1932

Abstract

Macroscopic responses of magnets are often governed by magnetization and, thus, have been restricted to ferromagnets. However, such responses are strikingly large in the newly developed topological magnets, breaking the conventional scaling with magnetization. Taking the recently discovered antiferromagnetic (AF) Weyl semimetals as a prime example, we highlight the two central ingredients driving the significant macroscopic responses: the Berry curvature enhanced because of nontrivial band topology in momentum space, and the cluster magnetic multipoles in real space. The combination of large Berry curvature and multipoles enables large macroscopic responses such as the anomalous Hall and Nernst effects, the magneto-optical effect, and the novel magnetic spin Hall effect in antiferromagnets with negligible net magnetization, but also allows us to manipulate these effects by electrical means. Furthermore, nodal-point and nodal-line semimetallic states in ferromagnets may provide the strongly enhanced Berry curvature near the Fermi energy, leading to large responses beyond the conventional magnetization scaling. These significant properties and functions of the topological magnets lay the foundation for future technological development such as spintronics and thermoelectric technology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031620-103859
2022-03-10
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/13/1/annurev-conmatphys-031620-103859.html?itemId=/content/journals/10.1146/annurev-conmatphys-031620-103859&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Castro Neto AH, Guinea F, Peres N, Novoselov KS, Geim AK 2009. Rev. Mod. Phys. 81:1109–62
  2. 2. 
    Hasan MZ, Kane CL. 2010. Rev. Mod. Phys. 82:13045–67
  3. 3. 
    Ando Y. 2013. J. Phys. Soc. Jpn. 82:1102001
  4. 4. 
    Machida Y, Nakatsuji S, Onoda S, Tayama T, Sakakibara T. 2010. Nature 463:7278210–13
  5. 5. 
    Yan B, Felser C. 2017. Annu. Rev. Condens. Matter Phys. 8:1337–54
  6. 6. 
    Armitage NP, Mele EJ, Vishwanath A. 2018. Rev. Mod. Phys. 90:1015001
  7. 7. 
    Wan X, Turner AM, Vishwanath A, Savrasov SY. 2011. Phys. Rev. B 83:20205101
  8. 8. 
    Burkov AA, Balents L. 2011. Phys. Rev. Lett. 107:12127205
  9. 9. 
    Nakatsuji S, Kiyohara N, Higo T. 2015. Nature 527:7577212–15
  10. 10. 
    Kuroda K, Tomita T, Suzuki MT, Bareille C, Nugroho AA et al. 2017. Nat. Mater. 16:111090–95
  11. 11. 
    Sakai A, Mizuta YP, Nugroho AA, Sihombing R, Koretsune T et al. 2018. Nat. Phys. 14:1119–24
  12. 12. 
    Liu E, Sun Y, Kumar N, Muechler L, Sun A et al. 2018. Nat. Phys. 14:111125–31
  13. 13. 
    Belopolski I, Manna K, Sanchez DS, Chang G, Ernst B et al. 2019. Science 365:64591278–81
  14. 14. 
    Liu DF, Liang AJ, Liu EK, Xu QN, Li YW et al. 2019. Science 365:64591282–85
  15. 15. 
    Fert A, Cros V, Sampaio J. 2013. Nat. Nanotechnol. 8:152–56
  16. 16. 
    Nagaosa N, Tokura Y. 2013. Nat. Nanotechnol. 8:899–911
  17. 17. 
    Yang SH, Naaman R, Paltiel Y, Parkin SSP. 2021. Nat. Rev. Phys. 3:328–343
  18. 18. 
    Balents L. 2010. Nature 464:7286199–208
  19. 19. 
    Rau JG, Gingras MJ. 2019. Annu. Rev. Condens. Matter Phys. 10:357–86
  20. 20. 
    Broholm C, Cava RJ, Kivelson SA, Nocera DG, Norman MR, Senthil T. 2020. Science 367:6475eaay0668
  21. 21. 
    Witczak-Krempa W, Chen G, Kim YB, Balents L. 2014. Annu. Rev. Condens. Matter Phys. 5:157–82
  22. 22. 
    Takagi H, Takayama T, Jackeli G, Khaliullin G, Nagler SE. 2019. Nat. Rev. Phys. 1:4264–80
  23. 23. 
    Dzero M, Sun K, Galitski V, Coleman P. 2010. Phys. Rev. Lett. 104:10106408
  24. 24. 
    Lai HH, Grefe SE, Paschen S, Si Q 2018. PNAS 115:193–97
  25. 25. 
    Ye L, Kang M, Liu J, von Cube F, Wicker CR et al. 2018. Nature 555:638–42
  26. 26. 
    Yin JX, Ma W, Cochran TA, Xu X, Zhang SS et al. 2020. Nature 583:7817533–36
  27. 27. 
    Kang M, Ye L, Fang S, You JS, Levitan A et al. 2020. Nat. Mater. 19:2163–69
  28. 28. 
    Kiyohara N, Tomita T, Nakatsuji S. 2016. Phys. Rev. Appl. 5:6064009
  29. 29. 
    Nayak AK, Fischer JE, Sun Y, Yan B, Karel J et al. 2016. Sci. Adv. 2:4e1501870
  30. 30. 
    Chen T, Tomita T, Minami S, Fu M, Koretsune T et al. 2021. Nat. Comm. 12:572
  31. 31. 
    Jungwirth T, Marti X, Wadley P, Wunderlich J. 2016. Nat. Nanotech. 11:1231–41
  32. 32. 
    Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T, Tserkovnyak Y. 2018. Rev. Mod. Phys. 90:1015005
  33. 33. 
    Šmejkal L, Mokrousov Y, Yan B, MacDonald AH 2018. Nat. Phys. 14:242–51
  34. 34. 
    Bonbien V, Zhuo F, Salimath A, Ly O, Abbout A, Manchon A. 2021. arXiv:2102.01632
  35. 35. 
    Ikhlas M, Tomita T, Koretsune T, Suzuki MT, Nishio-Hamane D et al. 2017. Nat. Phys. 13:111085–90
  36. 36. 
    Guin SN, Vir P, Zhang Y, Kumar N, Watzman SJ et al. 2019. Adv. Mater. 31:251806622
  37. 37. 
    Sakai A, Minami S, Koretsune T, Chen T, Higo T et al. 2020. Nature 581:153–57
  38. 38. 
    Goswami P, Tewari S. 2013. Phys. Rev. B 88:24245107
  39. 39. 
    Mizuguchi M, Nakatsuji S. 2019. Sci. Tech. Adv. Mater. 20:1262–75
  40. 40. 
    Higo T, Man H, Gopman DB, Wu L, Koretsune T et al. 2018. Nat. Photon. 12:273–78
  41. 41. 
    Kimata M, Chen H, Kondou K, Sugimoto S, Muduli PK et al. 2019. Nature 565:7741627–30
  42. 42. 
    Matsuda T, Kanda N, Higo T, Armitage NP, Nakatsuji S, Matsunaga R. 2020. Nat. Commun. 11:8909
  43. 43. 
    Tsai H, Higo T, Kondou K, Nomoto T, Sakai A et al. 2020. Nature 580:0608–13
  44. 44. 
    Otani Y, Higo T. 2021. Appl. Phys. Lett. 118:4040501
  45. 45. 
    Yang KY, Lu YM, Ran Y. 2011. Phys. Rev. B 84:7075129
  46. 46. 
    Chen H, Niu Q, MacDonald AH. 2014. Phys. Rev. Lett. 112:1017205
  47. 47. 
    Kübler J, Felser C. 2014. Euro. Phys. Lett. 108:667001
  48. 48. 
    Yang H, Sun Y, Zhang Y, Shi WJ, Parkin SSP, Yan BH. 2017. N. J. Phys. 19:015008
  49. 49. 
    Guo GY, Wang TC. 2017. Phys. Rev. B 96:22224415
  50. 50. 
    Zhang Y, Sun Y, Yang H, Železný J, Parkin SPP et al. 2017. Phys. Rev. B 95:7075128
  51. 51. 
    Kübler J, Felser C. 2017. Euro. Phys. Lett. 120:447002
  52. 52. 
    Nagaosa N, Sinova J, Onoda S, MacDonald AH, Ong NP. 2010. Rev. Mod. Phys. 1:11539–92
  53. 53. 
    Xiao D, Chang MC, Niu Q 2010. Rev. Mod. Phys. 82:31959–2007
  54. 54. 
    Karplus R, Luttinger JM. 1954. Phys. Rev. 95:51154–60
  55. 55. 
    Weyl H. 1929. Z. Phys. 56:1330–52
  56. 56. 
    Xu SY, Belopolski I, Alidoust N, Neupane M, Bian G et al. 2015. Science 349:6248613–17
  57. 57. 
    Lv BQ, Weng HM, Fu BB, Wang XP, Miao H et al. 2015. Phys. Rev. X 5:3031013
  58. 58. 
    Ali MN, Xiong J, Flynn S, Tao J, Gibson QD et al. 2014. Nature 514:7521205–8
  59. 59. 
    Nielsen HB, Ninomiya M. 1983. Phys. Lett. B 130:6389–96
  60. 60. 
    Son DT, Spivak BZ. 2013. Phys. Rev. B 88:10104412
  61. 61. 
    Nakatsuji S, Machida Y, Maeno Y, Tayama T, Sakakibara T et al. 2006. Phys. Rev. Lett. 96:8087204
  62. 62. 
    Balicas L, Nakatsuji S, Machida Y, Onoda S. 2011. Phys. Rev. Lett. 106:21217204
  63. 63. 
    Lee WL, Watauchi S, Miller VL, Cava RJ, Ong NP. 2004. Phys. Rev. Lett. 93:22226601
  64. 64. 
    Miyasato T, Abe N, Fujii T, Asamitsu A, Onose Y et al. 2007. J. Magn. Magn. Mater. 310:21053–55
  65. 65. 
    Xiao D, Yao Y, Fang Z, Niu Q. 2006. Phys. Rev. Lett. 97:2026603
  66. 66. 
    Smith AW. 1911. Phys. Rev. (Series I) 33:4295–306
  67. 67. 
    Li X, Xu L, Ding L, Wang J, Shen M et al. 2017. Phys. Rev. Lett. 119:5056601
  68. 68. 
    Soluyanov AA, Gresch D, Wang ZJ, Wu QS, Troyer M et al. 2015. Nature 527:7579495–98
  69. 69. 
    Guin SN, Manna K, Noky J, Watzman SJ, Fu C et al. 2019. NPG Asia Mater. 11:16
  70. 70. 
    Xu L, Li X, Ding L, Chen T, Sakai A et al. 2020. Phys. Rev. B 101:18180404
  71. 71. 
    Sumida K, Sakuraba Y, Masuda K, Kono T, Kakoki M et al. 2020. Commun. Mater. 1:89
  72. 72. 
    Kleiner WH. 1966. Phys. Rev. 142:2318–26
  73. 73. 
    Kleiner WH. 1967. Phys. Rev. 153:3726–27
  74. 74. 
    Kleiner WH. 1969. Phys. Rev. 182:3705–9
  75. 75. 
    Seemann M, Ködderitzsch D, Wimmer S, Ebert H. 2015. Phys. Rev. B 92:15155138
  76. 76. 
    Kuramoto Y, Kusunose H, Kiss A. 2009. J. Phys. Soc. Jpn. 78:072001
  77. 77. 
    Santini P, Carretta S, Amoretti G, Caciuffo R, Magnani N, Lander GH. 2009. Rev. Mod. Phys. 81:2807–63
  78. 78. 
    Mydosh JA, Oppeneer PM, Riseborough PS. 2020. J. Phys. Condens. Matter 32:14143002
  79. 79. 
    Suzuki MT, Koretsune T, Ochi M, Arita R. 2017. Phys. Rev. B 95:9094406
  80. 80. 
    Suzuki MT, Nomoto T, Arita R, Yanagi Y, Hayami S, Kusunose H. 2019. Phys. Rev. B 99:17174407
  81. 81. 
    Nomoto T, Arita R. 2020. Phys. Rev. Res. 2:012045(R)
  82. 82. 
    Huebsch MT, Nomoto T, Suzuki MT, Arita R. 2021. Phys. Rev. X 11:1011031
  83. 83. 
    Chappert C, Fert A, Van Dau FN. 2007. Nat. Mater. 6:11813–23
  84. 84. 
    Shull CG, Samuel Smart J. 1949. Phys. Rev. 76:11256–57
  85. 85. 
    Núñez AS, Duine RA, Haney P, MacDonald AH. 2006. Phys. Rev. B 73:21214426
  86. 86. 
    Gomonay EV, Loktev VM. 2014. Low Temp. Phys. 40:117–35
  87. 87. 
    Higo T, Li Y, Kondou K, Qu D, Ikhlas M et al. 2021. Adv. Funct. Mater. 31:152008971
  88. 88. 
    Wadley P, Howells B, Železny J, Andrews C, Hills V et al. 2016. Science 351:6273587–90
  89. 89. 
    Marti X, Fina I, Frontera C, Liu J, Wadley P et al. 2014. Nat. Mater. 13:367–74
  90. 90. 
    Tsai H, Higo T, Kondou K, Sakamoto S, Kobayashi A et al. 2021. Small Sci. 1:52000025
  91. 91. 
    Chien CL, Westgate CR 1980. The Hall Effect and Its Applications New York: Springer Sci. & Bus. Media
  92. 92. 
    Hall EH. 1880. Proc. Phys. Soc. Lond. 4:1325–42
  93. 93. 
    Shindou R, Nagaosa N. 2001. Phys. Rev. Lett. 87:11116801
  94. 94. 
    Martin I, Batista CD. 2008. Phys. Rev. Lett. 101:15156402
  95. 95. 
    Nagamiya T, Tomiyoshi S, Yamaguchi Y. 1982. Solid State Commun. 42:5385–88
  96. 96. 
    Tomiyoshi S, Yamaguchi Y. 1982. J. Phys. Soc. Jpn. 51:82478–86
  97. 97. 
    Brown PJ, Nunez V, Tasset F, Forsyth JB, Radhakrishna P. 1990. J. Phys. Condens. Matter. 2:479409–22
  98. 98. 
    Tomiyoshi S, Yamaguchi Y, Nagamiya T. 1983. J. Magn. Magn. Mater. 31-34:629–30
  99. 99. 
    Yang SY, Wang Y, Ortiz BR, Liu D, Gayles J et al. 2020. Sci. Adv. 6:31eabb6003
  100. 100. 
    Pippard AB. 1989. Magnetoresistance in Metals 2 New York: Cambridge Univ. Press
  101. 101. 
    Xiong J, Kushwaha SK, Liang T, Krizan JW, Hirschberger M et al. 2015. Science 350:6259413–16
  102. 102. 
    Huang XC, Zhao LX, Long YJ, Wang PP, Chen D et al. 2015. Phys. Rev. X 5:3031023
  103. 103. 
    Hirschberger M, Kushwaha S, Wang Z, Gibson Q, Liang S et al. 2016. Nat. Mater. 15:111161–65
  104. 104. 
    Haubold E, Koepernik K, Efremov D, Khim S, Fedorov A et al. 2017. Phys. Rev. B 95:24241108
  105. 105. 
    Li X, Xu L, Zuo H, Subedi A, Zhu Z, Behnia K. 2018. SciPost Phys. 5:6063
  106. 106. 
    Xu L, Li X, Lu X, Collignon C, Fu H et al. 2020. Sci. Adv. 6:17eaaz3522
  107. 107. 
    Sugii K, Imai Y, Shimozawa M, Ikhlas M, Kiyohara N et al. 2019. arXiv:1902.06601
  108. 108. 
    Wuttke C, Caglieris F, Sykora S, Scaravaggi F, Wolter AUB et al. 2019. Phys. Rev. B 100:8085111
  109. 109. 
    Reichlova H, Janda T, Godinho J, Markou A, Kriegner D et al. 2019. Nat. Commun. 10:5459
  110. 110. 
    Miwa S, Iihama S, Nomoto T, Tomita T, Higo T et al. 2021. Small Sci. 1:2000062
  111. 111. 
    Liu J, Balents L. 2017. Phys. Rev. Lett. 119:8087202
  112. 112. 
    Li X, Collignon C, Xu L, Zuo H, Cavanna A et al. 2019. Nat. Commun. 10:13021
  113. 113. 
    Mansuripur M. 1995. The Physical Principles of Magneto-optical Recording New York: Cambridge Univ. Press
  114. 114. 
    Oppeneer PM. 1887. Handbook of Magnetic Materials 13 KHJ Buschow 229–422 Amsterdam: Elsevier
  115. 115. 
    McCord J. 2015. J. Phys. D: Appl. Phys. 48:1333001
  116. 116. 
    Feng W, Guo GY, Zhou J, Yao Y, Niu Q. 2015. Phys. Rev. B 92:14144426
  117. 117. 
    Wu M, Isshiki H, Chen T, Higo T, Nakatsuji S, Otani Y. 2020. Appl. Phys. Lett. 116:13132408
  118. 118. 
    Yamasaki Y, Nakao H, Arima T. 2020. J. Phys. Soc. Jpn. 89:8083703
  119. 119. 
    Sasabe N, Kimata M, Nakamura T. 2021. Phys. Rev. Lett. 126:15157402
  120. 120. 
    Markou A, Taylor JM, Kalache A, Werner P, Parkin SSP, Felser C. 2018. Phys. Rev. Mater. 2:5051001
  121. 121. 
    Higo T, Qu D, Li Y, Chien CL, Otani Y, Nakatsuji S. 2018. Appl. Phys. Lett. 113:20202402
  122. 122. 
    Ikeda T, Tsunoda M, Oogane M, Oh S, Morita T, Ando Y. 2018. Appl. Phys. Lett. 113:22222405
  123. 123. 
    Yoon J, Takeuchi Y, Itoh R, Kanai S, Fukami S, Ohno H. 2019. Appl. Phys. Express 13:1013001
  124. 124. 
    You Y, Chen X, Zhou X, Gu Y, Zhang R et al. 2019. Adv. Electron. Mater. 5:31800818
  125. 125. 
    Taylor JM, Markou A, Lesne E, Sivakumar PK, Luo C et al. 2020. Phys. Rev. B 101:9094404
  126. 126. 
    Nakano T, Higo T, Kobayashi A, Miwa S, Nakatsuji S, Yakushiji K. 2021. Phys. Rev. Mater. 5:5054402
  127. 127. 
    Muduli PK, Higo T, Nishikawa T, Qu D, Isshiki H et al. 2019. Phys. Rev. B 99:18184425
  128. 128. 
    Hirsch JE. 1999. Phys. Rev. Lett. 83:91834–37
  129. 129. 
    Kato YK, Myers RC, Gossard AC, Awschalom DD. 2004. Science 306:57031910–13
  130. 130. 
    Wunderlich J, Kaestner B, Sinova J, Jungwirth T. 2005. Phys. Rev. Lett. 94:4047204
  131. 131. 
    Saitoh E, Ueda M, Miyajima H, Tatara G. 2006. Appl. Phys. Lett. 88:18182509
  132. 132. 
    Kimura T, Otani Y, Sato T, Takahashi S, Maekawa S. 2007. Phys. Rev. Lett. 98:15156601
  133. 133. 
    Liu L, Pai CF, Li Y, Tseng HW, Ralph DC, Buhrman RA. 2012. Science 336:0555–58
  134. 134. 
    Sinova J, Valenzuela SO, Wunderlich J, Back CH, Jungwirth T. 2015. Rev. Mod. Phys. 87:41213–60
  135. 135. 
    Hellman F, Hoffmann A, Tserkovnyak Y, Beach GSD, Fullerton EE et al. 2017. Rev. Mod. Phys. 89:2025006
  136. 136. 
    Železný J, Zhang Y, Felser C, Yan B. 2017. Phys. Rev. Lett. 119:18187204
  137. 137. 
    Nan T, Quintela CX, Irwin J, Gurung G, Shao DF et al. 2020. Nat. Commun. 11:14671
  138. 138. 
    Chen X, Shi S, Shi G, Fan X, Song C et al. 2021. Nat. Mater. 20:6800–4
  139. 139. 
    Zhang W, Han W, Yang SH, Sun Y, Zhang Y et al. 2016. Sci. Adv. 2:9e1600759
  140. 140. 
    Tsai H, Higo T, Kondou K, Kobayashi A, Nakano T et al. 2021. AIP Adv. 11:4045110
  141. 141. 
    Slonczewski JC. 1996. J. Magn. Magn. Mater. 159:1–2L1–7
  142. 142. 
    Berger L. 1996. Phys. Rev. B. 54:1–29353
  143. 143. 
    Katine JA, Albert FJ, Buhrman RA, Myers EB, Ralph DC. 2000. Phys. Rev. Lett. 84:1–23149
  144. 144. 
    Miron IM, Garello K, Gaudin G, Zermatten PJ, Costache MV et al. 2011. Nature 476:189–93
  145. 145. 
    MacDonald AH, Tsoi M. 2011. Philos. Trans. R. Soc. A 369: 1948.3098–114
  146. 146. 
    Bodnar S, Šmejkal YL, Turek I, Jungwirth T, Gomonay O et al. 2018. Nat. Commun. 9:348
  147. 147. 
    Moriyama T, Oda K, Ohkochi T, Kimata M, Ono T. 2018. Sci. Rep. 8:14167
  148. 148. 
    Chen XZ, Zarzuela R, Zhang J, Song C, Zhou XF et al. 2018. Phys. Rev. Lett. 120:207204–6
  149. 149. 
    Zhou X, Chen X, Zhang J, Li F, Shi G et al. 2019. Phys. Rev. Appl. 11:5054030
  150. 150. 
    Saidl V, Němec P, Wadley P, Hills V, Campion RP et al. 2017. Nat. Photon. 11:591–96
  151. 151. 
    Chiang CC, Huang SY, Qu D, Wu PH, Chien CL. 2019. Phys. Rev. Lett. 123:22227203
  152. 152. 
    Sugimoto S, Nakatani Y, Yamane Y, Ikhlas M, Kondou K et al. 2020. Commun. Phys. 3:111
  153. 153. 
    Bell LE. 2008. Science 321:58951457–61
  154. 154. 
    Sakuraba Y, Hasegawa K, Mizuguchi M, Kubota T, Mizukami S et al. 2013. Appl. Phys. Express 6:3033003
  155. 155. 
    Narita H, Ikhlas M, Kimata M, Nugroho AA, Nakatsuji S, Otani Y. 2017. Appl. Phys. Lett. 111:20202404
  156. 156. 
    Li X, Zhu Z, Behnia K. 2021. Adv. Mater. 33:202100751
  157. 157. 
    Minami S, Ishii F, Hirayama M, Nomoto T, Koretsune T, Arita R. 2020. Phys. Rev. B 102:20205128
  158. 158. 
    Kargarian M, Randeria M, Trivedi N. 2015. Sci. Rep. 5:12683
/content/journals/10.1146/annurev-conmatphys-031620-103859
Loading
/content/journals/10.1146/annurev-conmatphys-031620-103859
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error