1932

Abstract

Although the fear response is an adaptive response to threatening situations, a number of psychiatric disorders feature prominent fear-related symptoms caused, in part, by failures of extinction and inhibitory learning. The translational nature of fear conditioning paradigms has enabled us to develop a nuanced understanding of extinction and inhibitory learning based on the molecular substrates to systems neural circuitry and psychological mechanisms. This knowledge has facilitated the development of novel interventions that may augment extinction and inhibitory learning. These interventions include nonpharmacological techniques, such as behavioral methods to implement during psychotherapy, as well as device-based stimulation techniques that enhance or reduce activity in different regions of the brain. There is also emerging support for a number of psychopharmacological interventions that may augment extinction and inhibitory learning specifically if administered in conjunction with exposure-based psychotherapy. This growing body of research may offer promising novel techniques to address debilitating transdiagnostic fear-related symptoms.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-clinpsy-050718-095634
2019-05-07
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/clinpsy/15/1/annurev-clinpsy-050718-095634.html?itemId=/content/journals/10.1146/annurev-clinpsy-050718-095634&mimeType=html&fmt=ahah

Literature Cited

  1. Abraham AD, Cunningham CL, Lattal KM 2012. Methylphenidate enhances extinction of contextual fear. Learn. Mem. 19:267–72
    [Google Scholar]
  2. Abraham AD, Neve KA, Lattal KM 2014. Dopamine and extinction: a convergence of theory with fear and reward circuitry. Neurobiol. Learn. Mem 108:65–77
    [Google Scholar]
  3. Alvarez-Dieppa AC, Griffin K, Cavalier S, McIntyre CK 2016. Vagus nerve stimulation enhances extinction of conditioned fear in rats and modulates Arc protein, CaMKII, and GluN2B-containing NMDA receptors in the basolateral amygdala. Neural Plast 2016:4273280
    [Google Scholar]
  4. Amenta F, Mignini F, Rabbia F, Tomassoni D, Veglio F 2002. Protective effect of anti-hypertensive treatment on cognitive function in essential hypertension: analysis of published clinical data. J. Neurol. Sci. 203–4:147–51
    [Google Scholar]
  5. Anderson C, Teo K, Gao P, Arima H, Dans A et al. 2011. ONTARGET and TRANSCEND investigators. Renin-angiotensin system blockade and cognitive function in patients at high risk of cardiovascular disease: analysis of data from the ONTARGET and TRANSCEND studies. Lancet Neurol 10:143–53
    [Google Scholar]
  6. Armando I, Volpi S, Aguilera G, Saavedra JM 2007. Angiotensin II AT1 receptor blockade prevents the hypothalamic corticotropin-releasing factor response to isolation stress. Brain Res 1142:92–99
    [Google Scholar]
  7. Asthana M, Nueckel K, Mühlberger A, Neueder D, Polak T et al. 2013. Effects of transcranial direct current stimulation on consolidation of fear memory. Front. Psychiatry 4:107
    [Google Scholar]
  8. Autry AE, Adachi M, Nosyreva E, Na ES, Los MF et al. 2011. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 475:735491–95
    [Google Scholar]
  9. Bae H, Kim D, Park YC 2016. Dissociation predicts treatment response in eye-movement desensitization and reprocessing for posttraumatic stress disorder. J. Trauma Dissociation 17:1112–30
    [Google Scholar]
  10. Baker JF, Cates ME, Luthin DR 2017. d-cycloserine in the treatment of posttraumatic stress disorder. Ment. Health Clin. 7:288–94
    [Google Scholar]
  11. Baron H, Epstein IG, Mulinos MG, Nair KG 1955. Absorption, distribution, and excretion of cycloserine in man. Antibiot. Annu. 3:136–40
    [Google Scholar]
  12. Berke JD 2018. What does dopamine mean?. Nat. Neurosci. 21:6787–93
    [Google Scholar]
  13. Berlau DJ, McGaugh JL 2006. Enhancement of extinction memory consolidation: the role of the noradrenergic and GABAergic systems within the basolateral amygdala. Neurobiol. Learn. Mem. 86:2123–32
    [Google Scholar]
  14. Berlim MT, Van Den Eynde F 2014. Repetitive transcranial magnetic stimulation over the dorsolateral prefrontal cortex for treating posttraumatic stress disorder: an exploratory meta-analysis of randomized, double-blind and sham-controlled trials. Can. J. Psychiatry 59:9487–96
    [Google Scholar]
  15. Berry MD, Gainetdinov RR, Hoener MC, Shahid M 2017. Pharmacology of human trace amine-associated receptors: therapeutic opportunities and challenges. Pharmacol. Ther 180161–80
  16. Blagys MD, Hilsenroth MJ 2000. Distinctive features of short-term psychodynamic-interpersonal psychotherapy: a review of the comparative psychotherapy process literature. Clin. Psychol.: Sci. Pract 7:2167–88
    [Google Scholar]
  17. Bleakman D, Lodge D 1998. Neuropharmacology of AMPA and kainate receptors. Neuropharmacology 37:10–111187–204
    [Google Scholar]
  18. Boggio PS, Rocha M, Oliveira MO, Fecteau S, Cohen RB et al. 2010. Noninvasive brain stimulation with high-frequency and low-intensity repetitive transcranial magnetic stimulation treatment for posttraumatic stress disorder. J. Clin. Psychiatry 71:8992–99
    [Google Scholar]
  19. Bolkan SS, Lattal KM 2014. Opposing effects of d-cycloserine on fear despite a common extinction duration: interactions between brain regions and behavior. Neurobiol. Learn. Mem. 113:25–34
    [Google Scholar]
  20. Bormann J 2000. The “ABC”of GABA receptors. Trends Pharmacol. Sci 21:116–19
    [Google Scholar]
  21. Bouton ME 1993. Context, time, and memory retrieval in the interference paradigms of Pavlovian learning. Psychol. Bull 114:180–99
    [Google Scholar]
  22. Bouton ME, Westbrook RF, Corcoran KA, Maren S 2006. Contextual and temporal modulation of extinction: behavioral and biological mechanisms. Biol. Psychiatry 60:4352–60
    [Google Scholar]
  23. Bregonzio C, Seltzer A, Armando I, Pavel J, Saavedra JM 2008. Angiotensin II AT(1) receptor blockade selectively enhances brain AT(2) receptor expression, and abolishes the cold-restraint stress-induced increase in tyrosine hydroxylase mRNA in the locus coeruleus of spontaneously hypertensive rats. Stress 11:6457–66
    [Google Scholar]
  24. Browne CA, Lucki I 2013. Antidepressant effects of ketamine: mechanisms underlying fast-acting novel antidepressants. Front. Pharmacol. 4:161
    [Google Scholar]
  25. Burghardt NS, Sigurdsson T, Gorman JM, McEwen BS, LeDoux JE 2013. Chronic antidepressant treatment impairs the acquisition of fear extinction. Biol. Psychiatry 73:111078–86
    [Google Scholar]
  26. Bzdok D, Meyer-Lindenberg A 2018. Machine learning for precision psychiatry: opportunities and challenges. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 3:3223–30
    [Google Scholar]
  27. Cannistraro PA, Rauch SL 2003. Neural circuitry of anxiety: evidence from structural and functional neuroimaging studies. Psychopharmacol. Bull. 37:48–25
    [Google Scholar]
  28. Chang S-D, Liang KC 2012. Roles of hippocampal GABA(A) and muscarinic receptors in consolidation of context memory and context-shock association in contextual fear conditioning: a double dissociation study. Neurobiol. Learn. Mem. 98:117–24
    [Google Scholar]
  29. Changeux J-P 2010. Nicotine addiction and nicotinic receptors: lessons from genetically modified mice. Nat. Rev. Neurosci. 11:6389–401
    [Google Scholar]
  30. Childs JE, Alvarez-Dieppa AC, McIntyre CK, Kroener S 2015. Vagus nerve stimulation as a tool to induce plasticity in pathways relevant for extinction learning. J. Vis. Exp. 102:e53032
    [Google Scholar]
  31. Clark C, Cole J, Winter C, Williams K, Grammer G 2015. A review of transcranial magnetic stimulation as a treatment for post-traumatic stress disorder. Curr. Psychiatry Rep. 17:1083
    [Google Scholar]
  32. Cloitre M, Petkova E, Wang J, Lu Lassell F 2012. An examination of the influence of a sequential treatment on the course and impact of dissociation among women with PTSD related to childhood abuse. Depress. Anxiety 29:8709–17
    [Google Scholar]
  33. Cohen H, Kaplan Z, Kotler M, Kouperman I, Moisa R, Grisaru N 2004. Repetitive transcranial magnetic stimulation of the right dorsolateral prefrontal cortex in posttraumatic stress disorder: a double-blind, placebo-controlled study. Am. J. Psychiatry 161:3515–24
    [Google Scholar]
  34. Collingridge GL, Peineau S, Howland JG, Wang YT 2010. Long-term depression in the CNS. Nat. Rev. Neurosci. 11:7459–73
    [Google Scholar]
  35. Conn PJ, Pin JP 1997. Pharmacology and functions of metabotropic glutamate receptors. Annu. Rev. Pharmacol. Toxicol. 37:205–37
    [Google Scholar]
  36. Craske MG, Hermans D, Vervliet B 2018. State-of-the-art and future directions for extinction as a translational model for fear and anxiety. Philos. Trans. R. Soc. B 373:20170025. Correction. 2018 Philos. Trans. R. Soc. B 373:20180432
    [Google Scholar]
  37. Craske MG, Treanor M, Conway CC, Zbozinek T, Vervliet B 2014. Maximizing exposure therapy: an inhibitory learning approach. Behav. Res. Ther 58:10–23
    [Google Scholar]
  38. Cusack K, Jonas DE, Forneris CA, Wines C, Sonis J et al. 2016. Psychological treatments for adults with posttraumatic stress disorder: a systematic review and meta-analysis. Clin. Psychol. Rev. 43:128–41
    [Google Scholar]
  39. de Jong PJ, Merckelbach H 1993. Covariation bias, classical conditioning, and phobic fear. Integr. Physiol. Behav. Sci. 28:2167–70
    [Google Scholar]
  40. Deacon B, Kemp JJ, Dixon LJ, Sy JT, Farrell NR, Zhang AR 2013. Maximizing the efficacy of interoceptive exposure by optimizing inhibitory learning: a randomized controlled trial. Behav. Res. Ther. 51:9588–96
    [Google Scholar]
  41. Delgado MR, Nearing KI, Ledoux JE, Phelps EA 2008. Neural circuitry underlying the regulation of conditioned fear and its relation to extinction. Neuron. 595829–38
  42. Dep. Veteran Aff., Dep. Def. 2017. VA/DoD Clinical Practice Guideline for the Management of Posttraumatic Stress Disorder and Acute Stress Disorder Washington, DC: Gov. Print. Off https://www.healthquality.va.gov/guidelines/MH/ptsd/VADoDPTSDCPGFinal.pdf
  43. Diana M, Raij T, Melis M, Nummenmaa A, Leggio L, Bonci A 2017. Rehabilitating the addicted brain with transcranial magnetic stimulation. Nat. Rev. Neurosci. 18:11685–93
    [Google Scholar]
  44. Difede J, Cukor J, Wyka K, Olden M, Hoffman H et al. 2014. d-cycloserine augmentation of exposure therapy for post-traumatic stress disorder: a pilot randomized clinical trial. Neuropsychopharmacology 39:51052–58
    [Google Scholar]
  45. Do-Monte FH, Rodriguez-Romaguera J, Rosas-Vidal LE, Quirk GJ 2013. Deep brain stimulation of the ventral striatum increases BDNF in the fear extinction circuit. Front. Behav. Neurosci. 7:102
    [Google Scholar]
  46. Douchamps V, Jeewajee A, Blundell P, Burgess N, Lever C 2013. Evidence for encoding versus retrieval scheduling in the hippocampus by theta phase and acetylcholine. J. Neurosci. 33:208689–704
    [Google Scholar]
  47. Dravid SM, Burger PB, Prakash A, Geballe MT, Yadav R et al. 2010. Structural determinants of d-cycloserine efficacy at the NR1/NR2C NMDA receptors. J. Neurosci. 30:72741–54
    [Google Scholar]
  48. Duits P, Cath DC, Lissek S, Hox JJ 2015. Updated meta‐analysis of classical fear conditioning in the anxiety disorders. Depress. Anxiety 32:4239–53
    [Google Scholar]
  49. Dumont GJH, Sweep FCGJ, van der Steen R, Hermsen R, Donders ART et al. 2009. Increased oxytocin concentrations and prosocial feelings in humans after ecstasy (3,4-methylenedioxymethamphetamine) administration. Soc. Neurosci. 4:4359–66
    [Google Scholar]
  50. Ebner-Priemer UW, Mauchnik J, Kleindienst N, Schmahl C, Peper M et al. 2009. Emotional learning during dissociative states in borderline personality disorder. J. Psychiatry Neurosci. 34:3214–22
    [Google Scholar]
  51. Edmondson D, Cohen BE 2013. Posttraumatic stress disorder and cardiovascular disease. Prog. Cardiovasc. Dis. 55:6548–56
    [Google Scholar]
  52. Eldridge LL, Knowlton BJ, Furmanski CS, Bookheimer SY, Engel SA 2000. Remembering episodes: a selective role for the hippocampus during retrieval. Nat. Neurosci. 3:111149–52
    [Google Scholar]
  53. Engelman HS, MacDermott AB 2004. Presynaptic ionotropic receptors and control of transmitter release. Nat. Rev. Neurosci. 5:2135–45
    [Google Scholar]
  54. Fanselow MS 2013. Fear and anxiety take a double hit from vagal nerve stimulation. Biol. Psychiatry 73:111043–44
    [Google Scholar]
  55. Fanselow MS, LeDoux JE 1999. Why we think plasticity underlying Pavlovian fear conditioning occurs in the basolateral amygdala. Neuron 23:2229–32
    [Google Scholar]
  56. Feder A, Parides MK, Murrough JW, Perez AM, Morgan JE et al. 2014. Efficacy of intravenous ketamine for treatment of chronic posttraumatic stress disorder: a randomized clinical trial. JAMA Psychiatry 71:6681–88
    [Google Scholar]
  57. Feeser M, Prehn K, Kazzer P, Mungee A, Bajbouj M 2014. Transcranial direct current stimulation enhances cognitive control during emotion regulation. Brain Stimul 7:1105–12
    [Google Scholar]
  58. Fendt M, Fanselow MS 1999. The neuroanatomical and neurochemical basis of conditioned fear. Neurosci. Biobehav. Rev. 23:5743–60
    [Google Scholar]
  59. Foa EB 2011. Prolonged exposure therapy: past, present, and future. Depress. Anxiety 28:121043–47
    [Google Scholar]
  60. Foa EB, Kozak MJ 1986. Emotional processing of fear: exposure to corrective information. Psychol. Bull. 99:120–35
    [Google Scholar]
  61. Fonzo GA, Goodkind MS, Oathes DJ, Zaiko YV, Harvey M et al. 2017. PTSD psychotherapy outcome predicted by brain activation during emotional reactivity and regulation. Am. J. Psychiatry 174:121163–74
    [Google Scholar]
  62. Frazer A, Hensler JG 1999. Serotonin involvement in physiological function and behavior. Basic Neurochemistry: Molecular, Cellular and Medical Aspects GJ Siegel, BW Agranoff, RW Albers 263–92 Philadelphia: Lippincott-Raven. , 6th ed..
    [Google Scholar]
  63. George MS, Sackeim HA, Rush AJ, Marangell LB, Nahas Z et al. 2000. Vagus nerve stimulation: a new tool for brain research and therapy. Biol. Psychiatry 47:4287–95
    [Google Scholar]
  64. Ghosh S, Chattarji S 2015. Neuronal encoding of the switch from specific to generalized fear. Nat. Neurosci. 18:1112–20
    [Google Scholar]
  65. Gorka SM, Lieberman L, Nelson BD, Sarapas C, Shankman SA 2014. Aversive responding to safety signals in panic disorder: the moderating role of intolerance of uncertainty. J. Anxiety Disord. 28:7731–36
    [Google Scholar]
  66. Greenberg BD, Malone DA, Friehs GM, Rezai AR, Kubu CS et al. 2006. Three-year outcomes in deep brain stimulation for highly resistant obsessive-compulsive disorder. Neuropsychopharmacology 31:2384–93
    [Google Scholar]
  67. Grisaru N, Amir M, Cohen H, Kaplan Z 1998. Effect of transcranial magnetic stimulation in posttraumatic stress disorder: a preliminary study. Biol. Psychiatry 44:152–55
    [Google Scholar]
  68. Haaker J, Gaburro S, Sah A, Gartmann N, Lonsdorf TB et al. 2013. Single dose of l-dopa makes extinction memories context-independent and prevents the return of fear. PNAS 110:26E2428–36
    [Google Scholar]
  69. Hagenaars MA, van Minnen A, Hoogduin KAL 2010. The impact of dissociation and depression on the efficacy of prolonged exposure treatment for PTSD. Behav. Res. Ther. 48:119–27
    [Google Scholar]
  70. Halvorsen , Stenmark H, Neuner F, Nordahl HM 2014. Does dissociation moderate treatment outcomes of narrative exposure therapy for PTSD? A secondary analysis from a randomized controlled clinical trial. Behav. Res. Ther. 57:21–28
    [Google Scholar]
  71. Han JS, Holland PC, Gallagher M 1999. Disconnection of the amygdala central nucleus and substantia innominata/nucleus basalis disrupts increments in conditioned stimulus processing in rats. Behav. Neurosci. 113:1143–51
    [Google Scholar]
  72. Harris DS, Baggott M, Mendelson JH, Mendelson JE, Jones RT 2002. Subjective and hormonal effects of 3,4-methylenedioxymethamphetamine (MDMA) in humans. Psychopharmacology 162:4396–405
    [Google Scholar]
  73. Haubrich J, Machado A, Boos FZ, Crestani AP, Sierra RO et al. 2017. Enhancement of extinction memory by pharmacological and behavioral interventions targeted to its reactivation. Sci. Rep. 7:110960
    [Google Scholar]
  74. Hayes SC, Strosahl KD, Wilson KG 1999. Acceptance and Commitment Therapy New York: Guilford Press
  75. Hermann C, Ziegler S, Birbaumer N, Flor H 2002. Psychophysiological and subjective indicators of aversive Pavlovian conditioning in generalized social phobia. Biol. Psychiatry 52:4328–37
    [Google Scholar]
  76. Hirota K, Lambert DG 1996. Ketamine: its mechanism(s) of action and unusual clinical uses. Br. J. Anaesth 77:4441–44
    [Google Scholar]
  77. Hugues S, Garcia R, Léna I 2007. Time course of extracellular catecholamine and glutamate levels in the rat medial prefrontal cortex during and after extinction of conditioned fear. Synapse 6111933–37
  78. Isserles M, Shalev AY, Roth Y, Peri T, Kutz I et al. 2013. Effectiveness of deep transcranial magnetic stimulation combined with a brief exposure procedure in post-traumatic stress disorder—a pilot study. Brain Stimul 63377–83
  79. Jaycox LH, Foa EB, Morral AR 1998. Influence of emotional engagement and habituation on exposure therapy for PTSD. J. Consult. Clin. Psychol. 66:1185–92
    [Google Scholar]
  80. Jovanovic T, Ely T, Fani N, Glover EM, Gutman D et al. 2013. Reduced neural activation during an inhibition task is associated with impaired fear inhibition in a traumatized civilian sample. Cortex 49:71884–91
    [Google Scholar]
  81. Jovanovic T, Kazama A, Bachevalier J, Davis M 2012. Impaired safety signal learning may be a biomarker of PTSD. Neuropharmacology 62:2695–704
    [Google Scholar]
  82. Kaczkurkin AN, Foa EB 2015. Cognitive-behavioral therapy for anxiety disorders: an update on the empirical evidence. Dialogues Clin. Neurosci. 17:3337–46
    [Google Scholar]
  83. Karsen EF, Watts BV, Holtzheimer PE 2014. Review of the effectiveness of transcranial magnetic stimulation for post-traumatic stress disorder. Brain Stimul 7:2151–57
    [Google Scholar]
  84. Kawahara H, Yoshida M, Yokoo H, Nishi M, Tanaka M 1993. Psychological stress increases serotonin release in the rat amygdala and prefrontal cortex assessed by in vivo microdialysis. Neurosci. Lett. 162:1–281–84
    [Google Scholar]
  85. Khoury NM, Marvar PJ, Gillespie CF, Wingo A, Schwartz A et al. 2012. The renin-angiotensin pathway in posttraumatic stress disorder: angiotensin-converting enzyme inhibitors and angiotensin receptor blockers are associated with fewer traumatic stress symptoms. J. Clin. Psychiatry 73:6849–55
    [Google Scholar]
  86. Kiefer M, Schuch S, Schenck W, Fiedler K 2008. Emotion and memory: Event-related potential indices predictive for subsequent successful memory depend on the emotional mood state. Adv. Cogn. Psychol. 3:3363–73
    [Google Scholar]
  87. Kleindienst N, Limberger MF, Ebner-Priemer UW, Keibel-Mauchnik J, Dyer A et al. 2011. Dissociation predicts poor response to Dialectical Behavioral Therapy in female patients with Borderline Personality Disorder. J. Pers. Disord. 25:4432–47
    [Google Scholar]
  88. Kleindienst N, Priebe K, Görg N, Dyer A, Steil R et al. 2016. State dissociation moderates response to dialectical behavior therapy for posttraumatic stress disorder in women with and without borderline personality disorder. Eur. J. Psychotraumatol. 7:30375
    [Google Scholar]
  89. Knight DC, Smith CN, Cheng DT, Stein EA, Helmstetter FJ 2004. Amygdala and hippocampal activity during acquisition and extinction of human fear conditioning. Cogn. Affect. Behav. Neurosci. 4:3317–25
    [Google Scholar]
  90. Koek RJ, Langevin J-P, Krahl SE, Kosoyan HJ, Schwartz HN et al. 2014. Deep brain stimulation of the basolateral amygdala for treatment-refractory combat post-traumatic stress disorder (PTSD): study protocol for a pilot randomized controlled trial with blinded, staggered onset of stimulation. Trials 15:1356
    [Google Scholar]
  91. Kozel FA, Motes MA, Didehbani N, DeLaRosa B, Bass C et al. 2018. Repetitive TMS to augment cognitive processing therapy in combat veterans of recent conflicts with PTSD: a randomized clinical trial. J. Affect. Disord. 229:506–14
    [Google Scholar]
  92. Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R et al. 1994. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans: psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch. Gen. Psychiatry 51:3199–214
    [Google Scholar]
  93. Kuo M-F, Paulus W, Nitsche MA 2014. Induction of cortical plasticity: clinical applications. Replace, Repair, Restore, Relieve—Bridging Clinical and Engineering Solutions in Neurorehabilitation 7 W Jensen, OK Andersen, M Akay 3–7 Cham, Switz.: Springer
    [Google Scholar]
  94. LaBar KS, Phelps EA 2005. Reinstatement of conditioned fear in humans is context dependent and impaired in amnesia. Behav. Neurosci. 119:3677–86
    [Google Scholar]
  95. Lamprecht R, LeDoux J 2004. Structural plasticity and memory. Nat. Rev. Neurosci. 5:145–54
    [Google Scholar]
  96. Langevin J-P, De Salles AAF, Kosoyan HP, Krahl SE 2010. Deep brain stimulation of the amygdala alleviates post-traumatic stress disorder symptoms in a rat model. J. Psychiatr. Res. 44:161241–45
    [Google Scholar]
  97. Langevin J-P, Koek RJ, Schwartz HN, Chen JWY, Sultzer DL et al. 2016. Deep brain stimulation of the basolateral amygdala for treatment-refractory posttraumatic stress disorder. Biol. Psychiatry 79:10e82–84
    [Google Scholar]
  98. Lanius RA, Williamson PC, Boksman K, Densmore M, Gupta M et al. 2002. Brain activation during script-driven imagery induced dissociative responses in PTSD: a functional magnetic resonance imaging investigation. Biol. Psychiatry 52:4305–11
    [Google Scholar]
  99. Lavano A, Guzzi G, Della Torre A, Lavano SM, Tiriolo R, Volpentesta G 2018. DBS in treatment of post-traumatic stress disorder. Brain Sci 8:118
    [Google Scholar]
  100. Lebrón K, Milad MR, Quirk GJ 2004. Delayed recall of fear extinction in rats with lesions of ventral medial prefrontal cortex. Learn. Mem. 11:5544–48
    [Google Scholar]
  101. Ledgerwood L, Richardson R, Cranney J 2003. Effects of D-cycloserine on extinction of conditioned freezing. Behav. Neurosci. 117:2341–49
    [Google Scholar]
  102. LeDoux JE, Iwata J, Cicchetti P, Reis DJ 1988. Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. J. Neurosci. 8:72517–29
    [Google Scholar]
  103. Liberzon I, Krstov M, Young EA 1997. Stress-restress: effects on ACTH and fast feedback. Psychoneuroendocrinology 22:6443–53
    [Google Scholar]
  104. Lieberman L, Gorka SM, Sarapas C, Shankman SA 2016. Cognitive flexibility mediates the relation between intolerance of uncertainty and safety signal responding in those with panic disorder. Cogn. Emot. 30:81495–503
    [Google Scholar]
  105. Likhtik E, Stujenske JM, Topiwala MA, Harris AZ, Gordon JA 2014. Prefrontal entrainment of amygdala activity signals safety in learned fear and innate anxiety. Nat. Neurosci. 17:1106–13
    [Google Scholar]
  106. Lin C-H, Yeh S-H, Lu H-Y, Gean P-W 2003. The similarities and diversities of signal pathways leading to consolidation of conditioning and consolidation of extinction of fear memory. J. Neurosci. 23:238310–17
    [Google Scholar]
  107. Linehan M 1993. Cognitive-Behavioral Treatment of Borderline Personality Disorder New York: Guilford Press
  108. Lissek S, Rabin SJ, McDowell DJ, Dvir S, Bradford DE et al. 2009. Impaired discriminative fear-conditioning resulting from elevated fear responding to learned safety cues among individuals with panic disorder. Behav. Res. Ther. 47:2111–18
    [Google Scholar]
  109. Liu X, Ramirez S, Pang PT, Puryear CB, Govindarajan A et al. 2012. Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484:7394381–85
    [Google Scholar]
  110. Loerinc AG, Meuret AE, Twohig MP, Rosenfield D, Bluett EJ, Craske MG 2015. Response rates for CBT for anxiety disorders: need for standardized criteria. Clin. Psychol. Rev 4272–82
  111. Marek R, Jin J, Goode TD, Giustino TF, Wang Q et al. 2018. Hippocampus-driven feed-forward inhibition of the prefrontal cortex mediates relapse of extinguished fear. Nat. Neurosci. 21:3384–92
    [Google Scholar]
  112. Marin M-F, Camprodon JA, Dougherty DD, Milad MR 2014. Device-based brain stimulation to augment fear extinction: implications for PTSD treatment and beyond. Depress. Anxiety 31:4269–78
    [Google Scholar]
  113. Marin M-F, Milad MR 2015. Neuromodulation approaches for the treatment of post-traumatic stress disorder: stimulating the brain following exposure-based therapy. Curr. Behav. Neurosci. Rep. 2:267–71
    [Google Scholar]
  114. Marvar PJ, Goodman J, Fuchs S, Choi DC, Banerjee S, Ressler KJ 2014. Angiotensin type 1 receptor inhibition enhances the extinction of fear memory. Biol. Psychiatry 75:11864–72
    [Google Scholar]
  115. Mas M, Farré M, de la Torre R, Roset PN, Ortuño J et al. 1999. Cardiovascular and neuroendocrine effects and pharmacokinetics of 3,4-methylenedioxymethamphetamine in humans. J. Pharmacol. Exp. Ther. 290:1136–45
    [Google Scholar]
  116. Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D et al. 2005. Deep brain stimulation for treatment-resistant depression. Neuron 45:5651–60
    [Google Scholar]
  117. McCann UD, Kimbrell TA, Morgan CM, Anderson T, Geraci M et al. 1998. Repetitive transcranial magnetic stimulation for posttraumatic stress disorder. Arch. Gen. Psychiatry 55:3276–79
    [Google Scholar]
  118. McGaugh JL 2000. Memory—a century of consolidation. Science 287:5451248–51
    [Google Scholar]
  119. McGhee LL, Maani CV, Garza TH, Gaylord KM, Black IH 2008. The correlation between ketamine and posttraumatic stress disorder in burned service members. J. Trauma 64:2 Suppl.S195–98
    [Google Scholar]
  120. Milad MR, Quinn BT, Pitman RK, Orr SP, Fischl B, Rauch SL 2005. Thickness of ventromedial prefrontal cortex in humans is correlated with extinction memory. PNAS 102:3010706–11
    [Google Scholar]
  121. Mithoefer MC, Wagner MT, Mithoefer AT, Jerome L, Doblin R 2011. The safety and efficacy of ±3,4-methylenedioxymethamphetamine-assisted psychotherapy in subjects with chronic, treatment-resistant posttraumatic stress disorder: the first randomized controlled pilot study. J. Psychopharmacol 254439–52
  122. Mithoefer MC, Wagner MT, Mithoefer AT, Jerome L, Martin SF et al. 2013. Durability of improvement in post-traumatic stress disorder symptoms and absence of harmful effects or drug dependency after 3,4-methylenedioxymethamphetamine-assisted psychotherapy: a prospective long-term follow-up study. . J. Psychopharmacol 27128–39
  123. Morgan MA, Romanski LM, LeDoux JE 1993. Extinction of emotional learning: contribution of medial prefrontal cortex. Neurosci. Lett. 163:1109–13
    [Google Scholar]
  124. Mueller D, Cahill SP 2010. Noradrenergic modulation of extinction learning and exposure therapy. Behav. Brain Res 208:11–11
    [Google Scholar]
  125. Mueller D, Porter JT, Quirk GJ 2008. Noradrenergic signaling in infralimbic cortex increases cell excitability and strengthens memory for fear extinction. J. Neurosci. 28:2369–75
    [Google Scholar]
  126. Mungee A, Burger M, Bajbouj M 2016. No effect of cathodal transcranial direct current stimulation on fear memory in healthy human subjects. Brain Sci 6:455
    [Google Scholar]
  127. Myers KM, Carlezon WA Jr, Davis M 2011. Glutamate receptors in extinction and extinction-based therapies for psychiatric illness. Neuropsychopharmacology 36:1274–93
    [Google Scholar]
  128. Myers KM, Davis M 2002. Behavioral and neural analysis of extinction. Neuron 36:4567–84
    [Google Scholar]
  129. Myers KM, Davis M 2007. Mechanisms of fear extinction. Mol. Psychiatry 12:2120–50
    [Google Scholar]
  130. Nader K, Schafe GE, LeDoux JE 2000. The labile nature of consolidation theory. Nat. Rev. Neurosci. 1:3216–19
    [Google Scholar]
  131. Nam D-H, Pae C-U, Chae J-H 2013. Low-frequency, repetitive transcranial magnetic stimulation for the treatment of patients with posttraumatic stress disorder: a double-blind, sham-controlled study. Clin. Psychopharmacol. Neurosci. 11:296–102
    [Google Scholar]
  132. Nasehi M, Soltanpour R, Ebrahimi-Ghiri M, Zarrabian S, Zarrindast MR 2017. Interference effects of transcranial direct current stimulation over the right frontal cortex and adrenergic system on conditioned fear. Psychopharmacology 234:223407–16
    [Google Scholar]
  133. Navarria A, Wohleb ES, Voleti B, Ota KT, Dutheil S et al. 2015. Rapid antidepressant actions of sco-polamine: role of medial prefrontal cortex and M1-subtype muscarinic acetylcholine receptors. Neurobiol. Dis 82:254–61
    [Google Scholar]
  134. Nelson CL, Sarter M, Bruno JP 2005. Prefrontal cortical modulation of acetylcholine release in posterior parietal cortex. Neuroscience 132:2347–59
    [Google Scholar]
  135. Newman EL, Gillet SN, Climer JR, Hasselmo ME 2013. Cholinergic blockade reduces theta-gamma phase amplitude coupling and speed modulation of theta frequency consistent with behavioral effects on encoding. J. Neurosci. 33:5019635–46
    [Google Scholar]
  136. Nitsche MA, Fricke K, Henschke U, Schlitterlau A, Liebetanz D et al. 2003. Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J. Physiol. 553:Pt. 1293–301
    [Google Scholar]
  137. Nitsche MA, Paulus W 2000. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 527:Pt. 3633–39
    [Google Scholar]
  138. Noble LJ, Gonzalez IJ, Meruva VB, Callahan KA, Belfort BD et al. 2017. Effects of vagus nerve stimulation on extinction of conditioned fear and post-traumatic stress disorder symptoms in rats. Transl. Psychiatry 7:8e1217
    [Google Scholar]
  139. Olatunji BO, Cisler JM, Deacon BJ 2010. Efficacy of cognitive behavioral therapy for anxiety disorders: a review of meta-analytic findings. Psychiatr. Clin. N. Am. 33:3557–77
    [Google Scholar]
  140. Orser BA, Pennefather PS, MacDonald JF 1997. Multiple mechanisms of ketamine blockade of N-methyl-d-aspartate receptors. Anesthesiology 86:4903–17
    [Google Scholar]
  141. Osuch EA, Benson BE, Luckenbaugh DA, Geraci M, Post RM, McCann U 2009. Repetitive TMS combined with exposure therapy for PTSD: a preliminary study. J. Anxiety Disord. 23:154–59
    [Google Scholar]
  142. Ottaviani C, Cevolani D, Nucifora V, Borlimi R, Agati R et al. 2012. Amygdala responses to masked and low spatial frequency fearful faces: a preliminary fMRI study in panic disorder. Psychiatry Res 203:2–3159–65
    [Google Scholar]
  143. Oznur T, Akarsu S, Celik C, Bolu A, Ozdemir B et al. 2014. Is transcranial magnetic stimulation effective in treatment-resistant combat related posttraumatic stress disorder?. Neurosciences 19:129–32
    [Google Scholar]
  144. Peña DF, Childs JE, Willett S, Vital A, McIntyre CK, Kroener S 2014. Vagus nerve stimulation enhances extinction of conditioned fear and modulates plasticity in the pathway from the ventromedial prefrontal cortex to the amygdala. Front. Behav. Neurosci. 8:327
    [Google Scholar]
  145. Peña DF, Engineer ND, McIntyre CK 2013. Rapid remission of conditioned fear expression with extinction training paired with vagus nerve stimulation. Biol. Psychiatry 73:111071–77
    [Google Scholar]
  146. Peroutka SJ, Newman H, Harris H 1988. Subjective effects of 3,4-methylenedioxymethamphetamine in recreational users. Neuropsychopharmacology 1:4273–77
    [Google Scholar]
  147. Phelps EA, Delgado MR, Nearing KI, LeDoux JE 2004. Extinction learning in humans: role of the amygdala and vmPFC. Neuron 43:6897–905
    [Google Scholar]
  148. Pittig A, van den Berg L, Vervliet B 2016. The key role of extinction learning in anxiety disorders: behavioral strategies to enhance exposure-based treatments. Curr. Opin. Psychiatry 29:139–47
    [Google Scholar]
  149. Powers MB, Halpern JM, Ferenschak MP, Gillihan SJ, Foa EB 2010. A meta-analytic review of prolonged exposure for posttraumatic stress disorder. Clin. Psychol. Rev. 30:6635–41
    [Google Scholar]
  150. Prado-Alcalá RA, Fernández-Ruiz J, Quirarte G 1993. Cholinergic neurons and memory. Aspects of Synaptic Transmission 2 TW Stone 59–71 London: Taylor & Francis
    [Google Scholar]
  151. Price M, Kearns M, Houry D, Rothbaum BO 2014. Emergency department predictors of posttraumatic stress reduction for trauma-exposed individuals with and without an early intervention. J. Consult. Clin. Psychol. 82:2336–41
    [Google Scholar]
  152. Quirk GJ, Beer JS 2006. Prefrontal involvement in the regulation of emotion: convergence of rat and human studies. Curr. Opin. Neurobiol 16:6723–27
    [Google Scholar]
  153. Rabinak CA, Mori S, Lyons M, Milad MR, Phan KL 2017. Acquisition of CS-US contingencies during Pav-lovian fear conditioning and extinction in social anxiety disorder and posttraumatic stress disorder. J. Affect. Disord. 207:76–85
    [Google Scholar]
  154. Raij T, Nummenmaa A, Marin M-F, Porter D, Furtak S et al. 2018. Prefrontal cortex stimulation enhances fear extinction memory in humans. Biol. Psychiatry 84:2129–37
    [Google Scholar]
  155. Resick PA, Monson CM, Chard KM 2016. Cognitive Processing Therapy for PTSD: A Comprehensive Manual New York: Guilford Press
  156. Resick PA, Suvak MK, Johnides BD, Mitchell KS, Iverson KM 2012. The impact of dissociation on PTSD treatment with cognitive processing therapy. Depress. Anxiety 29:8718–30
    [Google Scholar]
  157. Ressler KJ, Rothbaum BO, Tannenbaum L, Anderson P, Graap K et al. 2004. Cognitive enhancers as adjuncts to psychotherapy: use of D-cycloserine in phobic individuals to facilitate extinction of fear. Arch. Gen. Psychiatry 61:111136–44
    [Google Scholar]
  158. Reznikov R, Bambico FR, Diwan M, Raymond RJ, Nashed MG et al. 2018. Prefrontal cortex deep brain stimulation improves fear and anxiety-like behavior and reduces basolateral amygdala activity in a preclinical model of posttraumatic stress disorder. Neuropsychopharmacology 43:51099–106
    [Google Scholar]
  159. Rodrigues H, Figueira I, Lopes A, Gonçalves R, Mendlowicz MV et al. 2014. Does D-cycloserine enhance exposure therapy for anxiety disorders in humans? A meta-analysis. PLOS ONE 9:7e93519
    [Google Scholar]
  160. Rodriguez-Romaguera J, Do Monte FHM, Quirk GJ 2012. Deep brain stimulation of the ventral striatum enhances extinction of conditioned fear. PNAS 109:228764–69
    [Google Scholar]
  161. Roemer L, Orsillo SM, Salters-Pedneault K 2008. Efficacy of an acceptance-based behavior therapy for generalized anxiety disorder: evaluation in a randomized controlled trial. J. Consult. Clin. Psychol. 76:61083–89
    [Google Scholar]
  162. Roldán G, Cobos-Zapiaín G, Quirarte GL, Prado-Alcalá RA 2001. Dose- and time-dependent scopolamine-induced recovery of an inhibitory avoidance response after its extinction in rats. Behav. Brain Res. 121:1–2173–79
    [Google Scholar]
  163. Rudy JW, Huff NC, Matus-Amat P 2004. Understanding contextual fear conditioning: insights from a two-process model. Neurosci. Biobehav. Rev. 28:7675–85
    [Google Scholar]
  164. Saavedra JM, Benicky J 2007. Brain and peripheral angiotensin II play a major role in stress. Stress 10:2185–93
    [Google Scholar]
  165. Salamone JD, Correa M 2012. The mysterious motivational functions of mesolimbic dopamine. Neuron 76:3470–85
    [Google Scholar]
  166. Sander D, Grafman J, Zalla T 2003. The human amygdala: an evolved system for relevance detection. Rev. Neurosci. 14:4303–16
    [Google Scholar]
  167. Sarter M, Parikh V 2005. Choline transporters, cholinergic transmission and cognition. Nat. Rev. Neurosci. 6:148–56
    [Google Scholar]
  168. Schönenberg M, Reichwald U, Domes G, Badke A, Hautzinger M 2008. Ketamine aggravates symptoms of acute stress disorder in a naturalistic sample of accident victims. J. Psychopharmacol. 22:5493–97
    [Google Scholar]
  169. Shedler J 2010. The efficacy of psychodynamic psychotherapy. Am. Psychol. 65:298–109
    [Google Scholar]
  170. Shin LM, Orr SP, Carson MA, Rauch SL, Macklin ML et al. 2004. Regional cerebral blood flow in the amygdala and medial prefrontal cortex during traumatic imagery in male and female Vietnam veterans with PTSD. Arch. Gen. Psychiatry 61:2168–76
    [Google Scholar]
  171. Sijbrandij M, Engelhard IM, Lommen MJJ, Leer A, Baas JMP 2013. Impaired fear inhibition learning predicts the persistence of symptoms of posttraumatic stress disorder (PTSD). J. Psychiatr. Res. 47:121991–97
    [Google Scholar]
  172. Singewald N, Schmuckermair C, Whittle N, Holmes A, Ressler KJ 2015. Pharmacology of cognitive enhancers for exposure-based therapy of fear, anxiety and trauma-related disorders. Pharmacol. Ther 149150–90
  173. Southwick SM, Bremner JD, Rasmusson A, Morgan CA, Arnsten A, Charney DS 1999. Role of nor-epinephrine in the pathophysiology and treatment of posttraumatic stress disorder. Biol. Psychiatry 46:91192–204
    [Google Scholar]
  174. Squire LR, Alvarez P 1995. Retrograde amnesia and memory consolidation: a neurobiological perspective. Curr. Opin. Neurobiol. 5:2169–77
    [Google Scholar]
  175. Squire LR, Zola-Morgan S 1991. The medial temporal lobe memory system. Science 253:50261380–86
    [Google Scholar]
  176. Sripada RK, Garfinkel SN, Liberzon I 2013. Avoidant symptoms in PTSD predict fear circuit activation during multimodal fear extinction. Front. Hum. Neurosci. 7:672
    [Google Scholar]
  177. Steinberg EE, Keiflin R, Boivin JR, Witten IB, Deisseroth K, Janak PH 2013. A causal link between prediction errors, dopamine neurons and learning. Nat. Neurosci. 16:7966–73
    [Google Scholar]
  178. Thompson MR, Callaghan PD, Hunt GE, Cornish JL, McGregor IS 2007. A role for oxytocin and 5-HT 1A receptors in the prosocial effects of 3,4 methylenedioxymethamphetamine (“ecstasy”). Neuroscience 1462509–14
  179. Trevizol AP, Barros MD, Silva PO, Osuch E, Cordeiro Q, Shiozawa P 2016. Transcranial magnetic stimulation for posttraumatic stress disorder: an updated systematic review and meta-analysis. Trends Psychiatry Psychother 38:150–55
    [Google Scholar]
  180. Tronson NC, Taylor JR 2007. Molecular mechanisms of memory reconsolidation. Nat. Rev. Neurosci. 8:4262–75
    [Google Scholar]
  181. van 't Wout M, Longo SM, Reddy MK, Philip NS, Bowker MT, Greenberg BD 2017. Transcranial direct current stimulation may modulate extinction memory in posttraumatic stress disorder. Brain Behav 75e00681
  182. van 't Wout M, Mariano TY, Garnaat SL, Reddy MK, Rasmussen SA, Greenberg BD 2016. Can transcranial direct current stimulation augment extinction of conditioned fear?. Brain Stimul 9:4529–36
    [Google Scholar]
  183. Verrico CD, Miller GM, Madras BK 2007. MDMA (ecstasy) and human dopamine, norepinephrine, and serotonin transporters: implications for MDMA-induced neurotoxicity and treatment. Psychopharmacology 189:4489–503
    [Google Scholar]
  184. Vollenweider FX, Vollenweider-Scherpenhuyzen MF, Bäbler A, Vogel H, Hell D 1998. Psilocybin induces schizophrenia-like psychosis in humans via a serotonin-2 agonist action. NeuroReport 9:173897–902
    [Google Scholar]
  185. Watts BV, Landon B, Groft A, Young-Xu Y 2012. A sham controlled study of repetitive transcranial magnetic stimulation for posttraumatic stress disorder. Brain Stimul 5:138–43
    [Google Scholar]
  186. Weinberger NM 1998. Tuning the brain by learning and by stimulation of the nucleus basalis. Trends Cogn. Sci. 2:8271–73
    [Google Scholar]
  187. Weisman JS, Rodebaugh TL 2018. Exposure therapy augmentation: a review and extension of techniques informed by an inhibitory learning approach. Clin. Psychol. Rev. 59:41–51
    [Google Scholar]
  188. Wolf EJ, Lunney CA, Schnurr PP 2016. The influence of the dissociative subtype of posttraumatic stress disorder on treatment efficacy in female veterans and active duty service members. J. Consult. Clin. Psychol. 84:195–100
    [Google Scholar]
  189. Wolff K, Tsapakis EM, Winstock AR, Hartley D, Holt D et al. 2006. Vasopressin and oxytocin secretion in response to the consumption of ecstasy in a clubbing population. J. Psychopharmacol. 20:3400–10
    [Google Scholar]
  190. Yamada D, Zushida K, Wada K, Sekiguchi M 2009. Pharmacological discrimination of extinction and reconsolidation of contextual fear memory by a potentiator of AMPA receptors. Neuropsychopharmacology 34:122574–84
    [Google Scholar]
  191. Yan T, Xie Q, Zheng Z, Zou K, Wang L 2017. Different frequency repetitive transcranial magnetic stimulation (rTMS) for posttraumatic stress disorder (PTSD): a systematic review and meta-analysis. J. Psychiatr. Res. 89:125–35
    [Google Scholar]
  192. Yang Y, Wang J-Z 2017. From structure to behavior in basolateral amygdala-hippocampus circuits. Front. Neural Circuits 11:86
    [Google Scholar]
  193. Young MB, Andero R, Ressler KJ, Howell LL 2015. 3,4-methylenedioxymethamphetamine facilitates fear extinction learning. Transl. Psychiatry 5:e634
    [Google Scholar]
  194. Zanoveli JM, Carvalho MC, Cunha JM, Brandão ML 2009. Extracellular serotonin level in the basolateral nucleus of the amygdala and dorsal periaqueductal gray under unconditioned and conditioned fear states: an in vivo microdialysis study. Brain Res 1294:106–15
    [Google Scholar]
  195. Zbozinek TD, Craske MG 2017a. Positive affect predicts less reacquisition of fear: relevance for long-term outcomes of exposure therapy. Cogn. Emot. 31:4712–25
    [Google Scholar]
  196. Zbozinek TD, Craske MG 2017b. The role of positive affect in enhancing extinction learning and exposure therapy for anxiety disorders. J. Exp. Psychopathol 8:113–39
    [Google Scholar]
  197. Zelikowsky M, Hast TA, Bennett RZ, Merjanian M, Nocera NA et al. 2013. Cholinergic blockade frees fear extinction from its contextual dependency. Biol. Psychiatry 73:4345–52
    [Google Scholar]
  198. Zeng MC, Niciu MJ, Luckenbaugh DA, Ionescu DF, Mathews DC et al. 2013. Acute stress symptoms do not worsen in posttraumatic stress disorder and abuse with a single subanesthetic dose of ketamine. Biol. Psychiatry 73:12e37–38
    [Google Scholar]
  199. Zhu M, Nix DE, Adam RD, Childs JM, Peloquin CA 2001. Pharmacokinetics of cycloserine under fasting conditions and with high-fat meal, orange juice, and antacids. Pharmacotherapy 21:8891–97
    [Google Scholar]
/content/journals/10.1146/annurev-clinpsy-050718-095634
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error