1932

Abstract

Light-matter interactions can provide a wealth of detailed information about the structural, electronic, optical, and chemical properties of materials through various excitation and scattering processes that occur over different length, energy, and timescales. Unfortunately, the wavelike nature of light limits the achievable spatial resolution for interrogation and imaging of materials to roughly λ/2 because of diffraction. Scanning near-field optical microscopy (SNOM) breaks this diffraction limit by coupling light to nanostructures that are specifically designed to manipulate, enhance, and/or extract optical signals from very small regions of space. Progress in the SNOM field over the past 30 years has led to the development of many methods to optically characterize materials at lateral spatial resolutions well below 100 nm. We review these exciting developments and demonstrate how SNOM is truly extending optical imaging and spectroscopy to the nanoscale.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-060817-084150
2018-06-07
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/9/1/annurev-chembioeng-060817-084150.html?itemId=/content/journals/10.1146/annurev-chembioeng-060817-084150&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Abbe E 1881. VII.—On the estimation of aperture in the microscope. J. R. Microsc. Soc. 1:388–423
    [Google Scholar]
  2. 2.  Bazylewski P, Ezugwu S, Fanchini G 2017. A review of three-dimensional scanning near-field optical microscopy (3D-SNOM) and its applications in nanoscale light management. Appl. Sci. 7:973
    [Google Scholar]
  3. 3.  Zhang W, Fang Z, Zhu X 2016. Near-field Raman spectroscopy with aperture tips. Chem. Rev. 117:5095–109
    [Google Scholar]
  4. 4.  Morton SM, Silverstein DW, Jensen L 2011. Theoretical studies of plasmonics using electronic structure methods. Chem. Rev. 111:3962–94
    [Google Scholar]
  5. 5.  Liao PF, Wokaun A 1982. Lightning rod effect in surface enhanced Raman scattering. J. Chem. Phys. 76:751–52
    [Google Scholar]
  6. 6.  Crozier KB, Sundaramurthy A, Kino GS, Quate CF 2003. Optical antennas: resonators for local field enhancement. J. Appl. Phys. 94:4632–42
    [Google Scholar]
  7. 7.  Jersch J, Demming F, Hildenhagen LJ, Dickmann K 1998. Field enhancement of optical radiation in the nearfield of scanning probe microscope tips. Appl. Phys. A 66:29–34
    [Google Scholar]
  8. 8.  Degtyarev SA, Porfirev AP, Ustinov AV, Khonina SN 2016. Singular laser beams nanofocusing with dielectric nanostructures: theoretical investigation. J. Opt. Soc. Am. B 33:2480–85
    [Google Scholar]
  9. 9.  Ermushev AV, Boris VM, Olenikov VA, Petukhov AV 1993. Surface enhancement of local optical fields and the lightning-rod effect. Quantum Electron 23:435
    [Google Scholar]
  10. 10.  Gibbons PC, Schnatterly SE, Ritsko JJ, Fields JR 1976. Line shape of the plasma resonance in simple metals. Phys. Rev. B 13:2451–60
    [Google Scholar]
  11. 11.  Sambles JR, Bradbery GW, Yang F 1991. Optical excitation of surface plasmons: an introduction. Contemp. Phys. 32:173–83
    [Google Scholar]
  12. 12.  Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML 2010. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9:193
    [Google Scholar]
  13. 13.  Kerker M, Wang D-S, Chew H 1980. Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles. Appl. Opt. 19:3373–88
    [Google Scholar]
  14. 14.  Anger P, Bharadwaj P, Novotny L 2006. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 96:113002
    [Google Scholar]
  15. 15.  Jensen L, Aikens CM, Schatz GC 2008. Electronic structure methods for studying surface-enhanced Raman scattering. Chem. Soc. Rev. 37:1061–73
    [Google Scholar]
  16. 16.  Wu D-Y, Liu X-M, Duan S, Xu X, Ren B et al. 2008. Chemical enhancement effects in SERS spectra: a quantum chemical study of pyridine interacting with copper, silver, gold and platinum metals. J. Phys. Chem. C 112:4195–204
    [Google Scholar]
  17. 17.  Jensen L, Zhao LL, Schatz GC 2007. Size-dependence of the enhanced Raman scattering of pyridine adsorbed on Agn (n = 2−8, 20) clusters. J. Phys. Chem. C 111:4756–64
    [Google Scholar]
  18. 18.  Valley N, Greeneltch N, Van Duyne RP, Schatz GC 2013. A look at the origin and magnitude of the chemical contribution to the enhancement mechanism of surface-enhanced Raman spectroscopy (SERS): theory and experiment. J. Phys. Chem. Lett. 4:2599–604
    [Google Scholar]
  19. 19.  Henry A-I, Ueltschi TW, McAnally MO, Van Duyne RP 2017. Spiers Memorial Lecture. Surface-enhanced Raman spectroscopy: from single particle/molecule spectroscopy to angstrom-scale spatial resolution and femtosecond time resolution. Faraday Discuss 205:9–30
    [Google Scholar]
  20. 20. Moskovits M. Persistent misconceptions regarding SERS. 2013. Phys. Chem. Chem. Phys. 15:5301–11
  21. 21.  Saiki T, Mononobe S, Ohtsu M, Saito N, Kusano J 1996. Tailoring a high-transmission fiber probe for photon scanning tunneling microscope. Appl. Phys. Lett. 68:2612–14
    [Google Scholar]
  22. 22.  Weiner J 2009. The physics of light transmission through subwavelength apertures and aperture arrays. Rep. Prog. Phys. 72:064401
    [Google Scholar]
  23. 23.  Novotny L, Hafner C 1994. Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function. Phys. Rev. E 50:4094–106
    [Google Scholar]
  24. 24.  Hayazawa N, Inouye Y, Sekkat Z, Kawata S 2001. Near-field Raman scattering enhanced by a metallized tip. Chem. Phys. Lett. 335:369–74
    [Google Scholar]
  25. 25.  Vasconcelos TL, Archanjo BS, Fragneaud B, Oliveira BS, Riikonen J, Li C et al. 2015. Tuning localized surface plasmon resonance in scanning near-field optical microscopy probes. ACS Nano 9:6297–304
    [Google Scholar]
  26. 26.  Ramos R, Gordon MJ 2012. Near-field artifacts in tip-enhanced Raman spectroscopy. Appl. Phys. Lett. 100:213111
    [Google Scholar]
  27. 27.  Farahani JN, Eisler H-J, Pohl DW, Pavius M, Flückiger P et al. 2007. Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy. Nanotechnology 18:125506
    [Google Scholar]
  28. 28.  Bao MMW, Caselli N, Riboli F, Wiersma DS, Stafforni M et al. 2012. Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging. Science 338:1317–21
    [Google Scholar]
  29. 29.  Berweger S, Atkin JM, Olmon RL, Raschke MB 2010. Adiabatic tip-plasmon focusing for nano-Raman spectroscopy. J. Phys. Chem. Lett. 1:3427–32
    [Google Scholar]
  30. 30.  De Angelis F, Das G, Candeloro P, Patrini M, Galli M et al. 2010. Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons. Nat. Nanotechnol. 5:67–72
    [Google Scholar]
  31. 31.  Veerman JA, Otter AM, Kuipers L, van Hulst NF 1998. High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling. Appl. Phys. Lett. 72:3115–17
    [Google Scholar]
  32. 32.  Cumurcu A, Diaz J, Lindsay ID, de Beer S, Duvigneau J et al. 2015. Optical imaging beyond the diffraction limit by SNEM: effects of AFM tip modifications with thiol monolayers on imaging quality. Ultramicroscopy 150:79–87
    [Google Scholar]
  33. 33.  Yeo B-S, Stadler J, Schmid T, Zenobi R, Zhang W 2009. Tip-enhanced Raman spectroscopy—its status, challenges and future directions. Chem. Phys. Lett. 472:1–13
    [Google Scholar]
  34. 34.  Agapov RL, Sokolov AP, Foster MD 2013. Protecting TERS probes from degradation: extending mechanical and chemical stability. J. Raman Spectrosc. 44:710–16
    [Google Scholar]
  35. 35.  Kazemi-Zanjani N, Vedraine S, Lagugne-Labarthet F 2013. Localized enhancement of electric field in tip-enhanced Raman spectroscopy using radially and linearly polarized light. Opt. Express 21:25271–76
    [Google Scholar]
  36. 36.  Zhang W, Smith T, Yeo B-S, Zenobi R 2008. Near-field heating, annealing, and signal loss in tip-enhanced Raman spectroscopy. J. Phys. Chem. C 112:2104–8
    [Google Scholar]
  37. 37.  Malkovskiy AV, Malkovsky VI, Kisliuk AM, Barrios CA, Foster MD, Sokolov AP 2009. Tip-induced heating in apertureless near-field optics. J. Raman Spectrosc. 40:1349–54
    [Google Scholar]
  38. 38.  Bechtel HA, Muller EA, Olmon RL, Martin MC, Raschke MB 2014. Ultrabroadband infrared nanospectroscopic imaging. PNAS 111:7191–96
    [Google Scholar]
  39. 39.  Hermann P, Kastner B, Hoehl A, Kashcheyevs V, Patoka P et al. 2017. Enhancing the sensitivity of nano-FTIR spectroscopy. Opt. Express 25:16574–88
    [Google Scholar]
  40. 40.  Kehr SC, Cebula M, Mieth O, Härtling T, Seidel J et al. 2008. Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser. Phys. Rev. Lett. 100:25256403
    [Google Scholar]
  41. 41.  Zhang D, Wang X, Braun K, Egelhaaf H-J, Fleischer M et al. 2009. Parabolic mirror-assisted tip-enhanced spectroscopic imaging for non-transparent materials. J. Raman Spectrosc. 40:1371–76
    [Google Scholar]
  42. 42.  Hermann R, Gordon MJ 2016. Subdiffraction-limited chemical imaging of patterned phthalocyanine films using tip-enhanced near-field optical microscopy. J. Raman Spectrosc. 47:1287–92
    [Google Scholar]
  43. 43.  Hecht B, Sick B, Wild UP, Deckert V, Zenobi R et al. 2000. Scanning near-field optical microscopy with aperture probes: fundamentals and applications. J. Chem. Phys. 112:7761–74
    [Google Scholar]
  44. 44.  Bozhevolnyi SI, Volkov VS, Søndergaard T, Boltasseva A, Borel PI, Kristensen M 2002. Near-field imaging of light propagation in photonic crystal waveguides: explicit role of Bloch harmonics. Phys. Rev. B 66:235204
    [Google Scholar]
  45. 45.  Bourzeix S, Moison JM, Mignard F, Barthe F, Boccara AC et al. 1998. Near-field optical imaging of light propagation in semiconductor waveguide structures. Appl. Phys. Lett. 73:1035–37
    [Google Scholar]
  46. 46.  Koglin J, Fischer UC, Fuchs H 1997. Material contrast in scanning near-field optical microscopy at 1–10 nm resolution. Phys. Rev. B 55:7977–84
    [Google Scholar]
  47. 47.  Maier SA, Kik PG, Atwater HA, Meltzer S, Harel E et al. 2003. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat. Mater. 2:229–32
    [Google Scholar]
  48. 48.  Nabetani Y, Yamasaki M, Miura A, Tamai N 2001. Fluorescence dynamics and morphology of electroluminescent polymer in small domains by time-resolved SNOM. Thin Solid Films 393:329–33
    [Google Scholar]
  49. 49.  Richards D, Milner RG, Huang F, Festy F 2003. Tip-enhanced Raman microscopy: practicalities and limitations. J. Raman Spectrosc. 34:663–67
    [Google Scholar]
  50. 50.  Webster S, Batchelder DN, Smith DA 1998. Submicron resolution measurement of stress in silicon by near-field Raman spectroscopy. Appl. Phys. Lett. 72:1478–80
    [Google Scholar]
  51. 51.  Smith DA, Webster S, Ayad M, Evans SD, Fogherty D, Batchelder D 1995. Development of a scanning near-field optical probe for localised Raman spectroscopy. Ultramicroscopy 61:247–52
    [Google Scholar]
  52. 52.  Goetz M, Drews D, Zahn DRT, Wannemacher R 1998. Near-field Raman spectroscopy of semiconductor heterostructures and CVD-diamond layers. J. Lumin. 76–77:306–9
    [Google Scholar]
  53. 53.  Jahncke CL, Paesler MA, Hallen HD 1995. Raman imaging with near-field scanning optical microscopy. Appl. Phys. Lett. 67:2483–85
    [Google Scholar]
  54. 54.  Burresi M, Kampfrath T, van Oosten D, Prangsma JC, Song BS et al. 2010. Magnetic light-matter interactions in a photonic crystal nanocavity. Phys. Rev. Lett. 105:123901
    [Google Scholar]
  55. 55.  Wang Y, Srituravanich W, Sun C, Zhang X 2008. Plasmonic nearfield scanning probe with high transmission. Nano Lett 8:3041–45
    [Google Scholar]
  56. 56.  Pettinger B, Domke KF, Zhang D, Schuster R, Ertl G 2007. Direct monitoring of plasmon resonances in a tip-surface gap of varying width. Phys. Rev. B 76:113409
    [Google Scholar]
  57. 57.  Knoll B, Keilmann F 2000. Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy. Opt. Commun. 182:321–28
    [Google Scholar]
  58. 58.  Raschke MB, Lienau C 2003. Apertureless near-field optical microscopy: tip–sample coupling in elastic light scattering. Appl. Phys. Lett. 83:5089–91
    [Google Scholar]
  59. 59.  Raschke MB, Molina L, Elsaesser T, Kim DH, Knoll W, Hinrichs K 2005. Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution. ChemPhysChem 6:2197–203
    [Google Scholar]
  60. 60.  Gerton JM, Wade LA, Lessard GA, Ma Z, Quake SR 2004. Tip-enhanced fluorescence microscopy at 10 nanometer resolution. Phys. Rev. Lett. 93:180801
    [Google Scholar]
  61. 61.  Jones AC, Berweger S, Wei J, Cobden D, Raschke MB 2010. Nano-optical investigations of the metal-insulator phase behavior of individual VO2 microcrystals. Nano Lett 10:1574–81
    [Google Scholar]
  62. 62.  Taylor RS, Leopold KE, Wendman M, Gurley G, Elings V 1998. Scanning probe optical microscopy of evanescent fields. Rev. Sci. Instrum. 69:2981–87
    [Google Scholar]
  63. 63.  Govyadinov AA, Amenabar I, Huth F, Carney PS, Hillenbrand R 2013. Quantitative measurement of local infrared absorption and dielectric function with tip-enhanced near-field microscopy. J. Phys. Chem. Lett. 4:1526–31
    [Google Scholar]
  64. 64.  Hillenbrand R, Keilmann F 2000. Complex optical constants on a subwavelength scale. Phys. Rev. Lett. 85:3029–32
    [Google Scholar]
  65. 65.  Adam P-M, Royer P, Laddada R, Bijeon J-L 1998. Apertureless near-field optical microscopy: influence of the illumination conditions on the image contrast. Appl. Opt 37:1814–19
    [Google Scholar]
  66. 66.  Gesuele F, Pang CX, Leblond G, Blaize S, Bruyant A et al. 2009. Towards routine near-field optical characterization of silicon-based photonic structures: an optical mode analysis in integrated waveguides by transmission AFM-based SNOM. Phys. E Low-Dimens. Syst. Nanostruct. 41:1130–34
    [Google Scholar]
  67. 67.  Cumurcu A, Duvigneau J, Lindsay ID, Schön PM, Vancso GJ 2013. Multimodal imaging of heterogeneous polymers at the nanoscale by AFM and scanning near-field ellipsometric microscopy. Eur. Polymer J. 49:1935–42
    [Google Scholar]
  68. 68.  Hillenbrand R, Keilmann F 2002. Material-specific mapping of metal/semiconductor/dielectric nanosystems at 10 nm resolution by backscattering near-field optical microscopy. Appl. Phys. Lett. 80:25–27
    [Google Scholar]
  69. 69.  Tranchida D, Diaz J, Schon P, Schonherr H, Vancso GJ 2011. Scanning near-field ellipsometry microscopy: imaging nanomaterials with resolution below the diffraction limit. Nanoscale 3:233–39
    [Google Scholar]
  70. 70.  Tompkins HG, Irene EA, eds. 2005. Handbook of Ellipsometry Norwich, NY/Heidelberg, Ger: William Andrew/Springer
  71. 71.  Liu Z, Zhang Y, Kok SW, Ng BP, Soh YC 2013. Reflection-based near-field ellipsometry for thin film characterization. Ultramicroscopy 124:26–34
    [Google Scholar]
  72. 72.  Losurdo M, Hingerl K, eds. 2013. Ellipsometry at the Nanoscale Berlin: Springer Verlag
  73. 73.  Ocelic N, Huber A, Hillenbrand R 2006. Pseudoheterodyne detection for background-free near-field spectroscopy. Appl. Phys. Lett. 89:101124
    [Google Scholar]
  74. 74.  Muller EA, Pollard B, Raschke MB 2015. Infrared chemical nano-imaging: accessing structure, coupling, and dynamics on molecular length scales. J. Phys. Chem. Lett. 6:1275–84
    [Google Scholar]
  75. 75.  Westermeier C, Cernescu A, Amarie S, Liewald C, Keilmann F, Nickel B 2014. Sub-micron phase coexistence in small-molecule organic thin films revealed by infrared nano-imaging. Nat. Commun. 5:4101
    [Google Scholar]
  76. 76.  Sarriugarte P, Schnell M, Chuvilin A, Hillenbrand R 2014. Polarization-resolved near-field characterization of nanoscale infrared modes in transmission lines fabricated by gallium and helium ion beam milling. ACS Photon 1:604–11
    [Google Scholar]
  77. 77.  Hammiche A, Pollock HM, Reading M, Claybourn M, Turner PH, Jewkes K 1999. Photothermal FT-IR spectroscopy: a step towards FT-IR microscopy at a resolution better than the diffraction limit. Appl. Spectrosc. 53:810–15
    [Google Scholar]
  78. 78.  Dazzi A, Prazeres R, Glotin F, Ortega JM 2005. Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor. Opt. Lett. 30:2388–90
    [Google Scholar]
  79. 79.  Lu F, Belkin MA 2011. Infrared absorption nano-spectroscopy using sample photoexpansion induced by tunable quantum cascade lasers. Opt. Express 19:19942–47
    [Google Scholar]
  80. 80.  Lu F, Jin M, Belkin MA 2014. Tip-enhanced infrared nanospectroscopy via molecular expansion force detection. Nat. Photon. 8:307–12
    [Google Scholar]
  81. 81.  Rosenberger MR, Wang MC, Xie X, Rogers JA, Nam S, King WP 2017. Measuring individual carbon nanotubes and single graphene sheets using atomic force microscope infrared spectroscopy. Nanotechnology 28:355707
    [Google Scholar]
  82. 82.  Felts JR, Law S, Roberts CM, Podolskiy V, Wasserman DM, King WP 2013. Near-field infrared absorption of plasmonic semiconductor microparticles studied using atomic force microscope infrared spectroscopy. Appl. Phys. Lett. 102:152110
    [Google Scholar]
  83. 83.  Centrone A 2015. Infrared imaging and spectroscopy beyond the diffraction limit. Annu. Rev. Anal. Chem. 8:101–26
    [Google Scholar]
  84. 84.  Dazzi A, Prater CB 2016. AFM-IR: technology and applications in nanoscale infrared spectroscopy and chemical imaging. Chem. Rev. 117:5146–73
    [Google Scholar]
  85. 85.  Lakowicz JR 2005. Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission. Anal. Biochem. 337:171–94
    [Google Scholar]
  86. 86.  Su W, Kumar N, Mignuzzi S, Crain J, Roy D 2016. Nanoscale mapping of excitonic processes in single-layer MoS2 using tip-enhanced photoluminescence microscopy. Nanoscale 8:10564–69
    [Google Scholar]
  87. 87.  Geddes CD, Lakowicz JR, eds. 2005. Radiative Decay Engineering Berlin: Springer
  88. 88.  Kochuveedu ST, Kim DH 2014. Surface plasmon resonance mediated photoluminescence properties of nanostructured multicomponent fluorophore systems. Nanoscale 6:4966–84
    [Google Scholar]
  89. 89.  Huang B 2010. Super-resolution optical microscopy: multiple choices. Curr. Opin. Chem. Biol. 14:10–14
    [Google Scholar]
  90. 90.  Yang Z, Aizpurua J, Xu H 2009. Electromagnetic field enhancement in TERS configurations. J. Raman Spectrosc. 40:1343–48
    [Google Scholar]
  91. 91.  Albrecht AC, Hutley MC 1971. On the dependence of vibrational Raman intensity on the wavelength of incident light. J. Chem. Phys. 55:4438–43
    [Google Scholar]
  92. 92.  Mock JJ, Barbic M, Smith DR, Schultz DA, Schultz S 2002. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J. Chem. Phys. 116:6755–59
    [Google Scholar]
  93. 93.  Barrios CA, Malkovskiy AV, Kisliuk AM, Sokolov AP, Foster MD 2009. Highly stable, protected plasmonic nanostructures for tip enhanced Raman spectroscopy. J. Phys. Chem. C 113:8158–61
    [Google Scholar]
  94. 94.  Park K-D, Kim YH, Park J-H, Park JS, Lee HS et al. 2012. Ultraviolet tip-enhanced nanoscale Raman imaging. J. Raman Spectrosc. 43:1931–34
    [Google Scholar]
  95. 95.  Scherger JD, Foster MD 2017. Tunable, liquid resistant tip enhanced Raman spectroscopy probes: toward label-free nano-resolved imaging of biological systems. Langmuir 33:7818–25
    [Google Scholar]
  96. 96.  Johns RW, Bechtel HA, Runnerstrom EL, Agrawal A, Lounis SD, Milliron DJ 2016. Direct observation of narrow mid-infrared plasmon linewidths of single metal oxide nanocrystals. Nat. Commun. 7:11583
    [Google Scholar]
  97. 97.  Liao M, Jiang S, Hu C, Zhang R, Kuang Y et al. 2016. Tip-enhanced Raman spectroscopic imaging of individual carbon nanotubes with subnanometer resolution. Nano Lett 16:4040–46
    [Google Scholar]
  98. 98.  Ramos R, Gordon MJ 2012. Reflection-mode, confocal, tip-enhanced Raman spectroscopy system for scanning chemical microscopy of surfaces. Rev. Sci. Instrum. 83:093706
    [Google Scholar]
  99. 99.  Berweger S, Neacsu CC, Mao Y, Zhou H, Wong SS, Raschke MB 2009. Optical nanocrystallography with tip-enhanced phonon Raman spectroscopy. Nat. Nanotechnol. 4:496–99
    [Google Scholar]
  100. 100.  Ossikovski R, Nguyen Q, Picardi G 2007. Simple model for the polarization effects in tip-enhanced Raman spectroscopy. Phys. Rev. B 75:045412
    [Google Scholar]
  101. 101.  Sun M, Zhang Z, Chen L, Sheng S, Xu H 2014. Plasmonic gradient effects on high vacuum tip-enhanced Raman spectroscopy. Adv. Opt. Mater. 2:74–80
    [Google Scholar]
  102. 102.  Zhang Z, Sun M, Ruan P, Zheng H, Xu H 2013. Electric field gradient quadrupole Raman modes observed in plasmon-driven catalytic reactions revealed by HV-TERS. Nanoscale 5:4151–55
    [Google Scholar]
  103. 103.  Neacsu CC, Berweger S, Raschke MB 2007. Tip-enhanced Raman imaging and nanospectroscopy: sensitivity, symmetry, and selection rules. NanoBiotechnology 3:172–96
    [Google Scholar]
  104. 104.  Eustis S, El-Sayed MA 2005. Why gold nanoparticles are more precious than gold. Chem. Soc. Rev. 35:209–17
    [Google Scholar]
  105. 105.  Park KD, Muller EA, Kravtsov V, Sass PM, Dreyer J et al. 2016. Variable-temperature tip-enhanced Raman spectroscopy of single-molecule fluctuations and dynamics. Nano Lett 16:479–87
    [Google Scholar]
  106. 106.  Becker SF, Esmann M, Yoo K, Gross P, Vogelgesang R et al. 2016. Gap-plasmon-enhanced nanofocusing near-field microscopy. ACS Photon 3:223–32
    [Google Scholar]
  107. 107.  Pettinger B, Domke KF, Zhang D, Picardi G, Schuster R 2009. Tip-enhanced Raman scattering: influence of the tip-surface geometry on optical resonance and enhancement. Surf. Sci. 603:1335–41
    [Google Scholar]
  108. 108.  Heilman AL, Gordon MJ 2016. Tip-enhanced near-field optical microscope with side-on and ATR-mode sample excitation for super-resolution Raman imaging of surfaces. J. Appl. Phys. 119:223103
    [Google Scholar]
  109. 109.  Pettinger B 2010. Single-molecule surface- and tip-enhanced Raman spectroscopy. Mol. Phys. 108:2039–59
    [Google Scholar]
  110. 110.  Zhang R, Zhang Y, Dong ZC, Jiang S, Zhang C et al. 2013. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498:82–86
    [Google Scholar]
  111. 111.  Zhu W, Esteban R, Borisov AG, Baumberg JJ, Nordlander P et al. 2016. Quantum mechanical effects in plasmonic structures with subnanometre gaps. Nat. Commun. 7:11495
    [Google Scholar]
  112. 112.  Chen C, Hayazawa N, Kawata S 2014. A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient. Nat. Commun. 5:3312
    [Google Scholar]
  113. 113.  Chiang N, Chen X, Goubert G, Chulhai DV, Chen X et al. 2016. Conformational contrast of surface-mediated molecular switches yields angstrom-scale spatial resolution in ultrahigh vacuum tip-enhanced Raman spectroscopy. Nano Lett 16:7774–78
    [Google Scholar]
  114. 114.  Richard-Lacroix M, Zhang Y, Dong Z, Deckert V 2017. Mastering high resolution tip-enhanced Raman spectroscopy: towards a shift of perception. Chem. Soc. Rev. 46:3922–44
    [Google Scholar]
  115. 115.  Bouhelier A, Beversluis M, Hartschuh A, Novotny L 2003. Near-field second-harmonic generation induced by local field enhancement. Phys. Rev. Lett. 90:013903
    [Google Scholar]
  116. 116.  Ikeda K, Saito Y, Hayazawa N, Kawata S, Uosaki K 2007. Resonant hyper-Raman scattering from carbon nanotubes. Chem. Phys. Lett. 438:109–12
    [Google Scholar]
  117. 117.  Kravtsov V, Ulbricht R, Atkin JM, Raschke MB 2016. Plasmonic nanofocused four-wave mixing for femtosecond near-field imaging. Nat. Nanotechnol. 11:459–64
    [Google Scholar]
  118. 118.  Kumar N, Mignuzzi S, Su W, Roy D 2015. Tip-enhanced Raman spectroscopy: principles and applications. EPJ Tech. Instrum. 2:9
    [Google Scholar]
  119. 119.  Verma P 2017. Tip-enhanced Raman spectroscopy: technique and recent advances. Chem. Rev. 117:6447–66
    [Google Scholar]
  120. 120.  Zhang Z, Sheng S, Wang R, Sun M 2016. Tip-enhanced Raman spectroscopy. Anal. Chem. 88:9328–46
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-060817-084150
Loading
/content/journals/10.1146/annurev-chembioeng-060817-084150
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error