1932

Abstract

Nanoparticle-based systems offer fascinating possibilities for biomedicine, but their translation into clinics is slow. Missing sterile, reproducible, and scalable methods for their synthesis along with challenges in characterization and poor colloidal stability of nanoparticles in body fluids are key obstacles. Flame aerosol technology gives proven access to scalable synthesis of nanoparticles with diverse compositions and architectures. Although highly promising in terms of product reproducibility and sterility, this technology is frequently overlooked, as its products are of fractal-like aggregated and/or agglomerated morphology. However, coagulation is a widely occurring phenomenon in all kinds of particle-based systems. In particular, protein-rich body fluids encountered in biomedical settings often lead to destabilization of colloidal nanoparticle suspensions in vivo. We aim to provide insights into how particle–particle interactions can be measured and controlled. Moreover, we show how particle coupling effects driven by coagulation may even be beneficial for certain sensing, therapeutic, and bioimaging applications.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-060718-030203
2019-06-07
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/10/1/annurev-chembioeng-060718-030203.html?itemId=/content/journals/10.1146/annurev-chembioeng-060718-030203&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Lian T, Ho RJY. 2001. Trends and developments in liposome drug delivery systems. J. Pharm. Sci. 90:6667–80
    [Google Scholar]
  2. 2.
    Na HB, Song IC, Hyeon T 2009. Inorganic nanoparticles for MRI contrast agents. Adv. Mater. 21:212133–48
    [Google Scholar]
  3. 3.
    Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B et al. 2003. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. PNAS 100:2313549–54
    [Google Scholar]
  4. 4.
    Seo WS, Lee JH, Sun XM, Suzuki Y, Mann D et al. 2006. FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. Nat. Mater. 5:12971–76
    [Google Scholar]
  5. 5.
    Rose S, Prevoteau A, Elziere P, Hourdet D, Marcellan A, Leibler L 2014. Nanoparticle solutions as adhesives for gels and biological tissues. Nature 505:7483382–85
    [Google Scholar]
  6. 6.
    Hilty FM, Arnold M, Hilbe M, Teleki A, Knijnenburg JTN et al. 2010. Iron from nanocompounds containing iron and zinc is highly bioavailable in rats without tissue accumulation. Nat. Nanotechnol. 5:5374–80
    [Google Scholar]
  7. 7.
    Valencia PM, Farokhzad OC, Karnik R, Langer R 2012. Microfluidic technologies for accelerating the clinical translation of nanoparticles. Nat. Nanotechnol. 7:10623–29
    [Google Scholar]
  8. 8.
    Sotiriou GA, Starsich F, Dasargyri A, Wurnig MC, Krumeich F et al. 2014. Photothermal killing of cancer cells by the controlled plasmonic coupling of silica-coated Au/Fe2O3 nanoaggregates. Adv. Funct. Mater. 24:192818–27
    [Google Scholar]
  9. 9.
    Koh I, Josephson L. 2009. Magnetic nanoparticle sensors. Sensors 9:8130–45
    [Google Scholar]
  10. 10.
    Blattmann CO, Pratsinis SE. 2016. In situ measurement of conductivity during nanocomposite film deposition. Appl. Surf. Sci. 371:329–36
    [Google Scholar]
  11. 11.
    Albanese A, Chan WCW. 2011. Effect of gold nanoparticle aggregation on cell uptake and toxicity. ACS Nano 5:75478–89
    [Google Scholar]
  12. 12.
    Colomer J, Peters F, Marrase CL 2005. Experimental analysis of coagulation of particles under low-shear flow. Water Res 39:2994–3000
    [Google Scholar]
  13. 13.
    Gupta AK, Gupta M. 2005. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:183995–4021
    [Google Scholar]
  14. 14.
    Tiwari P, Vig K, Dennis V, Singh S 2011. Functionalized gold nanoparticles and their biomedical applications. Nanomaterials 1:131–63
    [Google Scholar]
  15. 15.
    Strobel R, Pratsinis SE. 2007. Flame aerosol synthesis of smart nanostructured materials. J. Mater. Chem. 17:454743–56
    [Google Scholar]
  16. 16.
    Ulrich GD. 1984. Flame synthesis of fine particles. Chem. Eng. News 62:3222–29
    [Google Scholar]
  17. 17.
    Wegner K, Pratsinis SE. 2003. Scale-up of nanoparticle synthesis in diffusion flame reactors. Chem. Eng. Sci. 58:204581–89
    [Google Scholar]
  18. 18.
    Flörke OW, Graetsch HA, Brunk F, Benda L, Paschen S et al. 2008. Silica. Ullmann's Encyclopedia of Industrial Chemistry Weinheim, Ger: Wiley-VCH. 7th ed.
    [Google Scholar]
  19. 19.
    Eggersdorfer ML, Pratsinis SE. 2014. Agglomerates and aggregates of nanoparticles made in the gas phase. Adv. Powder Technol. 25:171–90
    [Google Scholar]
  20. 20.
    Grass RN, Tsantilis S, Pratsinis SE 2006. Design of high-temperature, gas-phase synthesis of hard or soft TiO2 agglomerates. AIChE J 52:41318–25
    [Google Scholar]
  21. 21.
    Sotiriou GA, Franco D, Poulikakos D, Ferrari A 2012. Optically stable biocompatible flame-made SiO2-coated Y2O3:Tb3+ nanophosphors for cell imaging. ACS Nano 6:53888–97
    [Google Scholar]
  22. 22.
    Starsich FHL, Gschwend P, Sergeyev A, Grange R, Pratsinis SE 2017. Deep tissue imaging with highly fluorescent near-infrared nanocrystals after systematic host screening. Chem. Mater. 29:198158–66
    [Google Scholar]
  23. 23.
    Herrmann IK, Urner M, Koehler FM, Hasler M, Roth-Z'Graggen B et al. 2010. Blood purification using functionalized core/shell nanomagnets. Small 6:131388–92
    [Google Scholar]
  24. 24.
    Sotiriou GA, Visbal-Onufrak MA, Teleki A, Juan EJ, Hirt AM et al. 2013. Thermal energy dissipation by SiO2-coated plasmonic-superparamagnetic nanoparticles in alternating magnetic fields. Chem. Mater. 25:224603–12
    [Google Scholar]
  25. 25.
    Starsich FHL, Sotiriou GA, Wurnig MC, Eberhardt C, Hirt AM et al. 2016. Silica-coated nonstoichiometric nano Zn-ferrites for magnetic resonance imaging and hyperthermia treatment. Adv. Healthc. Mater. 5:202698–706
    [Google Scholar]
  26. 26.
    Sotiriou GA, Etterlin GD, Spyrogianni A, Krumeich F, Leroux JC, Pratsinis SE 2014. Plasmonic biocompatible silver-gold alloyed nanoparticles. Chem. Commun. 50:8813559–62
    [Google Scholar]
  27. 27.
    Matter MT, Starsich F, Galli M, Hilber M, Schlegel AA et al. 2017. Developing a tissue glue by engineering the adhesive and hemostatic properties of metal oxide nanoparticles. Nanoscale 9:248418–26
    [Google Scholar]
  28. 28.
    Schulz H, Mädler L, Pratsinis SE, Burtscher P, Moszner N 2005. Transparent nanocomposites of radiopaque, flame-made Ta2O5/SiO2 particles in an acrylic matrix. Adv. Funct. Mater. 15:5830–37
    [Google Scholar]
  29. 29.
    Strobel R, Maciejewski M, Pratsinis SE, Baiker A 2006. Unprecedented formation of metastable mono-clinic BaCO3 nanoparticles. Thermochim. Acta 445:123–26
    [Google Scholar]
  30. 30.
    Wang L, Teleki A, Pratsinis SE, Gouma PI 2008. Ferroelectric WO3 nanoparticles for acetone selective detection. Chem. Mater. 20:154794–96
    [Google Scholar]
  31. 31.
    Mueller R, Madler L, Pratsinis SE 2003. Nanoparticle synthesis at high production rates by flame spray pyrolysis. Chem. Eng. Sci. 58:101969–76
    [Google Scholar]
  32. 32.
    Mueller R, Jossen R, Pratsinis SE, Watson M, Akhtar MK 2004. Zirconia nanoparticles made in spray flames at high production rates. J. Am. Ceram. Soc. 87:2197–202
    [Google Scholar]
  33. 33.
    Wegner K, Schimmoeller B, Thiebaut B, Fernandez C, Rao TN 2011. Pilot plants for industrial nanoparticle production by flame spray pyrolysis. KONA Powder Part. J. 29:251–65
    [Google Scholar]
  34. 34.
    Hotze EM, Phenrat T, Lowry GV 2010. Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. J. Environ. Qual. 39:61909–24
    [Google Scholar]
  35. 35.
    Moghimi SM, Szebeni J. 2003. Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog. Lipid Res. 42:463–78
    [Google Scholar]
  36. 36.
    Iyer AK, Khaled G, Fang J, Maeda H 2006. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today 11:812–18
    [Google Scholar]
  37. 37.
    Ataman NC, Klok HA. 2016. Degrafting of poly(poly(ethylene glycol) methacrylate) brushes from planar and spherical silicon substrates. Macromolecules 49:239035–47
    [Google Scholar]
  38. 38.
    Teleki A, Suter M, Kidambi PR, Ergeneman O, Krumeich F et al. 2009. Hermetically coated superparamagnetic Fe2O3 particles with SiO2 nanofilms. Chem. Mater. 21:102094–100
    [Google Scholar]
  39. 39.
    Grass RN, Athanassiou EK, Stark WJ 2007. Covalently functionalized cobalt nanoparticles as a platform for magnetic separations in organic synthesis. Angew. Chem. Int. Ed. 46:264909–12
    [Google Scholar]
  40. 40.
    Sotiriou GA, Pratsinis SE. 2010. Antibacterial activity of nanosilver ions and particles. Environ. Sci. Technol. 44:145649–54
    [Google Scholar]
  41. 41.
    Teleki A, Bjelobrk N, Pratsinis SE 2010. Continuous surface functionalization of flame-made TiO2 nanoparticles. Langmuir 26:85815–22
    [Google Scholar]
  42. 42.
    Starsich FHL, Hirt AM, Stark WJ, Grass RN 2014. Gas-phase synthesis of magnetic metal/polymer nanocomposites. Nanotechnology 25:50505602
    [Google Scholar]
  43. 43.
    Sotiriou GA, Sannomiya T, Teleki A, Krumeich F, Voros J, Pratsinis SE 2010. Non-toxic dry-coated nanosilver for plasmonic biosensors. Adv. Funct. Mater. 20:244250–57
    [Google Scholar]
  44. 44.
    Herrmann IK, Grass RN, Mazunin D, Stark WJ 2009. Synthesis and covalent surface functionalization of nonoxidic iron core-shell nanomagnets. Chem. Mater. 21:143275–81
    [Google Scholar]
  45. 45.
    Dengler M, Saatchi K, Dailey JP, Matsubara J, Mikelberg FS et al. 2010. Targeted delivery of magnetic cobalt nanoparticles to the eye following systemic administration. AIP Conf. Proc. 1311:329–36
    [Google Scholar]
  46. 46.
    Van Druff JL, Zhou W, Asman E, Leach JB 2010. Multiple lumiphore-bound nanoparticles for in vivo quantification of localized oxygen levels. IFMBE Proc 32:142–45
    [Google Scholar]
  47. 47.
    Hofer CJ, Zlateski V, Stoessel PR, Paunescu D, Schneider EM et al. 2015. Stable dispersions of azide functionalized ferromagnetic metal nanoparticles. Chem. Commun. 51:511826–29
    [Google Scholar]
  48. 48.
    Schädli GN, Büchel R, Pratsinis SE 2017. Nanogenerator power output: influence of particle size and crystallinity of BaTiO3. Nanotechnology 28:27275705
    [Google Scholar]
  49. 49.
    Misra SK, Mohn D, Brunner TJ, Stark WJ, Philip SE et al. 2008. Comparison of nanoscale and microscale bioactive glass on the properties of P(3HB)/Bioglass® composites. Biomaterials 29:121750–61
    [Google Scholar]
  50. 50.
    Kim S-S, Park MS, Jeon O, Choi CY, Kim B-S 2006. Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Biomaterials 27:1399–409
    [Google Scholar]
  51. 51.
    Oberdisse J. 2006. Aggregation of colloidal nanoparticles in polymer matrices. Soft Matter 2:129–36
    [Google Scholar]
  52. 52.
    Liu A, Hong Z, Zhuang X, Chen X, Cui Y et al. 2008. Surface modification of bioactive glass nanoparticles and the mechanical and biological properties of poly(l-lactide) composites. Acta Biomater 4:41005–15
    [Google Scholar]
  53. 53.
    Barsan N, Schweizer-Berberich M, Göpel W 1999. Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report. Fresenius’ J. Anal. Chem. 365:4287–304
    [Google Scholar]
  54. 54.
    Blattmann CO, Güntner AT, Pratsinis SE 2017. In situ monitoring of the deposition of flame-made chemoresistive gas-sensing films. ACS Appl. Mater. Interfaces 9:2823926–33
    [Google Scholar]
  55. 55.
    Righettoni M, Amann A, Pratsinis SE 2015. Breath analysis by nanostructured metal oxides as chemo-resistive gas sensors. Mater. Today 18:3163–71
    [Google Scholar]
  56. 56.
    Güntner AT, Sievi NA, Theodore SJ, Gulich T, Kohler M, Pratsinis SE 2017. Noninvasive body fat burn monitoring from exhaled acetone with Si-doped WO3-sensing nanoparticles. Anal. Chem. 89:1910578–84
    [Google Scholar]
  57. 57.
    Quinten M. 2001. The color of finely dispersed nanoparticles. Appl. Phys. B Lasers Opt. 73:4317–26
    [Google Scholar]
  58. 58.
    De La Rica R, Stevens MM 2012. Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye. Nat. Nanotechnol. 7:12821–24
    [Google Scholar]
  59. 59.
    Ghosh SK, Pal T. 2007. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem. Rev. 107:114797–862
    [Google Scholar]
  60. 60.
    Liu J, Lu Y. 2006. Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nat. Protoc. 1:1246–52
    [Google Scholar]
  61. 61.
    Nam J, Won N, Jin H, Chung H, Kim S 2009. pH-induced aggregation of gold nanoparticles for photothermal cancer therapy. J. Am. Chem. Soc. 131:3813639–45
    [Google Scholar]
  62. 62.
    Weissleder R. 2001. A clearer vision for in vivo imaging. Nat. Biotechnol. 19:4316–17
    [Google Scholar]
  63. 63.
    Josephson L, Perez JM, Weissleder R 2001. Magnetic nanosensors for the detection of oligonucleotide sequences. Angew. Chem. Int. Ed. 40:173204–6
    [Google Scholar]
  64. 64.
    Perez JM, Josephson L, O'Loughlin T, Högemann D, Weissleder R 2002. Magnetic relaxation switches capable of sensing molecular interactions. Nat. Biotechnol. 20:8816–20
    [Google Scholar]
  65. 65.
    Mørup S, Hansen MF, Frandsen C 2010. Magnetic interactions between nanoparticles. Beilstein J. Nanotechnol. 1:182–90
    [Google Scholar]
  66. 66.
    Zeltner M, Grass RN, Schaetz A, Bubenhofer SB, Luechinger NA, Stark WJ 2012. Stable dispersions of ferromagnetic carbon-coated metal nanoparticles: preparation via surface initiated atom transfer radical polymerization. J. Mater. Chem. 22:2412064–71
    [Google Scholar]
  67. 67.
    Kang JH, Super M, Yung CW, Cooper RM, Domansky K et al. 2014. An extracorporeal blood-cleansing device for sepsis therapy. Nat. Med. 20:101211–16
    [Google Scholar]
  68. 68.
    Lattuada M, Hatton TA. 2007. Preparation and controlled self-assembly of Janus magnetic nanoparticles. J. Am. Chem. Soc. 129:4212878–89
    [Google Scholar]
  69. 69.
    Osborne EA, Jarrett BR, Tu C, Louie AY 2010. Modulation of T2 relaxation time by light-induced, reversible aggregation of magnetic nanoparticles. J. Am. Chem. Soc. 132:175934–35
    [Google Scholar]
  70. 70.
    Lai JJ, Hoffman JM, Ebara M, Hoffman AS, Estournès C et al. 2007. Dual magnetio/temperature-responsive nanoparticles for microfluidic separations and assays. Langmuir 23:137385–91
    [Google Scholar]
  71. 71.
    Hirt AM, Sotiriou GA, Kidambi PR, Teleki A 2014. Effect of size, composition, and morphology on magnetic performance: first-order reversal curves evaluation of iron oxide nanoparticles. J. Appl. Phys. 115:444314
    [Google Scholar]
  72. 72.
    Starsich FHL, Eberhardt C, Boss A, Hirt AM, Pratsinis SE 2018. Coercivity determines magnetic particle heating. Adv. Healthc. Mater. 7:191800287
    [Google Scholar]
  73. 73.
    DeLoid GM, Cohen JM, Pyrgiotakis G, Demokritou P 2017. Preparation, characterization, and in vitro dosimetry of dispersed, engineered nanomaterials. Nat. Protoc. 12:2355–71
    [Google Scholar]
  74. 74.
    Spyrogianni A, Sotiriou GA, Brambilla D, Leroux JC, Pratsinis SE 2017. The effect of settling on cytotoxicity evaluation of SiO2 nanoparticles. J. Aerosol Sci. 108:56–66
    [Google Scholar]
  75. 75.
    Spyrogianni A, Karadima KS, Goudeli E, Mavrantzas VG, Pratsinis SE 2018. Mobility and settling rate of agglomerates of polydisperse nanoparticles. J. Chem. Phys 148:064703
    [Google Scholar]
  76. 76.
    Muoth C, Großgarten M, Karst U, Ruiz J, Astruc D et al. 2017. Impact of particle size and surface modification on gold nanoparticle penetration into human placental microtissues. Nanomedicine 12:101119–33
    [Google Scholar]
  77. 77.
    Åberg C. 2016. Quantitative analysis of nanoparticle transport through in vitro blood-brain barrier models. Tissue Barriers 4:1e1143545
    [Google Scholar]
  78. 78.
    Grabinski C, Sharma M, Maurer E, Sulentic C, Mohan Sankaran R, Hussain S 2016. The effect of shear flow on nanoparticle agglomeration and deposition in in vitro dynamic flow models. Nanotoxicology 10:174–83
    [Google Scholar]
  79. 79.
    Farokhzad OC, Khademhosseini A, Jon S, Hermmann A, Cheng J et al. 2005. Microfluidic system for studying the interaction of nanoparticles and microparticles with cells. Anal. Chem. 77:175453–59
    [Google Scholar]
  80. 80.
    Jacobson M, Roth Z'graggen B, Graber SM, Schumacher CM, Stark WJ et al. 2015. Uptake of ferromagnetic carbon-encapsulated metal nanoparticles in endothelial cells: influence of shear stress and endothelial activation. Nanomedicine 10:243537–46
    [Google Scholar]
  81. 81.
    Aengenheister L, Keevend K, Muoth C, Schönenberger R, Diener L et al. 2018. An advanced human in vitro co-culture model for translocation studies across the placental barrier. Sci. Rep. 8:15388
    [Google Scholar]
  82. 82.
    Ho DN, Kohler N, Sigdel A, Kalluri R, Morgan JR et al. 2012. Penetration of endothelial cell coated multicellular tumor spheroids by iron oxide nanoparticles. Theranostics 2:166–75
    [Google Scholar]
  83. 83.
    Klingberg H, Loft S, Oddershede LB, Møller P 2015. The influence of flow, shear stress and adhesion molecule targeting on gold nanoparticle uptake in human endothelial cells. Nanoscale 7:2611409–19
    [Google Scholar]
  84. 84.
    Halamoda-Kenzaoui B, Ceridono M, Urbán P, Bogni A, Ponti J et al. 2017. The agglomeration state of nanoparticles can influence the mechanism of their cellular internalisation. J. Nanobiotechnol. 15:48
    [Google Scholar]
  85. 85.
    Yameen B, Choi WI, Vilos C, Swami A, Shi J, Farokhzad OC 2014. Insight into nanoparticle cellular uptake and intracellular targeting. J. Control. Release 190:485–99
    [Google Scholar]
  86. 86.
    Chithrani BD, Chan WCW. 2007. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett 7:61542–50
    [Google Scholar]
  87. 87.
    Lesniak A, Fenaroli F, Monopoli MP, Åberg C, Dawson KA, Salvati A 2012. Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano 6:75845–57
    [Google Scholar]
  88. 88.
    Ritz S, Schöttler S, Kotman N, Baier G, Musyanovych A et al. 2015. Protein corona of nanoparticles: Distinct proteins regulate the cellular uptake. Biomacromolecules 16:41311–21
    [Google Scholar]
  89. 89.
    Henriksen-Lacey M, Carregal-Romero S, Liz-Marzán LM 2017. Current challenges toward in vitro cellular validation of inorganic nanoparticles. Bioconjugate Chem 28:212–21
    [Google Scholar]
  90. 90.
    Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J et al. 2016. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1:16014
    [Google Scholar]
  91. 91.
    Creutzenberg O, Bellmann B, Korolewitz R, Koch W, Mangelsdorf I et al. 2012. Change in agglomeration status and toxicokinetic fate of various nanoparticles in vivo following lung exposure in rats. Inhal. Toxicol. 24:12821–30
    [Google Scholar]
  92. 92.
    Rissler J, Swietlicki E, Bengtsson A, Boman C, Pagels J et al. 2012. Experimental determination of deposition of diesel exhaust particles in the human respiratory tract. J. Aerosol Sci. 48:18–33
    [Google Scholar]
  93. 93.
    Decuzzi P, Lee S, Bhushan B, Ferrari M, Decuzzi P 2005. A theoretical model for the margination of particles within blood vessels. Ann. Biomed. Eng. 33:2179–90
    [Google Scholar]
  94. 94.
    Blanco E, Shen H, Ferrari M 2015. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33:9941–51
    [Google Scholar]
  95. 95.
    Moore TL, Rodriguez-Lorenzo L, Hirsch V, Balog S, Urban D et al. 2015. Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem. Soc. Rev. 44:446287–305
    [Google Scholar]
  96. 96.
    Mohr K, Sommer M, Baier G, Schöttler S, Okwieka P et al. 2014. Aggregation behavior of polystyrene-nanoparticles in human blood serum and its impact on the in vivo distribution in mice. J. Nanomed. Nanotechnol. 5:2193
    [Google Scholar]
  97. 97.
    Keene AM, Peters D, Rouse R, Stewart S, Rosen ET, Tyner KM 2012. Tissue and cellular distribution of gold nanoparticles varies based on aggregation/agglomeration status. Nanomedicine 7:2199–209
    [Google Scholar]
  98. 98.
    Rojas JM, Gavilán H, del Dedo V, Lorente-Sorolla E, Sanz-Ortega L et al. 2017. Time-course assessment of the aggregation and metabolization of magnetic nanoparticles. Acta Biomater 58:181–95
    [Google Scholar]
  99. 99.
    Bushell G, Yan YD, Woodfield D, Raper J, Amal R 2002. On techniques for the measurement of the mass fractal dimension of aggregates. Adv. Colloid Interface Sci. 95:1–50
    [Google Scholar]
  100. 100.
    Wengeler R, Teleki A, Vetter M, Pratsinis SE, Nirschl H 2006. High-pressure liquid dispersion and fragmentation of flame-made silica agglomerates. Langmuir 22:114928–35
    [Google Scholar]
  101. 101.
    Kusters KA, Pratsinis SE, Thoma SG, Smith DM 1993. Ultrasonic fragmentation of agglomerate powders. Chem. Eng. Sci. 48:244119–27
    [Google Scholar]
  102. 102.
    Spicer PT, Pratsinis SE, Raper J, Amal R, Bushell G, Meesters G 1998. Effect of shear schedule on particle size, density, and structure during flocculation in stirred tanks. Powder Technol 97:26–34
    [Google Scholar]
  103. 103.
    Filipe V, Hawe A, Jiskoot W 2010. Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm. Res. 27:5796–810
    [Google Scholar]
  104. 104.
    Hyeon-Lee J, Beaucage G, Pratsinis SE, Vemury S 1998. Fractal analysis of flame-synthesized nano-structured silica and titania powders using small-angle X-ray scattering. Langmuir 14:205751–56
    [Google Scholar]
  105. 105.
    Laborda F, Bolea E, Jiménez-Lamana J 2014. Single particle inductively coupled plasma mass spectrometry: a powerful tool for nanoanalysis. Anal. Chem. 86:52270–78
    [Google Scholar]
  106. 106.
    Pace HE, Rogers NJ, Jarolimek C, Coleman VA, Gray EP et al. 2012. Single particle inductively coupled plasma-mass spectrometry: a performance evaluation and method comparison in the determination of nanoparticle size. Environ. Sci. Technol. 46:2212272–80
    [Google Scholar]
  107. 107.
    Amendola V, Meneghetti M. 2009. Size evaluation of gold nanoparticles by UV-vis spectroscopy. J. Phys. Chem. C 113:114277–85
    [Google Scholar]
  108. 108.
    Storhoff JJ, Lazarides AA, Mucic RC, Mirkin CA, Letsinger RL, Schatz GC 2000. What controls the optical properties of DNA-linked gold nanoparticle assemblies. J. Am. Chem. Soc. 122:194640–50
    [Google Scholar]
  109. 109.
    van de Ven AL, Kim P, Ferrari M, Yun SH 2013. Real-time intravital microscopy of individual nanoparticle dynamics in liver and tumors of live mice. Protoc. Exch. https://doi.org/10.1038/protex.2013.049
    [Crossref] [Google Scholar]
  110. 110.
    Roca AG, Veintemillas-Verdaguer S, Port M, Robic C, Serna CJ, Morales MP 2009. Effect of nanoparticle and aggregate size on the relaxometric properties of MR contrast agents based on high quality magnetite nanoparticles. J. Phys. Chem. B 113:197033–39
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-060718-030203
Loading
/content/journals/10.1146/annurev-chembioeng-060718-030203
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error