1932

Abstract

Most neurodegenerative diseases are characterized by the accumulation of protein aggregates, some of which are toxic to cells. Mounting evidence demonstrates that in several diseases, protein aggregates can pass from neuron to neuron along connected networks, although the role of this spreading phenomenon in disease pathogenesis is not completely understood. Here we briefly review the molecular and histopathological features of protein aggregation in neurodegenerative disease, we summarize the evidence for release of proteins from donor cells into the extracellular space, and we highlight some other mechanisms by which protein aggregates might be transmitted to recipient cells. We also discuss the evidence that supports a role for spreading of protein aggregates in neurodegenerative disease pathogenesis and some limitations of this model. Finally, we consider potential therapeutic strategies to target spreading of protein aggregates in the treatment of neurodegenerative diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-100617-062636
2018-10-06
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/34/1/annurev-cellbio-100617-062636.html?itemId=/content/journals/10.1146/annurev-cellbio-100617-062636&mimeType=html&fmt=ahah

Literature Cited

  1. Abounit S, Bousset L, Loria F, Zhu S, de Chaumont F et al. 2016.a Tunneling nanotubes spread fibrillar α-synuclein by intercellular trafficking of lysosomes. EMBO J 35:2120–38
    [Google Scholar]
  2. Abounit S, Wu JW, Duff K, Victoria GS, Zurzolo C 2016.b Tunneling nanotubes: a possible highway in the spreading of tau and other prion-like proteins in neurodegenerative diseases. Prion 10:344–51
    [Google Scholar]
  3. Affiris AG 2014. Study assessing tolerability and safety of AFFITOPE® PD03A in patients with early Parkinson's disease (AFF011) Rep. NCT02267434, US Natl. Libr. Med., Natl. Inst. Health, Washington, DC. https://clinicaltrials.gov/ct2/show/NCT02267434
  4. Alzheimer A 1907. Über eine eigenartige Erkrankung der Hirnrinde. Allg. Z. Psychiatr. 64:146–48
    [Google Scholar]
  5. Andrade-Moraes CH, Oliveira-Pinto AV, Castro-Fonseca E, da Silva CG, Guimaraes DM et al. 2013. Cell number changes in Alzheimer's disease relate to dementia, not to plaques and tangles. Brain 136:3738–52
    [Google Scholar]
  6. Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT 1992. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease. Neurology 42:631–39
    [Google Scholar]
  7. Asai H, Ikezu S, Tsunoda S, Medalla M, Luebke J et al. 2015. Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat. Neurosci. 18:1584–93
    [Google Scholar]
  8. Ash PE, Bieniek KF, Gendron TF, Caulfield T, Lin WL et al. 2013. Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. Neuron 77:639–46
    [Google Scholar]
  9. Ayers JI, Fromholt S, Koch M, DeBosier A, McMahon B et al. 2014. Experimental transmissibility of mutant SOD1 motor neuron disease. Acta Neuropathol 128:791–803
    [Google Scholar]
  10. Ayers JI, Fromholt SE, O'Neal VM, Diamond JH, Borchelt DR 2016. Prion-like propagation of mutant SOD1 misfolding and motor neuron disease spread along neuroanatomical pathways. Acta Neuropathol 131:103–14
    [Google Scholar]
  11. Barrett PJ, Greenamyre JT 2015. Post-translational modification of α-synuclein in Parkinson's disease. Brain Res 1628:247–53
    [Google Scholar]
  12. Bauer PO, Goswami A, Wong HK, Okuno M, Kurosawa M et al. 2010. Harnessing chaperone-mediated autophagy for the selective degradation of mutant huntingtin protein. Nat. Biotechnol. 28:256–63
    [Google Scholar]
  13. Bero AW, Yan P, Roh JH, Cirrito JR, Stewart FR et al. 2011. Neuronal activity regulates the regional vulnerability to amyloid-beta deposition. Nat. Neurosci. 14:750–56
    [Google Scholar]
  14. Bi M, Ittner A, Ke YD, Gotz J, Ittner LM 2011. Tau-targeted immunization impedes progression of neurofibrillary histopathology in aged P301L tau transgenic mice. PLOS ONE 6:e26860
    [Google Scholar]
  15. Boluda S, Iba M, Zhang B, Raible KM, Lee VM, Trojanowski JQ 2015. Differential induction and spread of tau pathology in young PS19 tau transgenic mice following intracerebral injections of pathological tau from Alzheimer's disease or corticobasal degeneration brains. Acta Neuropathol 129:221–37
    [Google Scholar]
  16. Bosco DA, Morfini G, Karabacak NM, Song Y, Gros-Louis F et al. 2010. Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS. Nat. Neurosci. 13:1396–403
    [Google Scholar]
  17. Boutajangout A, Quartermain D, Sigurdsson EM 2010. Immunotherapy targeting pathological tau prevents cognitive decline in a new tangle mouse model. J. Neurosci. 30:16559–66
    [Google Scholar]
  18. Braak H, Braak E 1991. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–59
    [Google Scholar]
  19. Braak H, Braak E 1997. Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol. Aging 18:351–57
    [Google Scholar]
  20. Braak H, Del Tredici K 2011. The pathological process underlying Alzheimer's disease in individuals under thirty. Acta Neuropathol 121:171–81
    [Google Scholar]
  21. Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E 2003. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol. Aging 24:197–211
    [Google Scholar]
  22. Braak H, Del Tredici K, Schultz C, Braak E 2000. Vulnerability of select neuronal types to Alzheimer's disease. Ann. N. Y. Acad. Sci. 924:53–61
    [Google Scholar]
  23. Brettschneider J, Del Tredici K, Toledo JB, Robinson JL, Irwin DJ et al. 2013. Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Ann. Neurol. 74:20–38
    [Google Scholar]
  24. Brody DL, Jiang H, Wildburger N, Esparza TJ 2017. Non-canonical soluble amyloid-β aggregates and plaque buffering: controversies and future directions for target discovery in Alzheimer's disease. Alzheimer's Res. Ther. 9:62
    [Google Scholar]
  25. Brotherton TE, Li Y, Cooper D, Gearing M, Julien JP et al. 2012. Localization of a toxic form of superoxide dismutase 1 protein to pathologically affected tissues in familial ALS. PNAS 109:5505–10
    [Google Scholar]
  26. Buckner RL, Snyder AZ, Shannon BJ, LaRossa G, Sachs R et al. 2005. Molecular, structural, and functional characterization of Alzheimer's disease: evidence for a relationship between default activity, amyloid, and memory. J. Neurosci. 25:7709–17
    [Google Scholar]
  27. Chiti F, Dobson CM 2017. Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade. Annu. Rev. Biochem. 86:27–68
    [Google Scholar]
  28. Cicchetti F, Lacroix S, Cisbani G, Vallieres N, Saint-Pierre M et al. 2014. Mutant huntingtin is present in neuronal grafts in Huntington disease patients. Ann. Neurol. 76:31–42
    [Google Scholar]
  29. Cirrito JR, Yamada KA, Finn MB, Sloviter RS, Bales KR et al. 2005. Synaptic activity regulates interstitial fluid amyloid-β levels in vivo. Neuron 48:913–22
    [Google Scholar]
  30. Ciura S, Sellier C, Campanari ML, Charlet-Berguerand N, Kabashi E 2016. The most prevalent genetic cause of ALS-FTD, C9orf72 synergizes the toxicity of ATXN2 intermediate polyglutamine repeats through the autophagy pathway. Autophagy 12:1406–8
    [Google Scholar]
  31. Clavaguera F, Bolmont T, Crowther RA, Abramowski D, Frank S et al. 2009. Transmission and spreading of tauopathy in transgenic mouse brain. Nat. Cell Biol. 11:909–13
    [Google Scholar]
  32. Clift D, McEwan WA, Labzin LI, Konieczny V, Mogessie B et al. 2017. A method for the acute and rapid degradation of endogenous proteins. Cell 171:1692–706.e18
    [Google Scholar]
  33. Colby DW, Prusiner SB 2011. Prions. Cold Spring Harb. Perspect. Biol. 3:a006833
    [Google Scholar]
  34. Costanzo M, Abounit S, Marzo L, Danckaert A, Chamoun Z et al. 2013. Transfer of polyglutamine aggregates in neuronal cells occurs in tunneling nanotubes. J. Cell Sci. 126:3678–85
    [Google Scholar]
  35. Craig-Schapiro R, Fagan AM, Holtzman DM 2009. Biomarkers of Alzheimer's disease. Neurobiol. Dis. 35:128–40
    [Google Scholar]
  36. Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D 2004. Impaired degradation of mutant α-synuclein by chaperone-mediated autophagy. Science 305:1292–95
    [Google Scholar]
  37. Da Cruz S, Bui A, Saberi S, Lee SK, Stauffer J et al. 2017. Misfolded SOD1 is not a primary component of sporadic ALS. Acta Neuropathol 134:97–111
    [Google Scholar]
  38. Danzer KM, Kranich LR, Ruf WP, Cagsal-Getkin O, Winslow AR et al. 2012. Exosomal cell-to-cell transmission of alpha synuclein oligomers. Mol. Neurodegener. 7:42
    [Google Scholar]
  39. Danzer KM, Ruf WP, Putcha P, Joyner D, Hashimoto T et al. 2011. Heat-shock protein 70 modulates toxic extracellular α-synuclein oligomers and rescues trans-synaptic toxicity. FASEB J 25:326–36
    [Google Scholar]
  40. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M et al. 2011. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p–linked FTD and ALS. Neuron 72:245–56
    [Google Scholar]
  41. DeKosky ST, Scheff SW 1990. Synapse loss in frontal cortex biopsies in Alzheimer's disease: correlation with cognitive severity. Ann. Neurol. 27:457–64
    [Google Scholar]
  42. Del Tredici K, Rub U, De Vos RA, Bohl JR, Braak H 2002. Where does Parkinson disease pathology begin in the brain?. J. Neuropathol. Exp. Neurol. 61:413–26
    [Google Scholar]
  43. Delenclos M, Trendafilova T, Mahesh D, Baine AM, Moussaud S et al. 2017. Investigation of endocytic pathways for the internalization of exosome-associated oligomeric α-synuclein. Front. Neurosci. 11:172
    [Google Scholar]
  44. Desplats P, Lee HJ, Bae EJ, Patrick C, Rockenstein E et al. 2009. Inclusion formation and neuronal cell death through neuron-to-neuron transmission of α-synuclein. PNAS 106:13010–15
    [Google Scholar]
  45. Ding X, Ma M, Teng J, Teng RK, Zhou S et al. 2015. Exposure to ALS-FTD-CSF generates TDP-43 aggregates in glioblastoma cells through exosomes and TNTs-like structure. Oncotarget 6:24178–91
    [Google Scholar]
  46. Elahi FM, Miller BL 2017. A clinicopathological approach to the diagnosis of dementia. Nat. Rev. Neurol. 13:457–76
    [Google Scholar]
  47. Emmanouilidou E, Elenis D, Papasilekas T, Stranjalis G, Gerozissis K et al. 2011. Assessment of α-synuclein secretion in mouse and human brain parenchyma. PLOS ONE 6:e22225
    [Google Scholar]
  48. Emmanouilidou E, Melachroinou K, Roumeliotis T, Garbis SD, Ntzouni M et al. 2010. Cell-produced α-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. J. Neurosci. 30:6838–51
    [Google Scholar]
  49. Emmanouilidou E, Minakaki G, Keramioti MV, Xylaki M, Balafas E et al. 2016. GABA transmission via ATP-dependent K+ channels regulates α-synuclein secretion in mouse striatum. Brain 139:871–90
    [Google Scholar]
  50. Farg MA, Sundaramoorthy V, Sultana JM, Yang S, Atkinson RA et al. 2014. C9ORF72, implicated in amytrophic lateral sclerosis and frontotemporal dementia, regulates endosomal trafficking. Hum. Mol. Genet. 23:3579–95
    [Google Scholar]
  51. Feiler MS, Strobel B, Freischmidt A, Helferich AM, Kappel J et al. 2015. TDP-43 is intercellularly transmitted across axon terminals. J. Cell Biol. 211:897–911
    [Google Scholar]
  52. Fontaine SN, Zheng D, Sabbagh JJ, Martin MD, Chaput D et al. 2016. DnaJ/Hsc70 chaperone complexes control the extracellular release of neurodegenerative-associated proteins. EMBO J 35:1537–49
    [Google Scholar]
  53. Fraser H 1982. Neuronal spread of scrapie agent and targeting of lesions within the retino-tectal pathway. Nature 295:149–50
    [Google Scholar]
  54. Gallardo G, Holtzman DM 2017. Antibody therapeutics targeting Aβ and tau. Cold Spring Harb. Perspect. Med. 7:a024331
    [Google Scholar]
  55. Gao L, Tang H, Nie K, Wang L, Zhao J et al. 2015. Cerebrospinal fluid α-synuclein as a biomarker for Parkinson's disease diagnosis: a systematic review and meta-analysis. Int. J. Neurosci. 125:645–54
    [Google Scholar]
  56. George S, Brundin P 2015. Immunotherapy in Parkinson's disease: micromanaging α-synuclein aggregation. J. Parkinson's Dis. 5:413–24
    [Google Scholar]
  57. Gerdes HH, Rustom A, Wang X 2013. Tunneling nanotubes, an emerging intercellular communication route in development. Mech. Dev. 130:381–87
    [Google Scholar]
  58. Geser F, Lee VM, Trojanowski JQ 2010. Amyotrophic lateral sclerosis and frontotemporal lobar degeneration: a spectrum of TDP-43 proteinopathies. Neuropathology 30:103–12
    [Google Scholar]
  59. Glenner GG, Wong CW 1984. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 120:885–90
    [Google Scholar]
  60. Gousset K, Schiff E, Langevin C, Marijanovic Z, Caputo A et al. 2009. Prions hijack tunnelling nanotubes for intercellular spread. Nat. Cell Biol. 11:328–36
    [Google Scholar]
  61. Grad LI, Pokrishevsky E, Silverman JM, Cashman NR 2014. Exosome-dependent and independent mechanisms are involved in prion-like transmission of propagated Cu/Zn superoxide dismutase misfolding. Prion 8:331–35
    [Google Scholar]
  62. Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS, Wisniewski HM 1986. Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J. Biol. Chem. 261:6084–89
    [Google Scholar]
  63. Holmes BB, DeVos SL, Kfoury N, Li M, Jacks R et al. 2013. Heparan sulfate proteoglycans mediate internalization and propagation of specific proteopathic seeds. PNAS 110:E3138–47
    [Google Scholar]
  64. Holmes C, Boche D, Wilkinson D, Yadegarfar G, Hopkins V et al. 2008. Long-term effects of Aβ42 immunisation in Alzheimer's disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 372:216–23
    [Google Scholar]
  65. Holtzman DM, Herz J, Bu G 2012. Apolipoprotein E and apolipoprotein E receptors: normal biology and roles in Alzheimer disease. Cold Spring Harb. Perspect. Med. 2:a006312
    [Google Scholar]
  66. Holtzman DM, Morris JC, Goate AM 2011. Alzheimer's disease: the challenge of the second century. Sci. Trans. Med. 3:77sr1
    [Google Scholar]
  67. Huber BR, Meabon JS, Hoffer ZS, Zhang J, Hoekstra JG et al. 2016. Blast exposure causes dynamic microglial/macrophage responses and microdomains of brain microvessel dysfunction. Neuroscience 319:206–20
    [Google Scholar]
  68. Iacono D, Geraci-Erck M, Rabin ML, Adler CH, Serrano G et al. 2015. Parkinson disease and incidental Lewy body disease: just a question of time?. Neurology 85:1670–79
    [Google Scholar]
  69. Iba M, Guo JL, McBride JD, Zhang B, Trojanowski JQ, Lee VM 2013. Synthetic tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer's-like tauopathy. J. Neurosci. 33:1024–37
    [Google Scholar]
  70. Iguchi Y, Eid L, Parent M, Soucy G, Bareil C et al. 2016. Exosome secretion is a key pathway for clearance of pathological TDP-43. Brain 139:3187–201
    [Google Scholar]
  71. Iliff JJ, Chen MJ, Plog BA, Zeppenfeld DM, Soltero M et al. 2014. Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J. Neurosci. 34:16180–93
    [Google Scholar]
  72. Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W et al. 2012. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci. Trans. Med. 4:147ra11
    [Google Scholar]
  73. Irwin DJ, McMillan CT, Xie SX, Rascovsky K, Van Deerlin VM et al. 2018. Asymmetry of post-mortem neuropathology in behavioural-variant frontotemporal dementia. Brain 141:288–301
    [Google Scholar]
  74. Jellinger KA 2009. A critical evaluation of current staging of α-synuclein pathology in Lewy body disorders. Biochim. Biophys. Acta 1792:730–40
    [Google Scholar]
  75. Jeon I, Cicchetti F, Cisbani G, Lee S, Li E et al. 2016. Human-to-mouse prion-like propagation of mutant huntingtin protein. Acta Neuropathol 132:577–92
    [Google Scholar]
  76. Johnson NR, Condello C, Guan S, Oehler A, Becker J et al. 2017. Evidence for sortilin modulating regional accumulation of human tau prions in transgenic mice. PNAS 114:E11029–36
    [Google Scholar]
  77. Kalia LV, Lang AE 2016. Parkinson disease in 2015: evolving basic, pathological and clinical concepts in PD. Nat. Rev. Neurol. 12:65–66
    [Google Scholar]
  78. Kanaan NM, Cox K, Alvarez VE, Stein TD, Poncil S, McKee AC 2016. Characterization of early pathological tau conformations and phosphorylation in chronic traumatic encephalopathy. J. Neuropathol. Exp. Neurol. 75:19–34
    [Google Scholar]
  79. Karch CM, Jeng AT, Goate AM 2012. Extracellular tau levels are influenced by variability in tau that is associated with tauopathies. J. Biol. Chem. 287:42751–62
    [Google Scholar]
  80. Kaufman SK, Sanders DW, Thomas TL, Ruchinskas AJ, Vaquer-Alicea J et al. 2016. Tau prion strains dictate patterns of cell pathology, progression rate, and regional vulnerability in vivo. Neuron 92:796–812
    [Google Scholar]
  81. Kim J, Kim TY, Cho KS, Kim HN, Koh JY 2013. Autophagy activation and neuroprotection by progesterone in the G93A-SOD1 transgenic mouse model of amyotrophic lateral sclerosis. Neurobiol. Dis. 59:80–85
    [Google Scholar]
  82. Kondo A, Shahpasand K, Mannix R, Qiu J, Moncaster J et al. 2015. Antibody against early driver of neurodegeneration cis P-tau blocks brain injury and tauopathy. Nature 523:431–36
    [Google Scholar]
  83. Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW 2008. Lewy body–like pathology in long-term embryonic nigral transplants in Parkinson's disease. Nat. Med. 14:504–6
    [Google Scholar]
  84. Kraybill ML, Larson EB, Tsuang DW, Teri L, McCormick WC et al. 2005. Cognitive differences in dementia patients with autopsy-verified AD, Lewy body pathology, or both. Neurology 64:2069–73
    [Google Scholar]
  85. Kriegel J, Papadopoulos Z, McKee AC 2018. Chronic traumatic encephalopathy: Is latency in symptom onset explained by tau propagation?. Cold Spring Harb. Perspect. Med. 8:a024059
    [Google Scholar]
  86. Lee EB, Lee VM, Trojanowski JQ 2011. Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration. Nat. Rev. Neurosci. 13:38–50
    [Google Scholar]
  87. Lee HJ, Patel S, Lee SJ 2005. Intravesicular localization and exocytosis of α-synuclein and its aggregates. J. Neurosci. 25:6016–24
    [Google Scholar]
  88. Lee HJ, Suk JE, Patrick C, Bae EJ, Cho JH et al. 2010. Direct transfer of α-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J. Biol. Chem. 285:9262–72
    [Google Scholar]
  89. Lewis J, Dickson DW 2016. Propagation of tau pathology: hypotheses, discoveries, and yet unresolved questions from experimental and human brain studies. Acta Neuropathol 131:27–48
    [Google Scholar]
  90. Lewy FH 1912. Paralysis agitans. I. Pathologische Anatomie. Handbuch der Neurologie M Lewandowsky 920–33 Berlin: Springer
    [Google Scholar]
  91. Li JY, Englund E, Holton JL, Soulet D, Hagell P et al. 2008. Lewy bodies in grafted neurons in subjects with Parkinson's disease suggest host-to-graft disease propagation. Nat. Med. 14:501–3
    [Google Scholar]
  92. Liu HN, Sanelli T, Horne P, Pioro EP, Strong MJ et al. 2009. Lack of evidence of monomer/misfolded superoxide dismutase-1 in sporadic amyotrophic lateral sclerosis. Ann. Neurol. 66:75–80
    [Google Scholar]
  93. Luk KC, Kehm V, Carroll J, Zhang B, O'Brien P et al. 2012.a Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338:949–53
    [Google Scholar]
  94. Luk KC, Kehm VM, Zhang B, O'Brien P, Trojanowski JQ, Lee VM 2012.b Intracerebral inoculation of pathological α-synuclein initiates a rapidly progressive neurodegenerative α-synucleinopathy in mice. J. Exp. Med. 209:975–86
    [Google Scholar]
  95. Mac Donald CL, Johnson AM, Cooper D, Nelson EC, Werner NJ et al. 2011. Detection of blast-related traumatic brain injury in U.S. military personnel. New Engl. J. Med. 364:2091–100
    [Google Scholar]
  96. Mandler M, Valera E, Rockenstein E, Weninger H, Patrick C et al. 2014. Next-generation active immunization approach for synucleinopathies: implications for Parkinson's disease clinical trials. Acta Neuropathol 127:861–79
    [Google Scholar]
  97. Masliah E, Hansen L, Adame A, Crews L, Bard F et al. 2005.a Aβ vaccination effects on plaque pathology in the absence of encephalitis in Alzheimer disease. Neurology 64:129–31
    [Google Scholar]
  98. Masliah E, Rockenstein E, Adame A, Alford M, Crews L et al. 2005.b Effects of α-synuclein immunization in a mouse model of Parkinson's disease. Neuron 46:857–68
    [Google Scholar]
  99. Masuda-Suzukake M, Nonaka T, Hosokawa M, Oikawa T, Arai T et al. 2013. Prion-like spreading of pathological α-synuclein in brain. Brain 136:1128–38
    [Google Scholar]
  100. Mao X, Ou MT, Karuppagounder SS, Kam TI, Yin X et al. 2016. Pathological alpha-synuclein transmission initiated by binding lymphocyte-activation gene 3. Science 353:aah3374
    [Google Scholar]
  101. McEwan WA, Falcon B, Vaysburd M, Clift D, Oblak AL et al. 2017. Cytosolic Fc receptor TRIM21 inhibits seeded tau aggregation. PNAS 114:574–79
    [Google Scholar]
  102. McKee AC, Cairns NJ, Dickson DW, Folkerth RD, Keene CD et al. 2016. The first NINDS/NIBIB consensus meeting to define neuropathological criteria for the diagnosis of chronic traumatic encephalopathy. Acta Neuropathol 131:75–86
    [Google Scholar]
  103. McKee AC, Stern RA, Nowinski CJ, Stein TD, Alvarez VE et al. 2013. The spectrum of disease in chronic traumatic encephalopathy. Brain 136:43–64
    [Google Scholar]
  104. Meyer-Luehmann M, Coomaraswamy J, Bolmont T, Kaeser S, Schaefer C et al. 2006. Exogenous induction of cerebral β-amyloidogenesis is governed by agent and host. Science 313:1781–84
    [Google Scholar]
  105. Minakaki G, Menges S, Kittel A, Emmanouilidou E, Schaeffner I et al. 2018. Autophagy inhibition promotes SNCA/α-synuclein release and transfer via extracellular vesicles with a hybrid autophagosome-exosome-like phenotype. Autophagy 14 https://doi.org/10.1080/15548627.2017.1395992
    [Crossref] [Google Scholar]
  106. Morales R, Duran-Aniotz C, Castilla J, Estrada LD, Soto C 2012. De novo induction of amyloid-β deposition in vivo. Mol. Psychiatry 17:1347–53
    [Google Scholar]
  107. Narasimhan S, Guo JL, Changolkar L, Stieber A, McBride JD et al. 2017. Pathological tau strains from human brains recapitulate the diversity of tauopathies in nontransgenic mouse brain. J. Neurosci. 37:11406–23
    [Google Scholar]
  108. Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC et al. 2006. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–33
    [Google Scholar]
  109. Ngolab J, Trinh I, Rockenstein E, Mante M, Florio J et al. 2017. Brain-derived exosomes from dementia with Lewy bodies propagate α-synuclein pathology. Acta Neuropathol. Commun. 5:46
    [Google Scholar]
  110. Nonaka T, Masuda-Suzukake M, Arai T, Hasegawa Y, Akatsu H et al. 2013. Prion-like properties of pathological TDP-43 aggregates from diseased brains. Cell Rep 4:124–34
    [Google Scholar]
  111. Onfelt B, Purbhoo MA, Nedvetzki S, Sowinski S, Davis DM 2005. Long-distance calls between cells connected by tunneling nanotubules. Sci. STKE 2005:pe55
    [Google Scholar]
  112. Osmand AP, Bichell TJ, Bowman AB, Bates GP 2016. Embryonic mutant Huntingtin aggregate formation in mouse models of Huntington's disease. J. Huntington's Dis. 5:343–46
    [Google Scholar]
  113. Parkkinen L, Kauppinen T, Pirttila T, Autere JM, Alafuzoff I 2005. α-Synuclein pathology does not predict extrapyramidal symptoms or dementia. Ann. Neurol. 57:82–91
    [Google Scholar]
  114. Paumier KL, Luk KC, Manfredsson FP, Kanaan NM, Lipton JW et al. 2015. Intrastriatal injection of pre-formed mouse α-synuclein fibrils into rats triggers α-synuclein pathology and bilateral nigrostriatal degeneration. Neurobiol. Dis. 82:185–99
    [Google Scholar]
  115. Peelaerts W, Bousset L, Van der Perren A, Moskalyuk A, Pulizzi R et al. 2015. α-Synuclein strains cause distinct synucleinopathies after local and systemic administration. Nature 522:340–44
    [Google Scholar]
  116. Peng C, Gathagan RJ, Lee VM 2018. Distinct α-synuclein strains and implications for heterogeneity among α-synucleinopathies. Neurobiol. Dis. 109:209–18
    [Google Scholar]
  117. Pokrishevsky E, Grad LI, Cashman NR 2016. TDP-43 or FUS-induced misfolded human wild-type SOD1 can propagate intercellularly in a prion-like fashion. Sci. Rep. 6:22155
    [Google Scholar]
  118. Pokrishevsky E, Hong RH, Mackenzie IR, Cashman NR 2017. Spinal cord homogenates from SOD1 familial amyotrophic lateral sclerosis induce SOD1 aggregation in living cells. PLOS ONE 12:e0184384
    [Google Scholar]
  119. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A et al. 1997. Mutation in the α-synuclein gene identified in families with Parkinson's disease. Science 276:2045–47
    [Google Scholar]
  120. Prusiner SB 1982. Novel proteinaceous infectious particles cause scrapie. Science 216:136–44
    [Google Scholar]
  121. Prusiner SB 2013. Biology and genetics of prions causing neurodegeneration. Annu. Rev. Genet. 47:601–23
    [Google Scholar]
  122. Prusiner SB, Woerman AL, Mordes DA, Watts JC, Rampersaud R et al. 2015. Evidence for α-synuclein prions causing multiple system atrophy in humans with parkinsonism. PNAS 112:E5308–17
    [Google Scholar]
  123. Rajendran L, Honsho M, Zahn TR, Keller P, Geiger KD et al. 2006. Alzheimer's disease β-amyloid peptides are released in association with exosomes. PNAS 103:11172–77
    [Google Scholar]
  124. Rangel A, Race B, Phillips K, Striebel J, Kurtz N, Chesebro B 2014. Distinct patterns of spread of prion infection in brains of mice expressing anchorless or anchored forms of prion protein. Acta Neuropathol. Commun. 2:8
    [Google Scholar]
  125. Raposo G, Stoorvogel W 2013. Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol. 200:373–83
    [Google Scholar]
  126. Recasens A, Dehay B, Bove J, Carballo-Carbajal I, Dovero S et al. 2014. Lewy body extracts from Parkinson disease brains trigger α-synuclein pathology and neurodegeneration in mice and monkeys. Ann. Neurol. 75:351–62
    [Google Scholar]
  127. Ren PH, Lauckner JE, Kachirskaia I, Heuser JE, Melki R, Kopito RR 2009. Cytoplasmic penetration and persistent infection of mammalian cells by polyglutamine aggregates. Nat. Cell Biol. 11:219–25
    [Google Scholar]
  128. Renton AE, Majounie E, Waite A, Simon-Sanchez J, Rollinson S et al. 2011. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21–linked ALS-FTD. Neuron 72:257–68
    [Google Scholar]
  129. Rey NL, Steiner JA, Maroof N, Luk KC, Madaj Z et al. 2016. Widespread transneuronal propagation of α-synucleinopathy triggered in olfactory bulb mimics prodromal Parkinson's disease. J. Exp. Med. 213:1759–78
    [Google Scholar]
  130. Reyes JF, Rey NL, Bousset L, Melki R, Brundin P, Angot E 2014. α-Synuclein transfers from neurons to oligodendrocytes. Glia 62:387–98
    [Google Scholar]
  131. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P et al. 1993. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62
    [Google Scholar]
  132. Rosen RF, Fritz JJ, Dooyema J, Cintron AF, Hamaguchi T et al. 2012. Exogenous seeding of cerebral β-amyloid deposition in βAPP-transgenic rats. J. Neurochem. 120:660–66
    [Google Scholar]
  133. Ross CA, Aylward EH, Wild EJ, Langbehn DR, Long JD et al. 2014. Huntington disease: natural history, biomarkers and prospects for therapeutics. Nat. Rev. Neurol. 10:204–16
    [Google Scholar]
  134. Rostami J, Holmqvist S, Lindstrom V, Sigvardson J, Westermark GT et al. 2017. Human astrocytes transfer aggregated α-synuclein via tunneling nanotubes. J. Neurosci. 37:11835–53
    [Google Scholar]
  135. Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH 2004. Nanotubular highways for intercellular organelle transport. Science 303:1007–10
    [Google Scholar]
  136. Saman S, Kim W, Raya M, Visnick Y, Miro S et al. 2012. Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease. J. Biol. Chem. 287:3842–49
    [Google Scholar]
  137. Sanchez-Juan P, Green A, Ladogana A, Cuadrado-Corrales N, Saanchez-Valle R et al. 2006. CSF tests in the differential diagnosis of Creutzfeldt-Jakob disease. Neurology 67:637–43
    [Google Scholar]
  138. Sanders DW, Kaufman SK, DeVos SL, Sharma AM, Mirbaha H et al. 2014. Distinct tau prion strains propagate in cells and mice and define different tauopathies. Neuron 82:1271–88
    [Google Scholar]
  139. Sangwan S, Zhao A, Adams KL, Jayson CK, Sawaya MR et al. 2017. Atomic structure of a toxic, oligomeric segment of SOD1 linked to amyotrophic lateral sclerosis (ALS). PNAS 114:8770–75
    [Google Scholar]
  140. Scherzinger E, Sittler A, Schweiger K, Heiser V, Lurz R et al. 1999. Self-assembly of polyglutamine-containing huntingtin fragments into amyloid-like fibrils: implications for Huntington's disease pathology. PNAS 96:4604–9
    [Google Scholar]
  141. Schraen-Maschke S, Sergeant N, Dhaenens CM, Bombois S, Deramecourt V et al. 2008. Tau as a biomarker of neurodegenerative diseases. Biomark. Med. 2:363–84
    [Google Scholar]
  142. Senior K 2002. Dosing in phase II trial of Alzheimer's vaccine suspended. Lancet Neurol 1:3
    [Google Scholar]
  143. Sevigny J, Chiao P, Bussiere T, Weinreb PH, Williams L et al. 2016. The antibody aducanumab reduces Aβ plaques in Alzheimer's disease. Nature 537:50–56
    [Google Scholar]
  144. Shafiei SS, Guerrero-Munoz MJ, Castillo-Carranza DL 2017. Tau oligomers: cytotoxicity, propagation, and mitochondrial damage. Front. Aging Neurosci. 9:83
    [Google Scholar]
  145. Sharples RA, Vella LJ, Nisbet RM, Naylor R, Perez K et al. 2008. Inhibition of γ-secretase causes increased secretion of amyloid precursor protein C–terminal fragments in association with exosomes. FASEB J 22:1469–78
    [Google Scholar]
  146. Smith AJ, Verkman AS 2018. The “glymphatic” mechanism for solute clearance in Alzheimer's disease: game changer or unproven speculation?. FASEB J 32:543–51
    [Google Scholar]
  147. Sperling RA, Laviolette PS, O'Keefe K, O'Brien J, Rentz DM et al. 2009. Amyloid deposition is associated with impaired default network function in older persons without dementia. Neuron 63:178–88
    [Google Scholar]
  148. Spillantini MG, Goedert M 2013. Tau pathology and neurodegeneration. Lancet Neurol 12:609–22
    [Google Scholar]
  149. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M 1997. α-Synuclein in Lewy bodies. Nature 388:839–40
    [Google Scholar]
  150. Steele JW, Ju S, Lachenmayer ML, Liken J, Stock A et al. 2013. Latrepirdine stimulates autophagy and reduces accumulation of α-synuclein in cells and in mouse brain. Mol. Psychiatry 18:882–88
    [Google Scholar]
  151. Stern RA, Daneshvar DH, Baugh CM, Seichepine DR, Montenigro PH et al. 2013. Clinical presentation of chronic traumatic encephalopathy. Neurology 81:1122–29
    [Google Scholar]
  152. Stöhr J, Watts JC, Mensinger ZL, Oehler A, Grillo SK et al. 2012. Purified and synthetic Alzheimer's amyloid beta (Aβ) prions. PNAS 109:11025–30
    [Google Scholar]
  153. Surmeier DJ, Obeso JA, Halliday GM 2017. Selective neuronal vulnerability in Parkinson disease. Nat. Rev. Neurosci. 18:101–13
    [Google Scholar]
  154. Takeda S, Wegmann S, Cho H, DeVos SL, Commins C et al. 2015. Neuronal uptake and propagation of a rare phosphorylated high-molecular-weight tau derived from Alzheimer's disease brain. Nat. Commun. 6:8490
    [Google Scholar]
  155. Tardivel M, Begard S, Bousset L, Dujardin S, Coens A et al. 2016. Tunneling nanotube (TNT)-mediated neuron-to neuron transfer of pathological Tau protein assemblies. Acta Neuropathol. Commun. 4:117
    [Google Scholar]
  156. Taylor JP, Brown RH Jr, Cleveland DW 2016. Decoding ALS: from genes to mechanism. Nature 539:197–206
    [Google Scholar]
  157. Tran HT, Chung CH, Iba M, Zhang B, Trojanowski JQ et al. 2014. α-Synuclein immunotherapy blocks uptake and templated propagation of misfolded α-synuclein and neurodegeneration. Cell Rep 7:2054–65
    [Google Scholar]
  158. Tu PH, Galvin JE, Baba M, Giasson B, Tomita T et al. 1998. Glial cytoplasmic inclusions in white matter oligodendrocytes of multiple system atrophy brains contain insoluble α-synuclein. Ann. Neurol. 44:415–22
    [Google Scholar]
  159. Verghese PB, Castellano JM, Garai K, Wang Y, Jiang H et al. 2013. ApoE influences amyloid-beta (Aβ) clearance despite minimal apoE/Aβ association in physiological conditions. PNAS 110:E1807–16
    [Google Scholar]
  160. Victoria GS, Arkhipenko A, Zhu S, Syan S, Zurzolo C 2016. Astrocyte-to-neuron intercellular prion transfer is mediated by cell-cell contact. Sci. Rep. 6:20762
    [Google Scholar]
  161. Walker LC, Schelle J, Jucker M 2016. The prion-like properties of amyloid-β assemblies: implications for Alzheimer's disease. Cold Spring Harb. Perspect. Med. 6:a024398
    [Google Scholar]
  162. Walsh DM, Selkoe DJ 2016. A critical appraisal of the pathogenic protein spread hypothesis of neurodegeneration. Nat. Rev. Neurosci. 17:251–60
    [Google Scholar]
  163. Wang IF, Guo BS, Liu YC, Wu CC, Yang CH et al. 2012. Autophagy activators rescue and alleviate pathogenesis of a mouse model with proteinopathies of the TAR DNA-binding protein 43. PNAS 109:15024–29
    [Google Scholar]
  164. Wang Y, Balaji V, Kaniyappan S, Kruger L, Irsen S et al. 2017. The release and trans-synaptic transmission of tau via exosomes. Mol. Neurodegener. 12:5
    [Google Scholar]
  165. Wang Y, Cui J, Sun X, Zhang Y 2011. Tunneling-nanotube development in astrocytes depends on p53 activation. Cell Death Differ 18:732–42
    [Google Scholar]
  166. Watts JC, Giles K, Oehler A, Middleton L, Dexter DT et al. 2013. Transmission of multiple system atrophy prions to transgenic mice. PNAS 110:19555–60
    [Google Scholar]
  167. West T, Hu Y, Verghese PB, Bateman RJ, Braunstein JB et al. 2017. Preclinical and clinical development of ABBV-8E12, a humanized anti-tau antibody, for treatment of Alzheimer's disease and other tauopathies. J. Prev. Alzheimer's Dis. 4:236–41
    [Google Scholar]
  168. Westergard T, Jensen BK, Wen X, Cai J, Kropf E et al. 2016. Cell-to-cell transmission of dipeptide repeat proteins linked to C9orf72-ALS/FTD. Cell Rep 17:645–52
    [Google Scholar]
  169. Wong YC, Krainc D 2017. α-Synuclein toxicity in neurodegeneration: mechanism and therapeutic strategies. Nat. Med. 23:1–13
    [Google Scholar]
  170. Wu JW, Herman M, Liu L, Simoes S, Acker CM et al. 2013. Small misfolded tau species are internalized via bulk endocytosis and anterogradely and retrogradely transported in neurons. J. Biol. Chem. 288:1856–70
    [Google Scholar]
  171. Xie L, Kang H, Xu Q, Chen MJ, Liao Y et al. 2013. Sleep drives metabolite clearance from the adult brain. Science 342:373–77
    [Google Scholar]
  172. Yamada K, Cirrito JR, Stewart FR, Jiang H, Finn MB et al. 2011. In vivo microdialysis reveals age-dependent decrease of brain interstitial fluid tau levels in P301S human tau transgenic mice. J. Neurosci. 31:13110–17
    [Google Scholar]
  173. Yanamandra K, Kfoury N, Jiang H, Mahan TE, Ma S et al. 2013. Anti-tau antibodies that block tau aggregate seeding in vitro markedly decrease pathology and improve cognition in vivo. Neuron 80:402–14
    [Google Scholar]
  174. Yoshida M 2014. Astrocytic inclusions in progressive supranuclear palsy and corticobasal degeneration. Neuropathology 34:555–70
    [Google Scholar]
  175. Zeineddine R, Pundavela JF, Corcoran L, Stewart EM, Do-Ha D et al. 2015. SOD1 protein aggregates stimulate macropinocytosis in neurons to facilitate their propagation. Mol. Neurodegener. 10:57
    [Google Scholar]
  176. Zhu S, Victoria GS, Marzo L, Ghosh R, Zurzolo C 2015. Prion aggregates transfer through tunneling nanotubes in endocytic vesicles. Prion 9:125–35
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-100617-062636
Loading
/content/journals/10.1146/annurev-cellbio-100617-062636
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error