1932

Abstract

Microbial nucleic acids are major signatures of invading pathogens, and their recognition by various host pattern recognition receptors (PRRs) represents the first step toward an efficient innate immune response to clear the pathogens. The nucleic acid–sensing PRRs are localized at the plasma membrane, the cytosol, and/or various cellular organelles. Sensing of nucleic acids and signaling by PRRs involve recruitment of distinct signaling components, and PRRs are intensively regulated by cellular organelle trafficking. PRR-mediated innate immune responses are also heavily regulated by posttranslational modifications, including phosphorylation, polyubiquitination, sumoylation, and glutamylation. In this review, we focus on our current understanding of recognition of microbial nucleic acid by PRRs, particularly on their regulation by organelle trafficking and posttranslational modifications. We also discuss how sensing of self nucleic acids and dysregulation of PRR-mediated signaling lead to serious human diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-100617-062903
2018-10-06
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/34/1/annurev-cellbio-100617-062903.html?itemId=/content/journals/10.1146/annurev-cellbio-100617-062903&mimeType=html&fmt=ahah

Literature Cited

  1. Ablasser A, Bauernfeind F, Hartmann G, Latz E, Fitzgerald KA, Hornung V 2009. RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III–transcribed RNA intermediate. Nat. Immunol. 10:1065–72
    [Google Scholar]
  2. Ablasser A, Schmid-Burgk JL, Hemmerling I, Horvath GL, Schmidt T et al. 2013. Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP. Nature 503:530–34
    [Google Scholar]
  3. Akira S, Uematsu S, Takeuchi O 2006. Pathogen recognition and innate immunity. Cell 124:783–801
    [Google Scholar]
  4. Almine JF, O'Hare CA, Dunphy G, Haga IR, Naik RJ et al. 2017. IFI16 and cGAS cooperate in the activation of STING during DNA sensing in human keratinocytes. Nat. Commun. 8:14392
    [Google Scholar]
  5. An J, Woodward JJ, Sasaki T, Minie M, Elkon KB 2015. Cutting edge: Antimalarial drugs inhibit IFN-β production through blockade of cyclic GMP–AMP synthase–DNA interaction. J. Immunol. 194:4089–93
    [Google Scholar]
  6. An T, Li S, Pan W, Tien P, Zhong B et al. 2015. DYRK2 negatively regulates type I interferon induction by promoting TBK1 degradation via Ser527 phosphorylation. PLOS Pathog 11:e1005179
    [Google Scholar]
  7. Andrade WA, Firon A, Schmidt T, Hornung V, Fitzgerald KA et al. 2016. Group B Streptococcus degrades cyclic-di-AMP to modulate STING-dependent type I interferon production. Cell Host Microbe 20:49–59
    [Google Scholar]
  8. Andreeva L, Hiller B, Kostrewa D, Lassig C, de Oliveira Mann CC et al. 2017. cGAS senses long and HMGB/TFAM-bound U-turn DNA by forming protein-DNA ladders. Nature 549:394–98
    [Google Scholar]
  9. Arimoto K, Takahashi H, Hishiki T, Konishi H, Fujita T, Shimotohno K 2007. Negative regulation of the RIG-I signaling by the ubiquitin ligase RNF125. PNAS 104:7500–5
    [Google Scholar]
  10. Barbalat R, Ewald SE, Mouchess ML, Barton GM 2011. Nucleic acid recognition by the innate immune system. Annu. Rev. Immunol. 29:185–214
    [Google Scholar]
  11. Barrat FJ, Meeker T, Gregorio J, Chan JH, Uematsu S et al. 2005. Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J. Exp. Med. 202:1131–39
    [Google Scholar]
  12. Barton GM, Kagan JC 2009. A cell biological view of Toll-like receptor function: regulation through compartmentalization. Nat. Rev. Immunol. 9:535–42
    [Google Scholar]
  13. Barton GM, Kagan JC, Medzhitov R 2006. Intracellular localization of Toll-like receptor 9 prevents recognition of self DNA but facilitates access to viral DNA. Nat. Immunol. 7:49–56
    [Google Scholar]
  14. Barton GM, Medzhitov R 2003. Toll-like receptor signaling pathways. Science 300:1524–25
    [Google Scholar]
  15. Bauer S, Kirschning CJ, Hacker H, Redecke V, Hausmann S et al. 2001. Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. PNAS 98:9237–42
    [Google Scholar]
  16. Bauer S, Pigisch S, Hangel D, Kaufmann A, Hamm S 2008. Recognition of nucleic acid and nucleic acid analogs by Toll-like receptors 7, 8 and 9. Immunobiology 213:315–28
    [Google Scholar]
  17. Bernard JJ, Cowing-Zitron C, Nakatsuji T, Muehleisen B, Muto J et al. 2012. Ultraviolet radiation damages self noncoding RNA and is detected by TLR3. Nat. Med. 18:1286–90
    [Google Scholar]
  18. Botos I, Liu L, Wang Y, Segal DM, Davies DR 2009. The toll-like receptor 3:dsRNA signaling complex. Biochim. Biophys. Acta 1789:667–74
    [Google Scholar]
  19. Breckpot K, Escors D, Arce F, Lopes L, Karwacz K et al. 2010. HIV-1 lentiviral vector immunogenicity is mediated by Toll-like receptor 3 (TLR3) and TLR7. J. Virol. 84:5627–36
    [Google Scholar]
  20. Bridgeman A, Maelfait J, Davenne T, Partridge T, Peng Y et al. 2015. Viruses transfer the antiviral second messenger cGAMP between cells. Science 349:1228–32
    [Google Scholar]
  21. Brunette RL, Young JM, Whitley DG, Brodsky IE, Malik HS, Stetson DB 2012. Extensive evolutionary and functional diversity among mammalian AIM2-like receptors. J. Exp. Med. 209:1969–83
    [Google Scholar]
  22. Chen LT, Hu MM, Xu ZS, Liu Y, Shu HB 2016. MSX1 modulates RLR-mediated innate antiviral signaling by facilitating assembly of TBK1-associated complexes. J. Immunol. 197:199–207
    [Google Scholar]
  23. Chiu YH, Macmillan JB, Chen ZJ 2009. RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 138:576–91
    [Google Scholar]
  24. Christensen SR, Shupe J, Nickerson K, Kashgarian M, Flavell RA, Shlomchik MJ 2006. Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity 25:417–28
    [Google Scholar]
  25. Chu W, Gong X, Li Z, Takabayashi K, Ouyang H et al. 2000. DNA-PKcs is required for activation of innate immunity by immunostimulatory DNA. Cell 103:909–18
    [Google Scholar]
  26. Crow YJ 2015. Type I interferonopathies: mendelian type I interferon up-regulation. Curr. Opin. Immunol. 32:7–12
    [Google Scholar]
  27. Cui J, Li Y, Zhu L, Liu D, Songyang Z et al. 2012. NLRP4 negatively regulates type I interferon signaling by targeting the kinase TBK1 for degradation via the ubiquitin ligase DTX4. Nat. Immunol. 13:387–95
    [Google Scholar]
  28. Deng L, Liang H, Xu M, Yang X, Burnette B et al. 2014. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon–dependent antitumor immunity in immunogenic tumors. Immunity 41:843–52
    [Google Scholar]
  29. Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C 2004. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303:1529–31
    [Google Scholar]
  30. Dixit E, Boulant S, Zhang Y, Lee AS, Odendall C et al. 2010. Peroxisomes are signaling platforms for antiviral innate immunity. Cell 141:668–81
    [Google Scholar]
  31. Dobbs N, Burnaevskiy N, Chen D, Gonugunta VK, Alto NM, Yan N 2015. STING activation by translocation from the ER is associated with infection and autoinflammatory disease. Cell Host Microbe 18:157–68
    [Google Scholar]
  32. Du X, Poltorak A, Wei Y, Beutler B 2000. Three novel mammalian toll-like receptors: gene structure, expression, and evolution. Eur. Cytokine Netw. 11:362–71
    [Google Scholar]
  33. Dubensky TW Jr, Kanne DB, Leong ML 2013. Rationale, progress and development of vaccines utilizing STING-activating cyclic dinucleotide adjuvants. Ther. Adv. Vaccines 1:131–43
    [Google Scholar]
  34. Fernandes-Alnemri T, Yu JW, Datta P, Wu J, Alnemri ES 2009. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458:509–13
    [Google Scholar]
  35. Gack MU, Shin YC, Joo CH, Urano T, Liang C et al. 2007. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446:916–20
    [Google Scholar]
  36. Gao D, Wu J, Wu YT, Du F, Aroh C et al. 2013. Cyclic GMP–AMP synthase is an innate immune sensor of HIV and other retroviruses. Science 341:903–6
    [Google Scholar]
  37. Gao P, Ascano M, Zillinger T, Wang W, Dai P et al. 2013. Structure-function analysis of STING activation by c[G(2′,5′)pA(3′,5′)p] and targeting by antiviral DMXAA. Cell 154:748–62
    [Google Scholar]
  38. Garcia-Cattaneo A, Gobert FX, Muller M, Toscano F, Flores M et al. 2012. Cleavage of Toll-like receptor 3 by cathepsins B and H is essential for signaling. PNAS 109:9053–58
    [Google Scholar]
  39. Geary RS, Yu RZ, Levin AA 2001. Pharmacokinetics of phosphorothioate antisense oligodeoxynucleotides. Curr. Opin. Investig. Drugs 2:562–73
    [Google Scholar]
  40. Gentili M, Kowal J, Tkach M, Satoh T, Lahaye X et al. 2015. Transmission of innate immune signaling by packaging of cGAMP in viral particles. Science 349:1232–36
    [Google Scholar]
  41. Gitlin L, Barchet W, Gilfillan S, Cella M, Beutler B et al. 2006. Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. PNAS 103:8459–64
    [Google Scholar]
  42. Gray EE, Treuting PM, Woodward JJ, Stetson DB 2015. Cutting edge: cGAS is required for lethal autoimmune disease in the Trex1-deficient mouse model of Aicardi–Goutières syndrome. J. Immunol. 195:1939–43
    [Google Scholar]
  43. Guo B, Cheng G 2007. Modulation of the interferon antiviral response by the TBK1/IKKi adaptor protein TANK. J. Biol. Chem. 282:11817–26
    [Google Scholar]
  44. Haas T, Metzger J, Schmitz F, Heit A, Muller T et al. 2008. The DNA sugar backbone 2′ deoxyribose determines toll-like receptor 9 activation. Immunity 28:315–23
    [Google Scholar]
  45. Harding SM, Benci JL, Irianto J, Discher DE, Minn AJ, Greenberg RA 2017. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 548:466–70
    [Google Scholar]
  46. Harrison CJ, Jenski L, Voychehovski T, Bernstein DI 1988. Modification of immunological responses and clinical disease during topical R-837 treatment of genital HSV-2 infection. Antivir. Res. 10:209–23
    [Google Scholar]
  47. Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C et al. 2004. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303:1526–29
    [Google Scholar]
  48. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S et al. 2000. A Toll-like receptor recognizes bacterial DNA. Nature 408:740–45
    [Google Scholar]
  49. Herzner AM, Hagmann CA, Goldeck M, Wolter S, Kubler K et al. 2015. Sequence-specific activation of the DNA sensor cGAS by Y-form DNA structures as found in primary HIV-1 cDNA. Nat. Immunol. 16:1025–33
    [Google Scholar]
  50. Higgs R, Ni Gabhann J, Ben Larbi N, Breen EP, Fitzgerald KA, Jefferies CA 2008. The E3 ubiquitin ligase Ro52 negatively regulates IFN-β production post-pathogen recognition by polyubiquitin-mediated degradation of IRF3. J. Immunol. 181:1780–86
    [Google Scholar]
  51. Holm CK, Jensen SB, Jakobsen MR, Cheshenko N, Horan KA et al. 2012. Virus-cell fusion as a trigger of innate immunity dependent on the adaptor STING. Nat. Immunol. 13:737–43
    [Google Scholar]
  52. Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G et al. 2009. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458:514–18
    [Google Scholar]
  53. Hornung V, Barchet W, Schlee M, Hartmann G 2008. RNA recognition via TLR7 and TLR8. Toll-Like Receptors (TLRs) and Innate Immunity (Handbook of Experimental Pharmacology, Vol. 183) S Bauer, G Hartmann 71–86 Berlin/Heidelberg: Springer
    [Google Scholar]
  54. Hornung V, Ellegast J, Kim S, Brzozka K, Jung A et al. 2006. 5′-Triphosphate RNA is the ligand for RIG-I. Science 314:994–97
    [Google Scholar]
  55. Hou F, Sun L, Zheng H, Skaug B, Jiang QX, Chen ZJ 2011. MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell 146:448–61
    [Google Scholar]
  56. Hu MM, Liao CY, Yang Q, Xie XQ, Shu HB 2017. Innate immunity to RNA virus is regulated by temporal and reversible sumoylation of RIG-I and MDA5. J. Exp. Med. 214:973–89
    [Google Scholar]
  57. Hu MM, Yang Q, Xie XQ, Liao CY, Lin H et al. 2016. Sumoylation promotes the stability of the DNA sensor cGAS and the adaptor STING to regulate the kinetics of response to DNA virus. Immunity 45:555–69
    [Google Scholar]
  58. Ishii N, Funami K, Tatematsu M, Seya T, Matsumoto M 2014. Endosomal localization of TLR8 confers distinctive proteolytic processing on human myeloid cells. J. Immunol. 193:5118–28
    [Google Scholar]
  59. Ishikawa H, Barber GN 2008. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455:674–78
    [Google Scholar]
  60. Ishikawa H, Ma Z, Barber GN 2009. STING regulates intracellular DNA-mediated, type I interferon–dependent innate immunity. Nature 461:788–92
    [Google Scholar]
  61. Janeway CA Jr 1989. Introduction: T-cell:B-cell interaction. Semin. Immunol. 1:1–3
    [Google Scholar]
  62. Jiang F, Ramanathan A, Miller MT, Tang GQ, Gale M Jr et al. 2011. Structural basis of RNA recognition and activation by innate immune receptor RIG-I. Nature 479:423–27
    [Google Scholar]
  63. Jonsson KL, Laustsen A, Krapp C, Skipper KA, Thavachelvam K et al. 2017. IFI16 is required for DNA sensing in human macrophages by promoting production and function of cGAMP. Nat. Commun. 8:14391
    [Google Scholar]
  64. Kato H, Sato S, Yoneyama M, Yamamoto M, Uematsu S et al. 2005. Cell type–specific involvement of RIG-I in antiviral response. Immunity 23:19–28
    [Google Scholar]
  65. Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M et al. 2006. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441:101–5
    [Google Scholar]
  66. Kawai T, Akira S 2010. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 11:373–84
    [Google Scholar]
  67. Kawai T, Akira S 2011. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34:637–50
    [Google Scholar]
  68. Kawai T, Sato S, Ishii KJ, Coban C, Hemmi H et al. 2004. Interferon-α induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat. Immunol. 5:1061–68
    [Google Scholar]
  69. Kawai T, Takahashi K, Sato S, Coban C, Kumar H et al. 2005. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat. Immunol. 6:981–88
    [Google Scholar]
  70. Kim YM, Brinkmann MM, Paquet ME, Ploegh HL 2008. UNC93B1 delivers nucleotide-sensing toll-like receptors to endolysosomes. Nature 452:234–38
    [Google Scholar]
  71. Kondo T, Kobayashi J, Saitoh T, Maruyama K, Ishii KJ et al. 2013. DNA damage sensor MRE11 recognizes cytosolic double-stranded DNA and induces type I interferon by regulating STING trafficking. PNAS 110:2969–74
    [Google Scholar]
  72. Konno H, Konno K, Barber GN 2013. Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STING to prevent sustained innate immune signaling. Cell 155:688–98
    [Google Scholar]
  73. Kowalinski E, Lunardi T, McCarthy AA, Louber J, Brunel J et al. 2011. Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA. Cell 147:423–35
    [Google Scholar]
  74. Kranzusch PJ, Lee AS, Berger JM, Doudna JA 2013. Structure of human cGAS reveals a conserved family of second-messenger enzymes in innate immunity. Cell Rep 3:1362–68
    [Google Scholar]
  75. Kulkarni RR, Rasheed MA, Bhaumik SK, Ranjan P, Cao W et al. 2014. Activation of the RIG-I pathway during influenza vaccination enhances the germinal center reaction, promotes T follicular helper cell induction, and provides a dose-sparing effect and protective immunity. J. Virol. 88:13990–4001
    [Google Scholar]
  76. Lafaille FG, Pessach IM, Zhang SY, Ciancanelli MJ, Herman M et al. 2012. Impaired intrinsic immunity to HSV-1 in human iPSC–derived TLR3-deficient CNS cells. Nature 491:769–73
    [Google Scholar]
  77. Lee N, Wong CK, Hui DS, Lee SK, Wong RY et al. 2013. Role of human Toll-like receptors in naturally occurring influenza A infections. Influenza Other Respir. Viruses 7:666–75
    [Google Scholar]
  78. Lei CQ, Zhong B, Zhang Y, Zhang J, Wang S, Shu HB 2010. Glycogen synthase kinase 3β regulates IRF3 transcription factor–mediated antiviral response via activation of the kinase TBK1. Immunity 33:878–89
    [Google Scholar]
  79. Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA 1996. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86:973–83
    [Google Scholar]
  80. Li S, Zheng H, Mao AP, Zhong B, Li Y et al. 2009. Regulation of virus-triggered signaling by OTUB1- and OTUB2-mediated deubiquitination of TRAF3 and TRAF6. J. Biol. Chem. 285:4291–97
    [Google Scholar]
  81. Li S, Zhu M, Pan R, Fang T, Cao YY et al. 2015. The tumor suppressor PTEN has a critical role in antiviral innate immunity. Nat. Immunol. 17:241–49
    [Google Scholar]
  82. Li XD, Wu J, Gao D, Wang H, Sun L, Chen ZJ 2013. Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science 341:1390–94
    [Google Scholar]
  83. Li Y, Chen R, Zhou Q, Xu Z, Li C et al. 2012. LSm14A is a processing body–associated sensor of viral nucleic acids that initiates cellular antiviral response in the early phase of viral infection. PNAS 109:11770–75
    [Google Scholar]
  84. Li Y, Wu Y, Zheng X, Cong J, Liu Y et al. 2016. Cytoplasm-translocated Ku70/80 complex sensing of HBV DNA induces hepatitis-associated chemokine secretion. Front. Immunol. 7:569
    [Google Scholar]
  85. Liu J, Qian C, Cao X 2016. Post-translational modification control of innate immunity. Immunity 45:15–30
    [Google Scholar]
  86. Liu L, Botos I, Wang Y, Leonard JN, Shiloach J et al. 2008. Structural basis of toll-like receptor 3 signaling with double-stranded RNA. Science 320:379–81
    [Google Scholar]
  87. Liu S, Cai X, Wu J, Cong Q, Chen X et al. 2015. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 347:aaa2630
    [Google Scholar]
  88. Liu S, Chen J, Cai X, Wu J, Chen X et al. 2013. MAVS recruits multiple ubiquitin E3 ligases to activate antiviral signaling cascades. eLife 2:e00785
    [Google Scholar]
  89. Liu TT, Yang Q, Li M, Zhong B, Ran Y et al. 2016. LSm14A plays a critical role in antiviral immune responses by regulating MITA level in a cell-specific manner. J. Immunol. 196:5101–11
    [Google Scholar]
  90. Liu Y, Jesus AA, Marrero B, Yang D, Ramsey SE et al. 2014. Activated STING in a vascular and pulmonary syndrome. New Engl. J. Med. 371:507–18
    [Google Scholar]
  91. Loo YM, Fornek J, Crochet N, Bajwa G, Perwitasari O et al. 2008. Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J. Virol. 82:335–45
    [Google Scholar]
  92. Luecke S, Holleufer A, Christensen MH, Jonsson KL, Boni GA et al. 2017. cGAS is activated by DNA in a length-dependent manner. EMBO Rep 18:1707–15
    [Google Scholar]
  93. Lund JM, Alexopoulou L, Sato A, Karow M, Adams NC et al. 2004. Recognition of single-stranded RNA viruses by Toll-like receptor 7. PNAS 101:5598–603
    [Google Scholar]
  94. Luo D, Ding SC, Vela A, Kohlway A, Lindenbach BD, Pyle AM 2011. Structural insights into RNA recognition by RIG-I. Cell 147:409–22
    [Google Scholar]
  95. Luo WW, Li S, Li C, Lian H, Yang Q et al. 2016. iRhom2 is essential for innate immunity to DNA viruses by mediating trafficking and stability of the adaptor STING. Nat. Immunol. 17:1057–66
    [Google Scholar]
  96. Mackenzie KJ, Carroll P, Martin CA, Murina O, Fluteau A et al. 2017. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 548:461–65
    [Google Scholar]
  97. Mankan AK, Schmidt T, Chauhan D, Goldeck M, Honing K et al. 2014. Cytosolic RNA:DNA hybrids activate the cGAS-STING axis. EMBO J 33:2937–46
    [Google Scholar]
  98. Mao AP, Li S, Zhong B, Li Y, Yan J et al. 2010. Virus-triggered ubiquitination of TRAF3/6 by cIAP1/2 is essential for induction of interferon-beta (IFN-β) and cellular antiviral response. J. Biol. Chem. 285:9470–76
    [Google Scholar]
  99. Marchi S, Patergnani S, Pinton P 2013. The endoplasmic reticulum–mitochondria connection: one touch, multiple functions. Biochim. Biophys. Acta 1837:461–69
    [Google Scholar]
  100. Maschalidi S, Hassler S, Blanc F, Sepulveda FE, Tohme M et al. 2012. Asparagine endopeptidase controls anti-influenza virus immune responses through TLR7 activation. PLOS Pathog 8:e1002841
    [Google Scholar]
  101. Matsumoto M, Funami K, Tanabe M, Oshiumi H, Shingai M et al. 2003. Subcellular localization of Toll-like receptor 3 in human dendritic cells. J. Immunol. 171:3154–62
    [Google Scholar]
  102. Matsumoto M, Oshiumi H, Seya T 2011. Antiviral responses induced by the TLR3 pathway. Rev. Med. Virol. 21:67–77
    [Google Scholar]
  103. McGettrick AF, O'Neill LA 2010. Localisation and trafficking of Toll-like receptors: an important mode of regulation. Curr. Opin. Immunol. 22:20–27
    [Google Scholar]
  104. Meylan E, Curran J, Hofmann K, Moradpour D, Binder M et al. 2005. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437:1167–72
    [Google Scholar]
  105. Misawa T, Takahama M, Saitoh T 2017. Mitochondria–endoplasmic reticulum contact sites mediate innate immune responses. Adv. Exp. Med. Biol. 997:187–97
    [Google Scholar]
  106. Morchikh M, Cribier A, Raffel R, Amraoui S, Cau J et al. 2017. HEXIM1 and NEAT1 long non-coding RNA form a multi-subunit complex that regulates DNA-mediated innate immune response. Mol. Cell 67:387–99.e5
    [Google Scholar]
  107. Moretti J, Roy S, Bozec D, Martinez J, Chapman JR et al. 2017. STING senses microbial viability to orchestrate stress-mediated autophagy of the endoplasmic reticulum. Cell 171:809–23.e13
    [Google Scholar]
  108. Nasirudeen AM, Wong HH, Thien P, Xu S, Lam KP, Liu DX 2011. RIG-I, MDA5 and TLR3 synergistically play an important role in restriction of dengue virus infection. PLOS. Neglected Trop. Dis. 5:e926
    [Google Scholar]
  109. Nguyen TA, Smith BRC, Tate MD, Belz GT, Barrios MH et al. 2017. SIDT2 transports extracellular dsRNA into the cytoplasm for innate immune recognition. Immunity 47:498–509.e6
    [Google Scholar]
  110. Nie Y, Ran Y, Zhang HY, Huang ZF, Pan ZY et al. 2017. GPATCH3 negatively regulates RLR-mediated innate antiviral responses by disrupting the assembly of VISA signalosome. PLOS Pathog 13:e1006328
    [Google Scholar]
  111. Oshiumi H, Matsumoto M, Funami K, Akazawa T, Seya T 2003. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3–mediated interferon-β induction. Nat. Immunol. 4:161–67
    [Google Scholar]
  112. Osorio F, Reis e Sousa C 2011. Myeloid C-type lectin receptors in pathogen recognition and host defense. Immunity 34:651–64
    [Google Scholar]
  113. Park B, Brinkmann MM, Spooner E, Lee CC, Kim YM, Ploegh HL 2008. Proteolytic cleavage in an endolysosomal compartment is required for activation of Toll-like receptor 9. Nat. Immunol. 9:1407–14
    [Google Scholar]
  114. Pichlmair A, Schulz O, Tan CP, Naslund TI, Liljestrom P et al. 2006. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314:997–1001
    [Google Scholar]
  115. Qin Y, Zhou MT, Hu MM, Hu YH, Zhang J et al. 2014. RNF26 temporally regulates virus-triggered type I interferon induction by two distinct mechanisms. PLOS Pathog 10:e1004358
    [Google Scholar]
  116. Ran Y, Liu TT, Zhou Q, Li S, Mao AP et al. 2011. SENP2 negatively regulates cellular antiviral response by deSUMOylating IRF3 and conditioning it for ubiquitination and degradation. J. Mol. Cell Biol. 3:283–92
    [Google Scholar]
  117. Ran Y, Zhang J, Liu LL, Pan ZY, Nie Y et al. 2015. Autoubiquitination of TRIM26 links TBK1 to NEMO in RLR-mediated innate antiviral immune response. J. Mol. Cell Biol. 8:31–43
    [Google Scholar]
  118. Sasai M, Shingai M, Funami K, Yoneyama M, Fujita T et al. 2006. NAK-associated protein 1 participates in both the TLR3 and the cytoplasmic pathways in type I IFN induction. J. Immunol. 177:8676–83
    [Google Scholar]
  119. Schulz O, Diebold SS, Chen M, Naslund TI, Nolte MA et al. 2005. Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature 433:887–92
    [Google Scholar]
  120. Seo GJ, Yang A, Tan B, Kim S, Liang Q et al. 2015. Akt kinase–mediated checkpoint of cGAS DNA sensing pathway. Cell Rep 13:440–49
    [Google Scholar]
  121. Seth RB, Sun L, Ea CK, Chen ZJ 2005. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF3. Cell 122:669–82
    [Google Scholar]
  122. Sharma S, Campbell AM, Chan J, Schattgen SA, Orlowski GM et al. 2015. Suppression of systemic autoimmunity by the innate immune adaptor STING. PNAS 112:E710–17
    [Google Scholar]
  123. Shu HB, Wang YY 2014. Adding to the STING. Immunity 41:871–73
    [Google Scholar]
  124. Silvin A, Manel N 2015. Innate immune sensing of HIV infection. Curr. Opin. Immunol. 32:54–60
    [Google Scholar]
  125. Stevceva L 2011. Toll-like receptor agonists as adjuvants for HIV vaccines. Curr. Med. Chem. 18:5079–82
    [Google Scholar]
  126. Sumpter R Jr, Loo YM, Foy E, Li K, Yoneyama M et al. 2005. Regulating intracellular antiviral defense and permissiveness to hepatitis C virus RNA replication through a cellular RNA helicase, RIG-I. J. Virol. 79:2689–99
    [Google Scholar]
  127. Sun B, Sundstrom KB, Chew JJ, Bist P, Gan ES et al. 2017. Dengue virus activates cGAS through the release of mitochondrial DNA. Sci. Rep. 7:3594
    [Google Scholar]
  128. Sun L, Wu J, Du F, Chen X, Chen ZJ 2013. Cyclic GMP–AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339:786–91
    [Google Scholar]
  129. Takaoka A, Wang Z, Choi MK, Yanai H, Negishi H et al. 2007. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448:501–5
    [Google Scholar]
  130. Takeuchi O, Akira S 2010. Pattern recognition receptors and inflammation. Cell 140:805–20
    [Google Scholar]
  131. Tan P, He L, Cui J, Qian C, Cao X et al. 2017. Assembly of the WHIP-TRIM14-PPP6C mitochondrial complex promotes RIG-I-mediated antiviral signaling. Mol. Cell 68:293–307.e5
    [Google Scholar]
  132. Tao J, Zhang XW, Jin J, Du XX, Lian T et al. 2017. Nonspecific DNA binding of cGAS N terminus promotes cGAS activation. J. Immunol. 198:3627–36
    [Google Scholar]
  133. Temizoz B, Kuroda E, Ohata K, Jounai N, Ozasa K et al. 2015. TLR9 and STING agonists synergistically induce innate and adaptive type-II IFN. Eur. J. Immunol. 45:1159–69
    [Google Scholar]
  134. Triantafilou K, Orthopoulos G, Vakakis E, Ahmed MA, Golenbock DT et al. 2005. Human cardiac inflammatory responses triggered by Coxsackie B viruses are mainly Toll-like receptor (TLR) 8-dependent. Cell. Microbiol. 7:1117–26
    [Google Scholar]
  135. Tsokos GC 2011. Systemic lupus erythematosus. New Engl. J. Med. 365:2110–21
    [Google Scholar]
  136. Tsuchida T, Zou J, Saitoh T, Kumar H, Abe T et al. 2010. The ubiquitin ligase TRIM56 regulates innate immune responses to intracellular double-stranded DNA. Immunity 33:765–76
    [Google Scholar]
  137. Uchikawa E, Lethier M, Malet H, Brunel J, Gerlier D, Cusack S 2016. Structural analysis of dsRNA binding to anti-viral pattern recognition receptors LGP2 and MDA5. Mol. Cell 62:586–602
    [Google Scholar]
  138. Unterholzner L, Keating SE, Baran M, Horan KA, Jensen SB et al. 2010. IFI16 is an innate immune sensor for intracellular DNA. Nat. Immunol. 11:997–1004
    [Google Scholar]
  139. Wagstaff AJ, Perry CM 2007. Topical imiquimod: a review of its use in the management of anogenital warts, actinic keratoses, basal cell carcinoma and other skin lesions. Drugs 67:2187–210
    [Google Scholar]
  140. Wanders RJ, Waterham HR 2006. Biochemistry of mammalian peroxisomes revisited. Annu. Rev. Biochem. 75:295–332
    [Google Scholar]
  141. Wang P, Zhao W, Zhao K, Zhang L, Gao C 2015. TRIM26 negatively regulates interferon-β production and antiviral response through polyubiquitination and degradation of nuclear IRF3. PLOS Pathog 11:e1004726
    [Google Scholar]
  142. Wang Q, Huang L, Hong Z, Lv Z, Mao Z et al. 2017. The E3 ubiquitin ligase RNF185 facilitates the cGAS-mediated innate immune response. PLOS Pathog 13:e1006264
    [Google Scholar]
  143. Wang Q, Liu X, Cui Y, Tang Y, Chen W et al. 2014. The E3 ubiquitin ligase AMFR and INSIG1 bridge the activation of TBK1 kinase by modifying the adaptor STING. Immunity 41:919–33
    [Google Scholar]
  144. Wang YY, Liu LJ, Zhong B, Liu TT, Li Y et al. 2010. WDR5 is essential for assembly of the VISA-associated signaling complex and virus-triggered IRF3 and NF-κB activation. PNAS 107:815–20
    [Google Scholar]
  145. Wies E, Wang MK, Maharaj NP, Chen K, Zhou S et al. 2013. Dephosphorylation of the RNA sensors RIG-I and MDA5 by the phosphatase PP1 is essential for innate immune signaling. Immunity 38:437–49
    [Google Scholar]
  146. Woo SR, Fuertes MB, Corrales L, Spranger S, Furdyna MJ et al. 2014. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41:830–42
    [Google Scholar]
  147. Wu B, Peisley A, Richards C, Yao H, Zeng X et al. 2013. Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5. Cell 152:276–89
    [Google Scholar]
  148. Wu J, Sun L, Chen X, Du F, Shi H et al. 2013. Cyclic GMP–AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339:826–30
    [Google Scholar]
  149. Xia P, Ye B, Wang S, Zhu X, Du Y et al. 2016. Glutamylation of the DNA sensor cGAS regulates its binding and synthase activity in antiviral immunity. Nat. Immunol. 17:369–78
    [Google Scholar]
  150. Xu LG, Wang YY, Han KJ, Li LY, Zhai Z, Shu HB 2005. VISA is an adapter protein required for virus-triggered IFN-β signaling. Mol. Cell 19:727–40
    [Google Scholar]
  151. Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T et al. 2003. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301:640–43
    [Google Scholar]
  152. Yan BR, Zhou L, Hu MM, Li M, Lin H et al. 2017. PKACs attenuate innate antiviral response by phosphorylating VISA and priming it for MARCH5-mediated degradation. PLOS Pathog 13:e1006648
    [Google Scholar]
  153. Yang Y, Wang SY, Huang ZF, Zou HM, Yan BR et al. 2016. The RNA-binding protein Mex3B is a coreceptor of Toll-like receptor 3 in innate antiviral response. Cell Res 26:288–303
    [Google Scholar]
  154. Yoh SM, Schneider M, Seifried J, Soonthornvacharin S, Akleh RE et al. 2015. PQBP1 is a proximal sensor of the cGAS-dependent innate response to HIV-1. Cell 161:1293–305
    [Google Scholar]
  155. Yoneyama M, Onomoto K, Jogi M, Akaboshi T, Fujita T 2015. Viral RNA detection by RIG-I-like receptors. Curr. Opin. Immunol. 32:48–53
    [Google Scholar]
  156. York AG, Williams KJ, Argus JP, Zhou QD, Brar G et al. 2015. Limiting cholesterol biosynthetic flux spontaneously engages type I IFN signaling. Cell 163:1716–29
    [Google Scholar]
  157. Zeng W, Sun L, Jiang X, Chen X, Hou F et al. 2010. Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell 141:315–30
    [Google Scholar]
  158. Zhang J, Hu MM, Wang YY, Shu HB 2012. TRIM32 protein modulates type I interferon induction and cellular antiviral response by targeting MITA/STING protein for K63-linked ubiquitination. J. Biol. Chem. 287:28646–55
    [Google Scholar]
  159. Zhang M, Tian Y, Wang RP, Gao D, Zhang Y et al. 2008. Negative feedback regulation of cellular antiviral signaling by RBCK1-mediated degradation of IRF3. Cell Res 18:1096–104
    [Google Scholar]
  160. Zhang SY, Herman M, Ciancanelli MJ, Perez de Diego R, Sancho-Shimizu V et al. 2013. TLR3 immunity to infection in mice and humans. Curr. Opin. Immunol. 25:19–33
    [Google Scholar]
  161. Zhang SY, Jouanguy E, Ugolini S, Smahi A, Elain G et al. 2007. TLR3 deficiency in patients with herpes simplex encephalitis. Science 317:1522–27
    [Google Scholar]
  162. Zhang Z, Yuan B, Bao M, Lu N, Kim T, Liu YJ 2011. The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat. Immunol. 12:959–65
    [Google Scholar]
  163. Zhao J, Zeng Y, Xu S, Chen J, Shen G et al. 2016. A viral deamidase targets the helicase domain of RIG-I to block RNA-induced activation. Cell Host Microbe 20:770–84
    [Google Scholar]
  164. Zhong B, Yang Y, Li S, Wang YY, Li Y et al. 2008. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 29:538–50
    [Google Scholar]
  165. Zhong B, Zhang L, Lei C, Li Y, Mao AP et al. 2009. The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA. Immunity 30:397–407
    [Google Scholar]
  166. Zhou Q, Lin H, Wang S, Wang S, Ran Y et al. 2014. The ER-associated protein ZDHHC1 is a positive regulator of DNA virus–triggered, MITA/STING-dependent innate immune signaling. Cell Host Microbe 16:450–61
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-100617-062903
Loading
/content/journals/10.1146/annurev-cellbio-100617-062903
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error