1932

Abstract

The generation of all blood cell lineages (hematopoiesis) is sustained throughout the entire life span of adult mammals. Studies using cell transplantation identified the self-renewing, multipotent hematopoietic stem cells (HSCs) as the source of hematopoiesis in adoptive hosts and delineated a hierarchy of HSC-derived progenitors that ultimately yield mature blood cells. However, much less is known about adult hematopoiesis as it occurs in native hosts, i.e., without transplantation. Here we review recent advances in our understanding of native hematopoiesis, focusing in particular on the application of genetic lineage tracing in mice. The emerging evidence has established HSCs as the major source of native hematopoiesis, helped to define the kinetics of HSC differentiation, and begun exploring native hematopoiesis in stress conditions such as aging and inflammation. Major outstanding questions about native hematopoiesis still remain, such as its clonal composition, the nature of lineage commitment, and the dynamics of the process in humans.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-020520-114601
2020-10-06
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/36/1/annurev-cellbio-020520-114601.html?itemId=/content/journals/10.1146/annurev-cellbio-020520-114601&mimeType=html&fmt=ahah

Literature Cited

  1. Acar M, Kocherlakota KS, Murphy MM, Peyer JG, Oguro H et al. 2015. Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. Nature 526:126–30
    [Google Scholar]
  2. Adams PD, Jasper H, Rudolph KL 2015. Aging-induced stem cell mutations as drivers for disease and cancer. Cell Stem Cell 16:601–12
    [Google Scholar]
  3. Adolfsson J, Mansson R, Buza-Vidas N, Hultquist A, Liuba K et al. 2005. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential: a revised road map for adult blood lineage commitment. Cell 121:295–306
    [Google Scholar]
  4. Alemany A, Florescu M, Baron CS, Peterson-Maduro J, van Oudenaarden A 2018. Whole-organism clone tracing using single-cell sequencing. Nature 556:108–12
    [Google Scholar]
  5. Baldridge MT, King KY, Boles NC, Weksberg DC, Goodell MA 2010. Quiescent haematopoietic stem cells are activated by IFN-γ in response to chronic infection. Nature 465:793–97
    [Google Scholar]
  6. Banerjee U, Girard JR, Goins LM, Spratford CM 2019. Drosophila as a genetic model for hematopoiesis. Genetics 211:367–417
    [Google Scholar]
  7. Beerman I, Maloney WJ, Weissmann IL, Rossi DJ 2010. Stem cells and the aging hematopoietic system. Curr. Opin. Immunol. 22:500–6
    [Google Scholar]
  8. Benveniste P, Cantin C, Hyam D, Iscove NN 2003. Hematopoietic stem cells engraft in mice with absolute efficiency. Nat. Immunol. 4:708–13
    [Google Scholar]
  9. Bernitz JM, Kim HS, MacArthur B, Sieburg H, Moore K 2016. Hematopoietic stem cells count and remember self-renewal divisions. Cell 167:1296–309
    [Google Scholar]
  10. Biasco L, Pellin D, Scala S, Dionisio F, Basso-Ricci L et al. 2016. In vivo tracking of human hematopoiesis reveals patterns of clonal dynamics during early and steady-state reconstitution phases. Cell Stem Cell 19:107–19
    [Google Scholar]
  11. Bowman RL, Busque L, Levine RL 2018. Clonal hematopoiesis and evolution to hematopoietic malignancies. Cell Stem Cell 22:157–70
    [Google Scholar]
  12. Busch K, Klapproth K, Barile M, Flossdorf M, Holland-Letz T et al. 2015. Fundamental properties of unperturbed haematopoiesis from stem cells in vivo. . Nature 518:542–46
    [Google Scholar]
  13. Cabezas-Wallscheid N, Buettner F, Sommerkamp P, Klimmeck D, Ladel L et al. 2017. Vitamin A-retinoic acid signaling regulates hematopoietic stem cell dormancy. Cell 169:807–23.e19
    [Google Scholar]
  14. Carrelha J, Meng Y, Kettyle LM, Luis TC, Norfo R et al. 2018. Hierarchically related lineage-restricted fates of multipotent haematopoietic stem cells. Nature 554:106–11
    [Google Scholar]
  15. Catlin SN, Busque L, Gale RE, Guttorp P, Abkowitz JL 2011. The replication rate of human hematopoietic stem cells in vivo. Blood 117:4460–66
    [Google Scholar]
  16. Challen GA, Boles NC, Chambers SM, Goodell MA 2010. Distinct hematopoietic stem cell subtypes are differentially regulated by TGF-β1. Cell Stem Cell 6:265–78
    [Google Scholar]
  17. Chan MM, Smith ZD, Grosswendt S, Kretzmer H, Norman TM et al. 2019. Molecular recording of mammalian embryogenesis. Nature 570:77–82
    [Google Scholar]
  18. Chapple RH, Tseng YJ, Hu T, Kitano A, Takeichi M et al. 2018. Lineage tracing of murine adult hematopoietic stem cells reveals active contribution to steady-state hematopoiesis. Blood Adv 2:1220–28
    [Google Scholar]
  19. Chen ELY, Thompson PK, Zuñiga-Pflücker JC 2019. RBPJ-dependent Notch signaling initiates the T cell program in a subset of thymus-seeding progenitors. Nat. Immunol. 20:1456–68
    [Google Scholar]
  20. Chen JY, Miyanishi M, Wang SK, Yamazaki S, Sinha R et al. 2016. Hoxb5 marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche. Nature 530:223–27
    [Google Scholar]
  21. Copelan EA, Chojecki A, Lazarus HM, Avalos BR 2019. Allogeneic hematopoietic cell transplantation; the current renaissance. Blood Rev 34:34–44
    [Google Scholar]
  22. Czechowicz A, Palchaudhuri R, Scheck A, Hu Y, Hoggatt J et al. 2019. Selective hematopoietic stem cell ablation using CD117-antibody-drug-conjugates enables safe and effective transplantation with immunity preservation. Nat. Commun. 10:617
    [Google Scholar]
  23. Dahlin JS, Hamey FK, Pijuan-Sala B, Shepherd M, Lau WWY et al. 2018. A single-cell hematopoietic landscape resolves 8 lineage trajectories and defects in Kit mutant mice. Blood 131:e1–11
    [Google Scholar]
  24. de Haan G, Lazare SS 2018. Aging of hematopoietic stem cells. Blood 131:479–87
    [Google Scholar]
  25. de Jong JL, Zon LI 2005. Use of the zebrafish system to study primitive and definitive hematopoiesis. Annu. Rev. Genet. 39:481–501
    [Google Scholar]
  26. de Laval B, Maurizio J, Kandalla PK, Brisou G, Simonnet L et al. 2020. C/EBPβ-dependent epigenetic memory induces trained immunity in hematopoietic stem cells. Cell Stem Cell 26:657–74.e8
    [Google Scholar]
  27. Decker M, Leslie J, Liu Q, Ding L 2018. Hepatic thrombopoietin is required for bone marrow hematopoietic stem cell maintenance. Science 360:106–10
    [Google Scholar]
  28. Dress RJ, Dutertre CA, Giladi A, Schlitzer A, Low I et al. 2019. Plasmacytoid dendritic cells develop from Ly6D+ lymphoid progenitors distinct from the myeloid lineage. Nat. Immunol. 20:852–64
    [Google Scholar]
  29. Drissen R, Buza-Vidas N, Woll P, Thongjuea S, Gambardella A et al. 2016. Distinct myeloid progenitor-differentiation pathways identified through single-cell RNA sequencing. Nat. Immunol. 17:666–76
    [Google Scholar]
  30. Dykstra B, Kent D, Bowie M, McCaffrey L, Hamilton M et al. 2007. Long-term propagation of distinct hematopoietic differentiation programs in vivo. Cell Stem Cell 1:218–29
    [Google Scholar]
  31. Dzierzak E, Bigas A. 2018. Blood development: hematopoietic stem cell dependence and independence. Cell Stem Cell 22:639–51
    [Google Scholar]
  32. Eaves CJ. 2015. Hematopoietic stem cells: concepts, definitions, and the new reality. Blood 125:2605–13
    [Google Scholar]
  33. Esplin BL, Shimazu T, Welner RS, Garrett KP, Nie L et al. 2011. Chronic exposure to a TLR ligand injures hematopoietic stem cells. J. Immunol. 186:5367–75
    [Google Scholar]
  34. Essers MA, Offner S, Blanco-Bose WE, Waibler Z, Kalinke U et al. 2009. IFNα activates dormant haematopoietic stem cells in vivo. Nature 458:904–8
    [Google Scholar]
  35. Feil R, Wagner J, Metzger D, Chambon P 1997. Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem. Biophys. Res. Commun. 237:752–57
    [Google Scholar]
  36. Feyerabend TB, Terszowski G, Tietz A, Blum C, Luche H et al. 2009. Deletion of Notch1 converts pro-T cells to dendritic cells and promotes thymic B cells by cell-extrinsic and cell-intrinsic mechanisms. Immunity 30:67–79
    [Google Scholar]
  37. Fogg DK, Sibon C, Miled C, Jung S, Aucouturier P et al. 2006. A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science 311:83–87
    [Google Scholar]
  38. Galan-Caridad JM, Harel S, Arenzana TL, Hou ZE, Doetsch FK et al. 2007. Zfx controls the self-renewal of embryonic and hematopoietic stem cells. Cell 129:345–57
    [Google Scholar]
  39. Ganuza M, Hall T, Finkelstein D, Chabot A, Kang G, McKinney-Freeman S 2017. Lifelong haematopoiesis is established by hundreds of precursors throughout mammalian ontogeny. Nat. Cell Biol. 19:1153–63
    [Google Scholar]
  40. Ganuza M, Hall T, Finkelstein D, Wang YD, Chabot A et al. 2019. The global clonal complexity of the murine blood system declines throughout life and after serial transplantation. Blood 133:1927–42
    [Google Scholar]
  41. Gazit R, Mandal PK, Ebina W, Ben-Zvi A, Nombela-Arrieta C et al. 2014. Fgd5 identifies hematopoietic stem cells in the murine bone marrow. J. Exp. Med. 211:1315–31
    [Google Scholar]
  42. Geiger TL, Sun JC. 2016. Development and maturation of natural killer cells. Curr. Opin. Immunol. 39:82–89
    [Google Scholar]
  43. Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K 2010. Development of monocytes, macrophages, and dendritic cells. Science 327:656–61
    [Google Scholar]
  44. Giladi A, Paul F, Herzog Y, Lubling Y, Weiner A et al. 2018. Single-cell characterization of haematopoietic progenitors and their trajectories in homeostasis and perturbed haematopoiesis. Nat. Cell Biol. 20:836–46
    [Google Scholar]
  45. Grover A, Sanjuan-Pla A, Thongjuea S, Carrelha J, Giustacchini A et al. 2016. Single-cell RNA sequencing reveals molecular and functional platelet bias of aged haematopoietic stem cells. Nat. Commun. 7:11075
    [Google Scholar]
  46. Guo G, Luc S, Marco E, Lin TW, Peng C et al. 2013. Mapping cellular hierarchy by single-cell analysis of the cell surface repertoire. Cell Stem Cell 13:492–505
    [Google Scholar]
  47. Hock H. 2010. Some hematopoietic stem cells are more equal than others. J. Exp. Med. 207:1127–30
    [Google Scholar]
  48. Hofer T, Busch K, Klapproth K, Rodewald HR 2016. Fate mapping and quantitation of hematopoiesis in vivo. Annu. Rev. Immunol. 34:449–78
    [Google Scholar]
  49. Ito K, Turcotte R, Cui J, Zimmerman SE, Pinho S et al. 2016. Self-renewal of a purified Tie2+ hematopoietic stem cell population relies on mitochondrial clearance. Science 354:1156–60
    [Google Scholar]
  50. Jacobsen SEW, Nerlov C. 2019. Haematopoiesis in the era of advanced single-cell technologies. Nat. Cell Biol. 21:2–8
    [Google Scholar]
  51. Jan M, Ebert BL, Jaiswal S 2017. Clonal hematopoiesis. Semin. Hematol. 54:43–50
    [Google Scholar]
  52. Jensen P, Dymecki SM. 2014. Essentials of recombinase-based genetic fate mapping in mice. Methods Mol. Biol. 1092:437–54
    [Google Scholar]
  53. Kalhor R, Kalhor K, Mejia L, Leeper K, Graveline A et al. 2018. Developmental barcoding of whole mouse via homing CRISPR. Science 361:eaat9804
    [Google Scholar]
  54. Kaufmann E, Sanz J, Dunn JL, Khan N, Mendonca LE et al. 2018. BCG educates hematopoietic stem cells to generate protective innate immunity against tuberculosis. Cell 172:176–90.e19
    [Google Scholar]
  55. Kaushansky K. 2006. Lineage-specific hematopoietic growth factors. N. Engl. J. Med. 354:2034–45
    [Google Scholar]
  56. Kebschull JM, Zador AM. 2018. Cellular barcoding: lineage tracing, screening and beyond. Nat. Methods 15:871–79
    [Google Scholar]
  57. Kent DG, Copley MR, Benz C, Wohrer S, Dykstra BJ et al. 2009. Prospective isolation and molecular characterization of hematopoietic stem cells with durable self-renewal potential. Blood 113:6342–50
    [Google Scholar]
  58. Kester L, van Oudenaarden A 2018. Single-cell transcriptomics meets lineage tracing. Cell Stem Cell 23:166–79
    [Google Scholar]
  59. Koury MJ. 2005. Erythropoietin: the story of hypoxia and a finely regulated hematopoietic hormone. Exp. Hematol. 33:1263–70
    [Google Scholar]
  60. Kovtonyuk LV, Fritsch K, Feng X, Manz MG, Takizawa H 2016. Inflamm-aging of hematopoiesis, hematopoietic stem cells, and the bone marrow microenvironment. Front. Immunol. 7:502
    [Google Scholar]
  61. Kowalczyk MS, Tirosh I, Heckl D, Rao TN, Dixit A et al. 2015. Single-cell RNA-seq reveals changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells. Genome Res 25:1860–72
    [Google Scholar]
  62. Laurenti E, Gottgens B. 2018. From haematopoietic stem cells to complex differentiation landscapes. Nature 553:418–26
    [Google Scholar]
  63. Lee J, Zhou YJ, Ma W, Zhang W, Aljoufi A et al. 2017. Lineage specification of human dendritic cells is marked by IRF8 expression in hematopoietic stem cells and multipotent progenitors. Nat. Immunol. 18:877–88
    [Google Scholar]
  64. Lee-Six H, Øbro NF, Shepherd MS, Grossmann S, Dawson K et al. 2018. Population dynamics of normal human blood inferred from somatic mutations. Nature 561:473–78
    [Google Scholar]
  65. Lemischka IR, Raulet DH, Mulligan RC 1986. Developmental potential and dynamic behavior of hematopoietic stem cells. Cell 45:917–27
    [Google Scholar]
  66. Livet J, Weissman TA, Kang H, Draft RW, Lu J et al. 2007. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450:56–62
    [Google Scholar]
  67. Ludwig LS, Lareau CA, Ulirsch JC, Christian E, Muus C et al. 2019. Lineage tracing in humans enabled by mitochondrial mutations and single-cell genomics. Cell 176:1325–39.e22
    [Google Scholar]
  68. Mansson R, Hultquist A, Luc S, Yang L, Anderson K et al. 2007. Molecular evidence for hierarchical transcriptional lineage priming in fetal and adult stem cells and multipotent progenitors. Immunity 26:407–19
    [Google Scholar]
  69. Martinez-Agosto JA, Mikkola HK, Hartenstein V, Banerjee U 2007. The hematopoietic stem cell and its niche: a comparative view. Genes Dev 21:3044–60
    [Google Scholar]
  70. McKinney-Freeman S, Goodell MA. 2004. Circulating hematopoietic stem cells do not efficiently home to bone marrow during homeostasis. Exp. Hematol. 32:868–76
    [Google Scholar]
  71. Medzhitov R. 2008. Origin and physiological roles of inflammation. Nature 454:428–35
    [Google Scholar]
  72. Mirantes C, Passegue E, Pietras EM 2014. Pro-inflammatory cytokines: emerging players regulating HSC function in normal and diseased hematopoiesis. Exp. Cell Res. 329:248–54
    [Google Scholar]
  73. Mitroulis I, Ruppova K, Wang B, Chen LS, Grzybek M et al. 2018. Modulation of myelopoiesis progenitors is an integral component of trained immunity. Cell 172:147–61.e12
    [Google Scholar]
  74. Montecino-Rodriguez E, Berent-Maoz B, Dorshkind K 2013. Causes, consequences, and reversal of immune system aging. J. Clin. Investig. 123:958–65
    [Google Scholar]
  75. Montecino-Rodriguez E, Dorshkind K. 2012. B-1 B cell development in the fetus and adult. Immunity 36:13–21
    [Google Scholar]
  76. Montecino-Rodriguez E, Kong Y, Casero D, Rouault A, Dorshkind K, Pioli PD 2019. Lymphoid-biased hematopoietic stem cells are maintained with age and efficiently generate lymphoid progeny. Stem Cell Rep 12:584–96
    [Google Scholar]
  77. Morita Y, Ema H, Nakauchi H 2010. Heterogeneity and hierarchy within the most primitive hematopoietic stem cell compartment. J. Exp. Med. 207:1173–82
    [Google Scholar]
  78. Muller-Sieburg CE, Cho RH, Karlsson L, Huang JF, Sieburg HB 2004. Myeloid-biased hematopoietic stem cells have extensive self-renewal capacity but generate diminished lymphoid progeny with impaired IL-7 responsiveness. Blood 103:4111–18
    [Google Scholar]
  79. Muller-Sieburg CE, Sieburg HB. 2008. Stem cell aging: survival of the laziest. ? Cell Cycle 7:3798–804
    [Google Scholar]
  80. Muzumdar MD, Tasic B, Miyamichi K, Li L, Luo L 2007. A global double-fluorescent Cre reporter mouse. Genesis 45:593–605
    [Google Scholar]
  81. Nagai Y, Garrett KP, Ohta S, Bahrun U, Kouro T et al. 2006. Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment. Immunity 24:801–12
    [Google Scholar]
  82. Naik SH, Perié L, Swart E, Gerlach C, van Rooij N et al. 2013. Diverse and heritable lineage imprinting of early haematopoietic progenitors. Nature 496:229–32
    [Google Scholar]
  83. Nestorowa S, Hamey FK, Pijuan Sala B, Diamanti E, Shepherd M et al. 2016. A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation. Blood 128:e20–31
    [Google Scholar]
  84. Netea MG, Joosten LA, Latz E, Mills KH, Natoli G et al. 2016. Trained immunity: a program of innate immune memory in health and disease. Science 352:aaf1098
    [Google Scholar]
  85. Nichogiannopoulou A, Trevisan M, Neben S, Friedrich C, Georgopoulos K 1999. Defects in hemopoietic stem cell activity in Ikaros mutant mice. J. Exp. Med. 190:1201–14
    [Google Scholar]
  86. Notta F, Zandi S, Takayama N, Dobson S, Gan OI et al. 2016. Distinct routes of lineage development reshape the human blood hierarchy across ontogeny. Science 351:aab2116
    [Google Scholar]
  87. Olsson A, Venkatasubramanian M, Chaudhri VK, Aronow BJ, Salomonis N et al. 2016. Single-cell analysis of mixed-lineage states leading to a binary cell fate choice. Nature 537:698–702
    [Google Scholar]
  88. Orkin SH, Zon LI. 2008. Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132:631–44
    [Google Scholar]
  89. Palis J. 2016. Hematopoietic stem cell-independent hematopoiesis: emergence of erythroid, megakaryocyte, and myeloid potential in the mammalian embryo. FEBS Lett 590:3965–74
    [Google Scholar]
  90. Paul F, Arkin Y, Giladi A, Jaitin DA, Kenigsberg E et al. 2015. Transcriptional heterogeneity and lineage commitment in myeloid progenitors. Cell 163:1663–77
    [Google Scholar]
  91. Pei W, Feyerabend TB, Rossler J, Wang X, Postrach D et al. 2017. Polylox barcoding reveals haematopoietic stem cell fates realized in vivo. . Nature 548:456–60
    [Google Scholar]
  92. Pei W, Shang F, Wang X, Fanti AK, Greco A et al. 2020. Resolving fate and transcriptome of hematopoietic stem cell clones. bioRxiv 008433. http://doi.org/10.1101/2020.03.25.008433
    [Crossref]
  93. Perie L, Duffy KR, Kok L, de Boer RJ, Schumacher TN 2015. The branching point in erythro-myeloid differentiation. Cell 163:1655–62
    [Google Scholar]
  94. Pietras EM, Lakshminarasimhan R, Techner JM, Fong S, Flach J et al. 2014. Re-entry into quiescence protects hematopoietic stem cells from the killing effect of chronic exposure to type I interferons. J. Exp. Med. 211:245–62
    [Google Scholar]
  95. Pietras EM, Mirantes-Barbeito C, Fong S, Loeffler D, Kovtonyuk LV et al. 2016. Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal. Nat. Cell Biol. 18:607–18
    [Google Scholar]
  96. Pietras EM, Reynaud D, Kang YA, Carlin D, Calero-Nieto FJ et al. 2015. Functionally distinct subsets of lineage-biased multipotent progenitors control blood production in normal and regenerative conditions. Cell Stem Cell 17:35–46
    [Google Scholar]
  97. Qian H, Buza-Vidas N, Hyland CD, Jensen CT, Antonchuk J et al. 2007. Critical role of thrombopoietin in maintaining adult quiescent hematopoietic stem cells. Cell Stem Cell 1:671–84
    [Google Scholar]
  98. Radtke F, Wilson A, Stark G, Bauer M, van Meerwijk J et al. 1999. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 10:547–58
    [Google Scholar]
  99. Ramasz B, Kruger A, Reinhardt J, Sinha A, Gerlach M et al. 2019. Hematopoietic stem cell response to acute thrombocytopenia requires signaling through distinct receptor tyrosine kinases. Blood 134:1046–58
    [Google Scholar]
  100. Reizis B. 2019. Plasmacytoid dendritic cells: development, regulation, and role in immune responses. Immunity 50:37–50
    [Google Scholar]
  101. Rodrigues PF, Alberti-Servera L, Eremin A, Grajales-Reyes GE, Ivanek R, Tussiwand R 2018. Distinct progenitor lineages contribute to the heterogeneity of plasmacytoid dendritic cells. Nat. Immunol. 19:711–22
    [Google Scholar]
  102. Rodriguez-Fraticelli AE, Wolock SL, Weinreb CS, Panero R, Patel SH et al. 2018. Clonal analysis of lineage fate in native haematopoiesis. Nature 553:212–16
    [Google Scholar]
  103. Sánchez-Aguilera A, Arranz L, Martín-Pérez D, García-García A, Stavropoulou V et al. 2014. Estrogen signaling selectively induces apoptosis of hematopoietic progenitors and myeloid neoplasms without harming steady-state hematopoiesis. Cell Stem Cell 15:791–804
    [Google Scholar]
  104. Sanjuan-Pla A, Macaulay IC, Jensen CT, Woll PS, Luis TC et al. 2013. Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy. Nature 502:232–36
    [Google Scholar]
  105. Sathe P, Metcalf D, Vremec D, Naik SH, Langdon WY et al. 2014. Lymphoid tissue and plasmacytoid dendritic cells and macrophages do not share a common macrophage-dendritic cell-restricted progenitor. Immunity 41:104–15
    [Google Scholar]
  106. Sawai CM, Babovic S, Upadhaya S, Knapp DJ, Lavin Y et al. 2016. Hematopoietic stem cells are the major source of multilineage hematopoiesis in adult animals. Immunity 45:597–609
    [Google Scholar]
  107. Säwen P, Eldeeb M, Erlandsson E, Kristiansen TA, Laterza C et al. 2018. Murine HSCs contribute actively to native hematopoiesis but with reduced differentiation capacity upon aging. eLife 7:e41258
    [Google Scholar]
  108. Scala S, Basso-Ricci L, Dionisio F, Pellin D, Giannelli S et al. 2018. Dynamics of genetically engineered hematopoietic stem and progenitor cells after autologous transplantation in humans. Nat. Med. 24:1683–90
    [Google Scholar]
  109. Schoedel KB, Morcos MNF, Zerjatke T, Roeder I, Grinenko T et al. 2016. The bulk of the hematopoietic stem cell population is dispensable for murine steady-state and stress hematopoiesis. Blood 128:2285–96
    [Google Scholar]
  110. Schuettpelz LG, Link DC. 2013. Regulation of hematopoietic stem cell activity by inflammation. Front. Immunol. 4:204
    [Google Scholar]
  111. Schwarz BA, Sambandam A, Maillard I, Harman BC, Love PE, Bhandoola A 2007. Selective thymus settling regulated by cytokine and chemokine receptors. J. Immunol. 178:2008–17
    [Google Scholar]
  112. Sheikh BN, Yang Y, Schreuder J, Nilsson SK, Bilardi R et al. 2016. MOZ (KAT6A) is essential for the maintenance of classically defined adult hematopoietic stem cells. Blood 128:2307–18
    [Google Scholar]
  113. Shimoto M, Sugiyama T, Nagasawa T 2017. Numerous niches for hematopoietic stem cells remain empty during homeostasis. Blood 129:2124–31
    [Google Scholar]
  114. Shizuru JA, Negrin RS, Weissman IL 2005. Hematopoietic stem and progenitor cells: clinical and preclinical regeneration of the hematolymphoid system. Annu. Rev. Med. 56:509–38
    [Google Scholar]
  115. Shlush LI. 2018. Age-related clonal hematopoiesis. Blood 131:496–504
    [Google Scholar]
  116. Snippert HJ, van der Flier LG, Sato T, van Es JH, van den Born M et al. 2010. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143:134–44
    [Google Scholar]
  117. Snoeck HW. 2013. Aging of the hematopoietic system. Curr. Opin. Hematol. 20:355–61
    [Google Scholar]
  118. Sun J, Ramos A, Chapman B, Johnnidis JB, Le L et al. 2014. Clonal dynamics of native haematopoiesis. Nature 514:322–27
    [Google Scholar]
  119. Tajima Y, Ito K, Umino A, Wilkinson AC, Nakauchi H, Yamazaki S 2017. Continuous cell supply from Krt7-expressing hematopoietic stem cells during native hematopoiesis revealed by targeted in vivo gene transfer method. Sci. Rep. 7:40684
    [Google Scholar]
  120. Tusi BK, Wolock SL, Weinreb C, Hwang Y, Hidalgo D et al. 2018. Population snapshots predict early haematopoietic and erythroid hierarchies. Nature 555:54–60
    [Google Scholar]
  121. Upadhaya S, Sawai CM, Papalexi E, Rashidfarrokhi A, Jang G et al. 2018. Kinetics of adult hematopoietic stem cell differentiation in vivo. J. Exp. Med. 215:2815–32
    [Google Scholar]
  122. Varol C, Mildner A, Jung S 2015. Macrophages: development and tissue specialization. Annu. Rev. Immunol. 33:643–75
    [Google Scholar]
  123. Verovskaya EV, Dellorusso PV, Passegue E 2019. Losing sense of self and surroundings: hematopoietic stem cell aging and leukemic transformation. Trends Mol. Med. 25:494–515
    [Google Scholar]
  124. Voehringer D, Liang HE, Locksley RM 2008. Homeostasis and effector function of lymphopenia-induced “memory-like” T cells in constitutively T cell-depleted mice. J. Immunol. 180:4742–53
    [Google Scholar]
  125. Vosshenrich CA, Di Santo JP 2013. Developmental programming of natural killer and innate lymphoid cells. Curr. Opin. Immunol. 25:130–38
    [Google Scholar]
  126. Weber TS, Dukes M, Miles DC, Glaser SP, Naik SH, Duffy KR 2016. Site-specific recombinatorics: in situ cellular barcoding with the Cre Lox system. BMC Syst. Biol. 10:43
    [Google Scholar]
  127. Weinreb C, Rodriguez-Fraticelli A, Camargo FD, Klein AM 2020. Lineage tracing on transcriptional landscapes links state to fate during differentiation. Science 367:eaaw3381
    [Google Scholar]
  128. Weissman IL, Shizuru JA. 2008. The origins of the identification and isolation of hematopoietic stem cells, and their capability to induce donor-specific transplantation tolerance and treat autoimmune diseases. Blood 112:3543–53
    [Google Scholar]
  129. Werner B, Beier F, Hummel S, Balabanov S, Lassay L et al. 2015. Reconstructing the in vivo dynamics of hematopoietic stem cells from telomere length distributions. eLife 4:e08687
    [Google Scholar]
  130. Yamamoto R, Morita Y, Ooehara J, Hamanaka S, Onodera M et al. 2013. Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell 154:1112–26
    [Google Scholar]
  131. Yoshihara H, Arai F, Hosokawa K, Hagiwara T, Takubo K et al. 2007. Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell 1:685–97
    [Google Scholar]
  132. Yu VW, Yusuf RZ, Oki T, Wu J, Saez B et al. 2016. Epigenetic memory underlies cell-autonomous heterogeneous behavior of hematopoietic stem cells. Cell 167:1310–22
    [Google Scholar]
  133. Zavidij O, Ball CR, Herbst F, Oppel F, Fessler S et al. 2012. Stable long-term blood formation by stem cells in murine steady-state hematopoiesis. Stem Cells 30:1961–70
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-020520-114601
Loading
/content/journals/10.1146/annurev-cellbio-020520-114601
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error