1932

Abstract

Liquid crystal elastomers and glasses suffer huge length changes on heating, illumination, exposure to humidity, etc. A challenge is to program these changes to give a complex mechanical response for micromachines and soft robotics. Also desirable can be strong response, where bend is avoided in favor of stretch and compression, even in the slender shells that are our subject.

A new mechanics paradigm arises from such materials—spatially programmed anisotropy allows a spatially varying metric to develop upon stimulation, with evolving Gaussian curvature, topography changes, and superstrong actuation. We call this metric mechanics or topographical mechanics. Thus programmed, liquid crystalline solids meet the above aims.

A frontier is the complete programming and control of topography, driving both Gaussian and mean curvature evolution. That, and smart shells, which sense and self-regulate, and exotic new realizations of anisotropic responsive structures, are our concluding themes.

Keyword(s): actuationcurvaturephotoresponsive
Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031119-050738
2020-03-10
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/11/1/annurev-conmatphys-031119-050738.html?itemId=/content/journals/10.1146/annurev-conmatphys-031119-050738&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Bhattacharya K, James RD. 2005. Science 307:53–54
  2. 2. 
    White TJ, Broer DJ 2015. Nat. Mater. 14:1087–98
  3. 3. 
    Warner M, Terentjev EM. 2007. Liquid Crystal Elastomers, Vol. 120 Oxford, UK Oxford Univ. Press: Paperback ed. https://global.oup.com/academic/product/liquid-crystal-elastomers-9780199214860?lang=en&cc=gb#
  4. 4. 
    Warner M, Terentjev EM. 2007. See Reference 3, 1–8
  5. 5. 
    van Oosten CL, Harris KD, Bastiaansen C, Broer DJ 2007. Eur. Phys. J. E 23:329–36
  6. 6. 
    Liu D, Broer DJ. 2015. Nat. Commun. 8:8334
  7. 7. 
    Finkelmann H, Nishikawa E, Pereira GG, Warner M 2001. Phys. Rev. Lett. 87:015501
  8. 8. 
    Hogan PM, Tajbakhsh AR, Terentjev EM 2002. Phys. Rev. E 65:041720
  9. 9. 
    Cviklinski J, Tajbakhsh AR, Terentjev EM 2002. Eur. Phys. J. E 9:427–34
  10. 10. 
    Camacho-Lopez M, Finkelmann H, Palffy-Muhoray P, Shelley M 2004. Nat. Mater. 3:307–10
  11. 11. 
    Yu Y, Nakano M, Ikeda T 2003. Nature 425:145
  12. 12. 
    Harris KD, Cuypers R, Scheibe P, van Oosten CL, Bastiaansen CWM et al. 2005. J. Mat. Chem. 15:5043–48
  13. 13. 
    White TJ ed. 2017. Photomechanical Materials, Composites, and Systems: Wireless Transduction of Light Into Work Hoboken, NJ: John Wiley & Sons. , 1st ed..
  14. 14. 
    Harvey CLM, Terentjev EM. 2007. Eur. Phys. J. E 23:185–89
  15. 15. 
    Ahn SK, Ware TH, Lee KM, Tondiglia VP, White TJ 2016. Adv. Funct. Mater. 26:5819–26
  16. 16. 
    Corbett D, Warner M. 2007. Phys. Rev. Lett. 99:174302
  17. 17. 
    White T, Serak S, Tabiryan N, Vaia R, Bunning T 2009. J. Mater. Chem. 19:1045–192
  18. 18. 
    Wang DH, Lee KM, Yu Z, Koerner H, Vaia RA et al. 2011. Macromolecules 44:3840–46
  19. 19. 
    Lee KM, White TJ. 2012. Macromolecules 45:7163–70
  20. 20. 
    Dawson NJ, Kuzyk MG, Neal J, Luchette P, Palffy-Muhoray P 2011. J. Opt. Soc. Am. B 28:1916–21
  21. 21. 
    Dawson NJ, Kuzyk MG, Neal J, Luchette P, Palffy-Muhoray P 2011. J. Opt. Soc. Am. B 28:2134–41
  22. 22. 
    Liu D, Bastiaansen C, den Toonder JMJ, Broer DJ 2012. Macromolecules 45:8005–12
  23. 23. 
    Liu D, Broer D. 2017. Photomechanical Materials, Composites, and Systems: Wireless Transduction of Light into Work, ed. TJ White303–26 Hoboken, NJ: John Wiley & Sons
  24. 24. 
    Atkins R, Fox N. 1980. An Introduction to the Theory of Elasticity London: Longman
  25. 25. 
    Marder M, Deegan R, Sharon E 2007. Phys. Today 60:33–38
  26. 26. 
    Modes C, Warner M. 2016. Phys. Today 69:32–38
  27. 27. 
    Modes CD, Bhattacharya K, Warner M 2010. Phys. Rev. E 81:060701(R)
  28. 28. 
    Modes C, Bhattacharya K, Warner M 2011. Proc. R. Soc. A: Math. Phys. Eng. Sci. 467:1121–40
  29. 29. 
    Dervaux J, Ben Amar M 2008. Phys. Rev. Lett. 101:068101
  30. 30. 
    de Haan LT, Sánchez-Somolinos C, Bastiaansen CM, Schenning AP, Broer DJ 2012. Angew. Chem. Int. Ed. 51:12469–72
  31. 31. 
    McConney ME, Martinez A, Tondiglia VP, Lee KM, Langley D et al. 2013. Adv. Mater. 25:5880–85
  32. 32. 
    Ware TH, McConney ME, Wie JJ, Tondiglia VP, White TJ 2015. Science 347:982–84
  33. 33. 
    Guin TH, Settle MJ, Kowalski BA, Auguste AD, Beblo RV et al. 2019. Nat. Commun. 9:2531 https://creativecommons.org/licenses/by/4.0/
  34. 34. 
    Muller M, Ben Amar M, Guven J 2008. Phys. Rev. Lett. 101:156104
  35. 35. 
    Modes CD, Warner M. 2011. Phys. Rev. E 84:021711
  36. 36. 
    Ware TH, Perry ZP, Middleton CM, Iacono ST, White TJ 2015. ACS Macro Lett 4:942–46
  37. 37. 
    Aharoni H, Sharon E, Kupferman R 2014. Phys. Rev. Lett. 113:257801
  38. 38. 
    Zakharov AP, Pismen LM. 2015. Eur. Phys. J. E 38:75
  39. 39. 
    Konya A, Gimenez-Pinto V, Selinger RLB 2016. Front. Mater. 3:241–7
  40. 40. 
    Efrati E, Sharon E, Kupferman R 2009. J. Mech. Phys. Solids 57:762–75
  41. 41. 
    Sharon E, Efrati E. 2010. Soft Matter 6:5693–704
  42. 42. 
    Sharon E, Roman B, Marder M, Shin GS, Swinney HL 2002. Nature 419:579–80
  43. 43. 
    Klein Y, Efrati E, Sharon E 2007. Science 315:1116–20
  44. 44. 
    Sharon E, Roman B, Swinney HL 2007. Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 75:046211
  45. 45. 
    Kim J, Hanna JA, Byun M, Santangelo CD, Hayward RC 2012. Science 335:1201–5
  46. 46. 
    Mostajeran C, Warner M, Ware TH, White TJ 2016. Proc. R. Soc. A: Math. Phys. Eng. Sci. 472:20160112
  47. 47. 
    Mostajeran C. 2015. Phys. Rev. E 91:062405
  48. 48. 
    Warner M, Mostajeran C. 2018. Proc. R. Soc. A: Math. Phys. Eng. Sci. 474:20170566
  49. 49. 
    Mostajeran C, Warner M, Modes CD 2017. Soft Matter 13:8858–63
  50. 50. 
    Kowalski BA, Mostajeran C, Godman N, Warner M, White TJ 2018. Phys. Rev. E 97:012504
  51. 51. 
    Ambulo CP, Burroughs JJ, Boothby JM, Kim H, Shankar MR, Ware TH 2017. Appl. Mater. Interfaces 9:37332–39
  52. 52. 
    López-Valdeolivas M, Liu D, Broer DJ, Sánchez-Somolinos 2018. Macromol. Rapid Commun. 39:1700710
  53. 53. 
    Kotikian A, Truby RL, Boley JW, White TJ, Lewis JA 2018. Adv. Mater. 30:1706164
  54. 54. 
    Plucinsky P, Lemm M, Bhattacharya K 2016. Phys. Rev. E 94:010701(R)
  55. 55. 
    Aharoni H, Xia Y, Zhang X, Kamien RD, Yang S 2018. PNAS 115:7206–11
  56. 56. 
    Griniasty I, Aharoni H, Efrati E 2019. Phys. Rev. Lett. 123:127801
  57. 57. 
    Gladman SA, Matsumoto EA, Nuzzo RG, Mahadevan L, Lewis JA 2016. Nat. Mater. 15:413–19
  58. 58. 
    Siéfert E, Reyssat E, Bico J, Roman B 2019. Nat. Mater. 18:24–28
  59. 59. 
    Hajiesmaili E, Clarke DR. 2019. Nat. Commun. 10:183
  60. 60. 
    Mailen RW, Wagner CH, Bang RS, Zikry M, Dickey MD, Genzer J 2019. Smart Mater. Syst 28:4045011
  61. 61. 
    Warner M. 2019. J. Phys. Commun. 3:065005
  62. 62. 
    Gu J, Breen DE, Hu J, Zhu L, Tao Y et al. 2019. CHI Conference on Human Factors in Computing Systems Proceedings, Glasgow, Scotland, May 4–9 Paper No. 37. https://doi.org/10.1145/3290605.3300267
    [Crossref]
  63. 63. 
    Zeng H, Wani OM, Wasylczyk P, Kaczmarek R, Priimägi A 2017. Adv. Mater. 26:1701814
  64. 64. 
    Wani OM, Zeng H, Priimägi A 2017. Nat. Commun. 8:15546
  65. 65. 
    Lahikainen M, Zeng H, Priimägi A 2018. Nat. Commun. 9:4148
  66. 66. 
    Wani OM, Verpaalen R, Zeng H, Priimägi A, Schenning APHJ 2019. Adv. Mater. 31:1805985
  67. 67. 
    Wang X, Guest SD, Kamien RD 2019. arXiv1902.10835
  68. 68. 
    Modes CD, Warner M. 2012. Emerging Liquid Crystal Technologies VII L-C Chien Proc. SPIE Conf. Ser 827982790Q
/content/journals/10.1146/annurev-conmatphys-031119-050738
Loading
/content/journals/10.1146/annurev-conmatphys-031119-050738
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error