1932

Abstract

Research toward small, autonomous, and mobile robots is inspired by both the insects we see around us and numerous applications, from inspection of jet engines and civil infrastructure to medical procedures. When comparing existing robots at small scales with their biological counterparts, the capability for autonomous operation is a glaring contrast. This review describes the state of the art in robotics at sub-gram scales along with the progress toward autonomy in power, mobility, and control at these small sizes. Metrics are described to both quantify the performance of existing sub-gram robots (e.g., speed and cost of transport) and define a more quantitative path toward autonomy (e.g., mass-specific run time and traversal probability). These metrics from existing robots are also compared with those of insects to identify significant performance gaps and highlight important areas for future study.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-053018-023814
2019-05-03
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/control/2/1/annurev-control-053018-023814.html?itemId=/content/journals/10.1146/annurev-control-053018-023814&mimeType=html&fmt=ahah

Literature Cited

  1. 1. IEEE. 1987. IEEE Micro Robots and Teleoperators Workshop: An Investigation of Micromechanical Structures, Actuators and Sensors New York: IEEE
  2. 2.  Flynn AM 1987. Gnat robots (and how they will change robotics) Work. Pap. 295, Inst. Artif. Intell., Mass. Inst. Technol. Cambridge, MA
  3. 3.  Feynman RP 2012. There's plenty of room at the bottom: an invitation to enter a new field of physics. Handbook of Nanoscience, Engineering, and Technology WA Goddard III, D Brenner, SE Lyshevski, GJ Iafratepp2635 Boca Raton, FL: CRC. 3rd ed.
    [Google Scholar]
  4. 4.  Kumar V, Rus D, Singh S 2004. Robot and sensor networks for first responders. Pervasive Comput. 3:24–33
    [Google Scholar]
  5. 5.  Werfel J 2006. Anthills built to order: automating construction with artificial swarms PhD Thesis, Mass. Inst. Technol. Cambridge, MA
  6. 6.  Werfel J, Petersen K, Nagpal R 2014. Designing collective behavior in a termite-inspired robot construction team. Science 343:754–58
    [Google Scholar]
  7. 7.  Nelson BJ, Kaliakatsos IK, Abbott JJ 2010. Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Eng. 12:55–85
    [Google Scholar]
  8. 8.  Sitti M 2009. Voyage of the microrobots. Nature 458:1121–22
    [Google Scholar]
  9. 9.  Koh JS, Yang E, Jung GP, Jung SP, Son JH et al. 2015. Jumping on water: surface tension-dominated jumping of water striders and robotic insects. Science 349:517–21
    [Google Scholar]
  10. 10.  Alexander RM 2003. Principles of Animal Locomotion Princeton, NJ: Princeton Univ. Press
  11. 11.  Bergbreiter S 2008. Effective and efficient locomotion for millimeter-sized microrobots. 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems4030–35 New York: IEEE
    [Google Scholar]
  12. 12.  Arai K, Sugawara W, Honda T 1995. Magnetic small flying machines. Proceedings of the International Solid-State Sensors and Actuators Conference: Transducers ’95 1316–19 New York: IEEE
    [Google Scholar]
  13. 13.  Ma KY, Chirarattananon P, Fuller SB, Wood RJ 2013. Controlled flight of a biologically inspired, insect-scale robot. Science 340:603–7
    [Google Scholar]
  14. 14.  James J, Iyer V, Chukewad Y, Gollakota S, Fuller SB 2018. Liftoff of a 190 mg laser-powered aerial vehicle: the lightest wireless robot to fly. 2018 IEEE International Conference on Robotics and Automation New York: IEEE https://doi.org/10.1109/ICRA.2018.8460582
    [Crossref] [Google Scholar]
  15. 15.  Abbott JJ, Peyer KE, Dong L, Nelson BJ 2007. How should microrobots swim. Robotics Research: The 13th International Symposium ISRR M Kaneko, Y Nakamura15767 Berlin: Springer
    [Google Scholar]
  16. 16.  Tottori S, Zhang L, Qiu F, Krawczyk KK, Franco-Obregnn A, Nelson BJ 2012. Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport. Adv. Mater. 24:811–16
    [Google Scholar]
  17. 17.  Qiu T, Lee TC, Mark AG, Morozov KI, Münster R et al. 2014. Swimming by reciprocal motion at low Reynolds number. Nat. Commun. 5:5119
    [Google Scholar]
  18. 18.  Donald B, Levey C, McGray C, Paprotny I, Rus D 2006. An untethered, electrostatic, globally controllable MEMS micro-robot. J. Microelectromech. Syst. 15:1–15
    [Google Scholar]
  19. 19.  St. Pierre R, Gosrich W, Bergbreiter S 2018. A 3D-printed 1 mg legged microrobot running at 15 body lengths per second Paper presented at the Hilton Head Solid-State Sensors, Actuators, and Microsystems Workshop, Hilton Head Island, SC, June 3–7
  20. 20.  Qi M, Zhu Y, Liu Z, Zhang X, Yan X, Lin L 2017. A fast-moving electrostatic crawling insect. 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS)761–64 New York: IEEE
    [Google Scholar]
  21. 21.  Saito K, Sugita K, Ishihara Y, Iwata K, Asano Y et al. 2017. Insect-type MEMS microrobot with mountable bare chip IC of artificial neural networks. Artif. Life Robot. 22:118–24
    [Google Scholar]
  22. 22.  Churaman WA, Currano LJ, Morris CJ, Rajkowski JE, Bergbreiter S 2012. The first launch of an autonomous thrust-driven microrobot using nanoporous energetic silicon. J. Microelectromech. Syst. 21:198–205
    [Google Scholar]
  23. 23.  Yasuda T, Shimoyama I, Miura H 1994. Microrobot actuated by a vibration energy field. Sens. Actuators A 43:366–70
    [Google Scholar]
  24. 24.  Vollmers K, Frutiger DR, Kratochvil BE, Nelson BJ 2008. Wireless resonant magnetic microactuator for untethered mobile microrobots. Appl. Phys. Lett. 92:144103
    [Google Scholar]
  25. 25.  Pawashe C, Floyd S, Sitti M 2009. Modeling and experimental characterization of an untethered magnetic micro-robot. Int. J. Robot. Res. 28:1077–94
    [Google Scholar]
  26. 26.  Zeng H, Wasylczyk P, Parmeggiani C, Martella D, Burresi M, Wiersma DS 2015. Light-fueled microscopic walkers. Adv. Mater. 27:3883–87
    [Google Scholar]
  27. 27.  Zeng H, Wani OM, Wasylczyk P, Priimagi A 2018. Light-driven, caterpillar-inspired miniature inching robot. Macromol. Rapid Commun. 39:1700224
    [Google Scholar]
  28. 28.  Ebefors T, Mattsson JU, Kälvesten E, Stemme G 1999. A walking silicon micro-robot. Proceedings of the 10th International Conference on Solid-State Sensors and Actuators: Transducers ’991202–5 New York: IEEE
    [Google Scholar]
  29. 29.  Erdem EY, Chen YM, Mohebbi M, Suh JW, Kovacs G et al. 2010. Thermally actuated omnidirectional walking microrobot. J. Microelectromech. Syst. 19:433–42
    [Google Scholar]
  30. 30.  Noh M, Kim SW, An S, Koh JS, Cho KJ 2012. Flea-inspired catapult mechanism for miniature jumping robots. IEEE Trans. Robot. 28:1007–18
    [Google Scholar]
  31. 31.  Koh JS, Jung SP, Noh M, Kim SW, Cho KJ 2013. Flea inspired catapult mechanism with active energy storage and release for small scale jumping robot. 2013 IEEE International Conference on Robotics and Automation26–31 New York: IEEE
    [Google Scholar]
  32. 32.  Koh JS, Jung SP, Wood RJ, Cho KJ 2013. A jumping robotic insect based on a torque reversal catapult mechanism. 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems3796–801 New York: IEEE
    [Google Scholar]
  33. 33.  Vogtmann D, St. Pierre R, Bergbreiter S 2017. A 25 MG magnetically actuated microrobot walking at >5 body lengths/sec. 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems179–82 New York: IEEE
    [Google Scholar]
  34. 34.  Vogtmann D 2016. Design, modeling and fabrication of microrobot legs PhD Thesis, Univ. Md., College Park
  35. 35.  St. Pierre R 2018. Legged locomotion in sub-gram robots PhD Thesis, Univ. Md., College Park
  36. 36.  Hu W, Lum GZ, Mastrangeli M, Sitti M 2018. Small-scale soft-bodied robot with multimodal locomotion. Nature 554:81–85
    [Google Scholar]
  37. 37.  Contreras DS, Drew DS, Pister KSJ 2017. First steps of a millimeter-scale walking silicon robot. 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems910–13 New York: IEEE
    [Google Scholar]
  38. 38.  Contreras DS, Pister KSJ 2018. A six-legged MEMS silicon robot using multichip assembly Paper presented at the Hilton Head Solid-State Sensors, Actuators, and Microsystems Workshop, Hilton Head Island, SC, June 3–7
  39. 39.  Baisch AT, Ozcan O, Goldberg B, Ithier D, Wood RJ 2014. High speed locomotion for a quadrupedal microrobot. Int. J. Robot. Res. 33:1063–82
    [Google Scholar]
  40. 40.  Greenspun J, Pister KSJ 2018. First leaps of an electrostatic inchworm motor-driven jumping microrobot Paper presented at the Hilton Head Solid-State Sensors, Actuators, and Microsystems Workshop, Hilton Head Island, SC, June 3–7
  41. 41. Epson 2018. Monsieur: the ultraminiature robot that propelled itself into the Guinness Book. Epson. https://global.epson.com/company/corporate_history/milestone_products/23_monsieur.html
  42. 42.  Tang Y, Chen C, Khaligh A, Penskiy I, Bergbreiter S 2014. An ultracompact dual-stage converter for driving electrostatic actuators in mobile microrobots. IEEE Trans. Power Electron. 29:2991–3000
    [Google Scholar]
  43. 43.  Karpelson M, Wei G-Y, Wood RJ 2012. Driving high voltage piezoelectric actuators in microrobotic applications. Sens. Actuators A 176:78–89
    [Google Scholar]
  44. 44.  Hollar S, Flynn A, Bellew C, Pister KSJ 2003. Solar powered 10 mg silicon robot. The Sixteenth Annual International Conference on Micro Electro Mechanical Systems706–11 New York: IEEE
    [Google Scholar]
  45. 45.  Tanaka D, Uchiumi Y, Kawamura S, Takato M, Saito K, Uchikoba F 2017. Four-leg independent mechanism for MEMS microrobot. Artif. Life Robot. 22:380–84
    [Google Scholar]
  46. 46.  Saito K, Takato M, Sekine Y, Uchikoba F 2012. Biomimetics micro robot with active hardware neural networks locomotion control and insect-like switching behaviour. Int. J. Adv. Robot. Syst. 9:226
    [Google Scholar]
  47. 47.  Saito K, Takato M, Sekine Y, Uchikoba F 2014. MEMS microrobot system with locomotion rhythm generator using artificial neural networks Paper presented at the 1st International Conference on Robotics and Mechatronics, Structural Analysis, Athens, Greece, Nov. 28–30
  48. 48.  Saito K, Maezumi K, Naito Y, Hidaka T, Iwata K et al. 2014. Neural networks integrated circuit for biomimetics MEMS microrobot. Robotics 3:235–46
    [Google Scholar]
  49. 49.  Saito K, Okazaki K, Ogiwara T, Takato M, Saeki K et al. 2014. Locomotion control of MEMS microrobot using pulse-type hardware neural networks. Electr. Eng. Jpn. 186:43–50
    [Google Scholar]
  50. 50.  Saito K, Iwata K, Ishihara Y, Sugita K, Takato M, Uchikoba F 2016. Miniaturized rotary actuators using shape memory alloy for insect-type MEMS microrobot. Micromachines 7:58
    [Google Scholar]
  51. 51.  Okazaki K, Ogiwara T, Yang D, Sakata K, Saito K et al. 2011. Development of a pulse control-type MEMS microrobot with a hardware neural network. Artif. Life Robot. 16:229–33
    [Google Scholar]
  52. 52.  Goldberg B, Zufferey R, Doshi N, Helbling EF, Whittredge G et al. 2018. Power and control autonomy for high-speed locomotion with an insect-scale legged robot. IEEE Robot. Autom. Lett. 3:987–93
    [Google Scholar]
  53. 53.  Edqvist E, Snis N, Mohr RC, Scholz O, Corradi P et al. 2009. Evaluation of building technology for mass producible millimetre-sized robots using flexible printed circuit boards. J. Micromech. Microeng. 19:075011
    [Google Scholar]
  54. 54.  Steinfeld A, Fong T, Kaber D, Lewis M, Scholtz J et al. 2006. Common metrics for human-robot interaction. Proceedings of the 1st ACM SIGCHI/SIGART Conference on Human-Robot Interaction33–40 New York: ACM
    [Google Scholar]
  55. 55.  Molino V, Madhavan R, Messina E, Downs A, Balakirsky S, Jacoff A 2007. Traversability metrics for rough terrain applied to repeatable test methods. 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems1787–94 New York: IEEE
    [Google Scholar]
  56. 56.  Jacoff A, Messina E, Weiss BA, Tadokoro S, Nakagawa Y 2003. Test arenas and performance metrics for urban search and rescue robots. Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems 43396–403 New York: IEEE
    [Google Scholar]
  57. 57.  Lampe A, Chatila R 2006. Performance measure for the evaluation of mobile robot autonomy. Proceedings of the 2006 IEEE International Conference on Robotics and Automation4057–62 New York: IEEE
    [Google Scholar]
  58. 58.  Hoover A, Steltz E, Fearing R 2008. RoACH: an autonomous 2.4g crawling hexapod robot. 2008 IEEE International Conference on Intelligent Robots and Systems26–33 New York: IEEE
    [Google Scholar]
  59. 59.  Kladitis PE, Bright VM 2000. Prototype microrobots for micro-positioning and micro-unmanned vehicles. Sens. Actuators A 80:132–37
    [Google Scholar]
  60. 60.  Driesen W, Varidel T, Régnier S, Breguet JM 2005. Micro manipulation by adhesion with two collaborating mobile micro robots. J. Micromech. Microeng. 15:S259–67
    [Google Scholar]
  61. 61.  Driesen W, Rida A, Breguet JM, Clavel R 2007. Friction based locomotion module for mobile MEMS robots. 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems3815–20 New York: IEEE
    [Google Scholar]
  62. 62.  Rubin S, Young MHY, Wright JC, Whitaker DL, Ahn AN 2016. Exceptional running and turning performance in a mite. J. Exp. Biol. 219:676–85
    [Google Scholar]
  63. 63.  Ishida A, Sato M, Tabata O, Yoshikawa W 2005. Shape memory thin films formed with carrousel-type magnetron sputtering apparatus. Smart Mater. Struct. 14:S216–22
    [Google Scholar]
  64. 64.  Takahama S, Tanida J, Takato M, Uchikoba F, Saito K 2013. Biomimetics micro robot with CMOS IC neural networks locomotion control. IECON 2013: 39th Annual Conference of the IEEE Industrial Electronics Society6371–76 New York: IEEE
    [Google Scholar]
  65. 65.  Ozcan O, Baisch AT, Ithier D, Wood RJ 2014. Powertrain selection for a biologically-inspired miniature quadruped robot. 2014 IEEE International Conference on Robotics and Automation2398–405 New York: IEEE
    [Google Scholar]
  66. 66.  Lipp A, Wolf H, Lehmann FO 2005. Walking on inclines: energetics of locomotion in the ant Camponotus. J. Exp. Biol. 208:707–19
    [Google Scholar]
  67. 67.  Full RJ, Zuccarello DA, Tullis A 1990. Effect of variation in form on the cost of terrestrial locomotion. J. Exp. Biol. 150:233–46
    [Google Scholar]
  68. 68.  Berrigan D, Lighton JR 1994. Energetics of pedestrian locomotion in adult male blowflies, Protophormia terraenovae (Diptera: Calliphoridae). Physiol. Zool. 67:1140–53
    [Google Scholar]
  69. 69.  Berrigan D, Lighton JR 1993. Bioenergetic and kinematic consequences of limblessness in larval Diptera. J. Exp. Biol. 179:245–59
    [Google Scholar]
  70. 70.  Lighton JR, Bartholomew GA, Feener DH 1987. Energetics of locomotion and load carriage and a model of the energy cost of foraging in the leaf-cutting ant Atta colombica Guer. Physiol. Zool. 60:524–37
    [Google Scholar]
  71. 71.  Jensen T, Holm-Jensen I 1980. Energetic cost of running in workers of three ant species, Formica fusca L., Formica rufa L., and Camponotus herculeanus L. (Hymenoptera, Formicidae). J. Comp. Physiol. 137:151–56
    [Google Scholar]
  72. 72.  Reinhardt L, Blickhan R 2014. Level locomotion in wood ants: evidence for grounded running. J. Exp. Biol. 17:2358–70
    [Google Scholar]
  73. 73.  Fewell JH, Harrison JF, Lighton JR, Breed MD 1996. Foraging energetics of the ant, Paraponera clavata. Oecologia 105:419–27
    [Google Scholar]
  74. 74.  Kram R, Taylor CR 1990. Energetics of running: a new perspective. Nature 346:265–67
    [Google Scholar]
  75. 75.  Bergbreiter S, Pister KSJ 2007. Design of an autonomous jumping microrobot. 2007 IEEE International Conference on Robotics and Automation447–53 New York: IEEE
    [Google Scholar]
  76. 76.  Full RJ, Tu MS 1991. Mechanics of a rapid running insect: two-, four- and six-legged locomotion. J. Exp. Biol. 156:215–31
    [Google Scholar]
  77. 77.  Qu J, Choi J, Oldham KR 2017. Dynamic structural and contact modeling for a silicon hexapod microrobot. J. Mech. Robot. 9:061006
    [Google Scholar]
  78. 78.  Qu J, Teeple CB, Oldham KR 2017. Modeling legged microrobot locomotion based on contact dynamics and vibration in multiple modes and axes. J. Vib. Acoust. 139:031013
    [Google Scholar]
  79. 79.  Gart SW, Yan C, Othayoth R, Ren Z, Li C 2018. Dynamic traversal of large gaps by insects and legged robots reveals a template. Bioinspir. Biomimet. 13:026006
    [Google Scholar]
  80. 80.  Gart SW, Li C 2018. Body-terrain interaction affects large bump traversal of insects and legged robots. Bioinspir. Biomimet. 13:026005
    [Google Scholar]
  81. 81.  Li C, Pullin AO, Haldane DW, Lam HK, Fearing RS, Full RJ 2015. Terradynamically streamlined shapes in animals and robots enhance traversability through densely cluttered terrain. Bioinspir. Biomimet. 10:046003
    [Google Scholar]
  82. 82.  Ceballos NDM, Valencia JA, Ospina NL 2010. Quantitative performance metrics for mobile robots navigation. Mobile Robots Navigation A Barrera485500 London: IntechOpen
    [Google Scholar]
  83. 83.  Brühwiler R, Goldberg B, Doshi N, Ozcan O, Jafferis N et al. 2015. Feedback control of a legged microrobot with on-board sensing. 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems5727–33 New York: IEEE
    [Google Scholar]
  84. 84.  Schneider D 1964. Insect antennae. Annu. Rev. Entomol. 9:103–22
    [Google Scholar]
  85. 85.  Keil TA 2012. Sensory cilia in arthropods. Arthropod Struct. Dev. 41:515–34
    [Google Scholar]
  86. 86.  Wolf H 2011. Odometry and insect navigation. J. Exp. Biol. 214:1629–41
    [Google Scholar]
  87. 87.  Cruse H, Wehner R 2011. No need for a cognitive map: decentralized memory for insect navigation. PLOS Comput. Biol. 7:e1002009
    [Google Scholar]
  88. 88.  Bronson JR, Pulskamp JS, Polcawich RG, Kroninger CM, Wetzel ED 2009. PZT MEMS actuated flapping wings for insect-inspired robotics. 2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems1047–50 New York: IEEE
    [Google Scholar]
  89. 89.  Penskiy I, Bergbreiter S 2013. Optimized electrostatic inchworm motors using a flexible driving arm. J. Micromech. Microeng. 23:015018
    [Google Scholar]
  90. 90.  Churaman WA, Morris CJ, Ramachandran, R, Bergbreiter S 2015. The effect of porosity on energetic porous silicon solid propellant micro-propulsion. J. Micromech. Microeng. 25:115022
    [Google Scholar]
  91. 91.  Karpelson M, Wei G-Y, Wood RJ 2008. A review of actuation and power electronics options for flapping-wing robotic insects. 2008 IEEE International Conference on Robotics and Automation779–86 New York: IEEE
    [Google Scholar]
  92. 92.  Dudek DM, Full RJ 2006. Passive mechanical properties of legs from running insects. J. Exp. Biol. 209:1502–15
    [Google Scholar]
  93. 93.  Jayaram K, Mongeau JM, Mohapatra A, Birkmeyer P, Fearing RS, Full RJ 2018. Transition by head-on collision: mechanically mediated manoeuvres in cockroaches and small robots. J. R. Soc. Interface 15:20170664
    [Google Scholar]
  94. 94.  Whitney JP, Sreetharan PS, Ma KY, Wood RJ 2011. Pop-up book MEMS. J. Micromech. Microeng. 21:115021
    [Google Scholar]
  95. 95.  Hawkes EW, Cutkosky MR 2018. Design of materials and mechanisms for responsive robots. Annu. Rev. Control Robot. Auton. Syst. 1:359–84
    [Google Scholar]
  96. 96.  Vaezi M, Seitz H, Yang S 2013. A review on 3D micro-additive manufacturing technologies. Int. J. Adv. Manuf. Technol. 67:1721–54
    [Google Scholar]
  97. 97.  Martella D, Nocentini S, Nuzhdin D, Parmeggiani C, Wiersma DS 2017. Photonic microhand with autonomous action. Adv. Mater. 29:1704047
    [Google Scholar]
  98. 98.  Gul JZ, Yang BS, Yang YJ, Chang DE, Choi KH 2016. In situ UV curable 3D printing of multi-material tri-legged soft bot with spider mimicked multi-step forward dynamic gait. Smart Mater. Struct. 25:115009
    [Google Scholar]
  99. 99.  Wehner M, Truby RL, Fitzgerald DJ, Mosadegh B, Whitesides GM et al. 2016. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536:451–55
    [Google Scholar]
  100. 100.  Chan V, Park K, Collens MB, Kong H, Saif TA, Bashir R 2012. Development of miniaturized walking biological machines. Sci. Rep. 2:857
    [Google Scholar]
  101. 101.  Kotikian A, Truby RL, Boley JW, White TJ, Lewis JA 2018. 3D printing of liquid crystal elastomeric actuators with spatially programed nematic order. Adv. Mater. 30:1706164
    [Google Scholar]
  102. 102.  Shimoyama I, Miura H, Suzuki K, Ezura Y 1992. 3D structure of an insect-based microrobot with an external skeleton. Proceedings of the 1992 IEEE International Conference on Robotics and Automation 1693–98 New York: IEEE
    [Google Scholar]
  103. 103.  Wu WC, Schenato L, Wood RJ, Fearing RS 2003. Biomimetic sensor suite for flight control of a micromechanical flying insect: design and experimental results. 2003 IEEE International Conference on Robotics and Automation 11146–51 New York: IEEE
    [Google Scholar]
  104. 104.  Jayaram K, Jafferis NT, Doshi N, Goldberg B, Wood RJ 2018. Concomitant sensing and actuation for piezoelectric microrobots. Smart Mater. Struct. 27:065028
    [Google Scholar]
  105. 105.  Zhang B, Qu J, Oldham KR 2018. Experimental evaluation of piezoelectric self-sensing during terrestrial locomotion of a miniature legged robot. 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics718–23 New York: IEEE
    [Google Scholar]
  106. 106.  Fischer AC, Forsberg F, Lapisa M, Bleiker SJ, Stemme G et al. 2015. Integrating MEMS and ICS. Microsyst. Nanoeng. 1:15005
    [Google Scholar]
/content/journals/10.1146/annurev-control-053018-023814
Loading
/content/journals/10.1146/annurev-control-053018-023814
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error