontotemporal dementia patient-derived neuronal cell models. eLife 8:e45457
    [Google Scholar]
  88. Simonetta KR, Taygerly J, Boyle K, Basham SE, Padovani C et al. 2019. Prospective discovery of small molecule enhancers of an E3 ligase-substrate interaction. Nat. Commun. 10:1402
    [Google Scholar]
  89. Słabicki M, Kozicka Z, Petzold G, Li Y-D, Manojkumar M et al. 2020a. The CDK inhibitor CR8 acts as a molecular glue degrader that depletes cyclin K. Nature 585:293–97
    [Google Scholar]
  90. Słabicki M, Yoon H, Koeppel J, Nitsch L, Burman SSR et al. 2020b. Small-molecule-induced polymerization triggers degradation of BCL6. Nature 588:16468
    [Google Scholar]
  91. Smith BE, Wang SL, Jaime-Figueroa S, Harbin A, Wang J et al. 2019. Differential PROTAC substrate specificity dictated by orientation of recruited E3 ligase. Nat. Commun. 10:131
    [Google Scholar]
  92. Spradlin JN, Hu X, Ward CC, Brittain SM, Jones MD et al. 2019. Harnessing the anti-cancer natural product nimbolide for targeted protein degradation. Nat. Chem. Biol. 15:747–55
    [Google Scholar]
  93. Surka C, Jin L, Mbong N, Lu C-C, Jang IS et al. 2020. CC-90009, a novel cereblon E3 ligase modulator targets acute myeloid leukemia blasts and leukemia stem cells. Blood https://doi.org/10.1182/BLOOD.2020008676
    [Crossref] [Google Scholar]
  94. Tan X, Calderon-Villalobos LIA, Sharon M, Zheng C, Robinson CV et al. 2007. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446:640–45
    [Google Scholar]
  95. Timms RT, Zhang Z, Rhee DY, Harper JW, Koren I, Elledge SJ 2019. A glycine-specific N-degron pathway mediates the quality control of protein N-myristoylation. Science 365:eaaw4912
    [Google Scholar]
  96. Ting TC, Goralski M, Klein K, Wang B, Kim J et al. 2019. Aryl sulfonamides degrade RBM39 and RBM23 by recruitment to CRL4-DCAF15. Cell Rep 29:1499–510.e6
    [Google Scholar]
  97. Ueguchi-Tanaka M, Nakajima M, Motoyuki A, Matsuoka M 2007. Gibberellin receptor and its role in gibberellin signaling in plants. Annu. Rev. Plant Biol. 58:183–98
    [Google Scholar]
  98. Uehara T, Minoshima Y, Sagane K, Sugi NH, Mitsuhashi KO et al. 2017. Selective degradation of splicing factor CAPERα by anticancer sulfonamides. Nat. Chem. Biol. 13:675–80
    [Google Scholar]
  99. Van Nguyen T, Lee JE, Sweredoski MJ, Yang S-J, Jeon S-J et al. 2016. Glutamine triggers acetylation-dependent degradation of glutamine synthetase via the thalidomide receptor cereblon. Mol. Cell 61:809–20
    [Google Scholar]
  100. Verma R, Mohl D, Deshaies RJ 2020. Harnessing the power of proteolysis for targeted protein inactivation. Mol. Cell 77:3446–60
    [Google Scholar]
  101. Vezina C, Kudelski A, Sehgal S 1975. Rapamycin (AY-22, 989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J. Antibiot. 28:721–26
    [Google Scholar]
  102. Ward CC, Kleinman JI, Brittain SM, Lee PS, Chung CYS et al. 2019. Covalent ligand screening uncovers a RNF4 E3 ligase recruiter for targeted protein degradation applications. ACS Chem. Biol. 14:2430–40
    [Google Scholar]
  103. Winter GE, Buckley DL, Paulk J, Roberts JM, Souza A et al. 2015. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science 348:1376–81
    [Google Scholar]
  104. Wittmann BM, Sherk A, McDonnell DP 2007. Definition of functionally important mechanistic differences among selective estrogen receptor down-regulators. Cancer Res 67:9549–60
    [Google Scholar]
  105. Wu G, Xu G, Schulman BA, Jeffrey PD, Harper JW, Pavletich NP 2003. Structure of a β-TrCP1-Skp1-β-catenin complex: destruction motif binding and lysine specificity of the SCFβ-TrCP1 ubiquitin ligase. Mol. Cell 11:1445–56
    [Google Scholar]
  106. Wu Y, Zhou X, Barnes CO, DeLucia M, Cohen AE et al. 2016. The DDB1–DCAF1–Vpr–UNG2 crystal structure reveals how HIV-1 Vpr steers human UNG2 toward destruction. Nat. Struct. Mol. Biol. 23:933–40
    [Google Scholar]
  107. Wu Y-L, Yang X, Ren Z, McDonnell DP, Norris JD et al. 2005. Structural basis for an unexpected mode of SERM-mediated ER antagonism. Mol. Cell 18:413–24
    [Google Scholar]
  108. Xiong R, Zhao J, Gutgesell LM, Wang Y, Lee S et al. 2017. Novel selective estrogen receptor downregulators (SERDs) developed against treatment-resistant breast cancer. J. Med. Chem. 60:1325–42
    [Google Scholar]
  109. Xu L, Liu F, Lechner E, Genschik P, Crosby WL et al. 2002. The SCFCOI1 ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. Plant Cell 14:1919–35
    [Google Scholar]
  110. Yang J, Anishchenko I, Park H, Peng Z, Ovchinnikov S, Baker D 2020. Improved protein structure prediction using predicted interresidue orientations. PNAS 117:31496–503
    [Google Scholar]
  111. Yoshida Y, Chiba T, Tokunaga F, Kawasaki H, Iwai K et al. 2002. E3 ubiquitin ligase that recognizes sugar chains. Nature 418:438–42
    [Google Scholar]
  112. Zhang X, Crowley VM, Wucherpfennig TG, Dix MM, Cravatt BF 2019. Electrophilic PROTACs that degrade nuclear proteins by engaging DCAF16. Nat. Chem. Biol. 15:737–46
    [Google Scholar]
  113. Zheng N, Shabek N. 2017. Ubiquitin ligases: structure, function, and regulation. Annu. Rev. Biochem. 86:129–57
    [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-051420-114114
Loading
/content/journals/10.1146/annurev-cancerbio-051420-114114
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error