1932

Abstract

Game theory is the study of decision problems in which there are multiple decision makers and the quality of a decision maker's choice depends on both that choice and the choices of others. While game theory has been studied predominantly as a modeling paradigm in the mathematical social sciences, there is a strong connection to control systems in that a controller can be viewed as a decision-making entity. Accordingly, game theory is relevant in settings with multiple interacting controllers. This article presents an introduction to game theory, followed by a sampling of results in three specific control theory topics where game theory has played a significant role: () zero-sum games, in which the two competing players are a controller and an adversarial environment; () team games, in which several controllers pursue a common goal but have access to different information; and () distributed control, in which both a game and online adaptive rules are designed to enable distributed interacting subsystems to achieve a collective objective.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-060117-105102
2018-05-28
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/control/1/1/annurev-control-060117-105102.html?itemId=/content/journals/10.1146/annurev-control-060117-105102&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Myerson R 1997. Game Theory Cambridge, MA: Harvard Univ. Press
  2. 2.  Zhou K, Doyle J 1998. Essentials of Robust Control Upper Saddle River, NJ: Prentice Hall
  3. 3.  Marden JR, Shamma JS 2015. Game theory and distributed control. Handbook of Game Theory with Economic Applications 4 H Young, S Zamir 861–99 Amsterdam, Neth.: Elsevier
    [Google Scholar]
  4. 4.  Marden JR, Shamma JS 2018. Game-theoretic learning in distributed control. Handbook of Dynamic Game Theory T Başar, G Zaccour. Cham Switz.: Springer. In press
    [Google Scholar]
  5. 5.  Fudenberg D, Tirole J 1991. Game Theory Cambridge, MA: MIT Press
  6. 6.  Osborne M, Rubinstein A 1994. A Course in Game Theory Cambridge, MA: MIT Press
  7. 7.  Cesa-Bianchi N, Lugosi G 2006. Prediction, Learning, and Games Cambridge, UK: Cambridge Univ. Press
  8. 8.  Leyton-Brown K, Shoham Y 2008. Essentials of Game Theory: A Concise, Multidisciplinary Introduction San Rafael, CA: Morgan & Claypool
  9. 9.  Nisan N, Roughgarden T, Tardos E, Vazirani VV 2007. Algorithmic Game Theory Cambridge, UK: Cambridge Univ. Press
  10. 10.  Başar T, Olsder G 1999. Dynamic Noncooperative Game Theory Philadelphia, PA: Soc. Ind. Appl. Math.
  11. 11.  Bauso D 2016. Game Theory with Engineering Applications Philadelphia, PA: Soc. Ind. Appl. Math.
  12. 12.  Hespanha J 2017. Noncooperative Game Theory: An Introduction for Engineers and Computer Scientists Princeton, NJ: Princeton Univ. Press
  13. 13.  Roughgarden T 2005. Selfish Routing and the Price of Anarchy Cambridge, MA: MIT Press
  14. 14.  Camerer C 2003. Behavioral Game Theory: Experiments in Strategic Interaction Princeton, NJ: Princeton Univ. Press
  15. 15.  Rubinstein A 1998. Modeling Bounded Rationality Cambridge, MA: MIT Press
  16. 16.  Ho Y, Bryson A, Baron S 1965. Differential games and optimal pursuit-evasion strategies. IEEE Trans. Automat. Control 10:385–89
    [Google Scholar]
  17. 17.  Isaacs R 1965. Differential Games: A Mathematical Theory with Applications to Warfare and Pursuit, Control and Optimization New York: Wiley
  18. 18.  Liberzon D 2012. Calculus of Variations and Optimal Control Theory: A Concise Introduction Princeton, NJ: Princeton Univ. Press
  19. 19.  Blanchini F, Miani S 2007. Set-Theoretic Methods in Control Basel, Switz.: Birkhäuser
  20. 20.  Aubin J 1991. Viability Theory Basel, Switz.: Birkhäuser
  21. 21.  Mitchell IM, Bayen AM, Tomlin CJ 2005. A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games. IEEE Trans. Automat. Control 50:947–57
    [Google Scholar]
  22. 22.  Zhou Z, Zhang W, Ding J, Huang H, Stipanović DM, Tomlin CJ 2016. Cooperative pursuit with Voronoi partitions. Automatica 72:64–72
    [Google Scholar]
  23. 23.  Karaman S, Frazzoli E 2011. Incremental sampling-based algorithms for a class of pursuit-evasion games. In Algorithmic Foundations of Robotics IX: Selected Contributions of the Ninth International Workshop on the Algorithmic Foundations of Robotics D Hsu, V Isler, JC Latombe, MC Lin 71–87 Berlin: Springer
    [Google Scholar]
  24. 24.  Isler V, Kannan S, Khanna S 2005. Randomized pursuit-evasion in a polygonal environment. IEEE Trans. Robot. 21:875–84
    [Google Scholar]
  25. 25.  Zames G 1981. Feedback and optimal sensitivity: model reference transformations, multiplicative seminorms, and approximate inverses. IEEE Trans. Automat. Control 26:301–20
    [Google Scholar]
  26. 26.  Başar T, Bernhard P 1991. H-Infinity-Optimal Control and Related Minimax Design Problems Basel, Switz.: Birkhäuser
  27. 27.  Doyle J, Francis B, Tannenbaum A 2009. Feedback Control Theory Mineola, NY: Dover
  28. 28.  Banavar RN, Speyer JL 1991. A linear-quadratic game approach to estimation and smoothing. 1991 American Control Conference (ACC)2818–22 New York: IEEE
    [Google Scholar]
  29. 29.  Limebeer DJN, Anderson BDO, Khargonekar PP, Green M 1992. A game theoretic approach to control for time-varying systems. SIAM J. Control Optim. 30:262–83
    [Google Scholar]
  30. 30.  Engwerda J 2005. LQ Dynamic Optimization and Differential Games Hoboken, NJ: Wiley
  31. 31.  Bertsekas D, Rhodes I 1971. On the minimax reachability of target sets and target tubes. Automatica 7:233–47
    [Google Scholar]
  32. 32.  Bertsekas D 1972. Infinite time reachability of state-space regions by using feedback control. IEEE Trans. Automat. Control 17:604–13
    [Google Scholar]
  33. 33.  Bertsekas D 2005. Dynamic Programming and Optimal Control Belmont, MA: Athena Sci.
  34. 34.  Dahleh M, Diaz-Bobillo I 1995. Control of Uncertain Systems: A Linear Programming Approach Upper Saddle River, NJ: Prentice Hall
  35. 35.  Shamma JS 1993. Nonlinear state feedback for ℓ1 optimal control. Syst. Control Lett. 21:265–70
    [Google Scholar]
  36. 36.  Shamma JS 1996. Optimization of the ℓ-induced norm under full state feedback. IEEE Trans. Automat. Control 41:533–44
    [Google Scholar]
  37. 37.  Shamma JS 2012. An overview of LPV systems. Control of Linear Parameter Varying Systems with Applications J Mohammadpour, CW Scherer 3–26 Boston: Springer
    [Google Scholar]
  38. 38.  Shamma JS, Xiong D 1999. Set-valued methods for linear parameter varying systems. Automatica 35:1081–89
    [Google Scholar]
  39. 39.  Aumann RJ, Maschler M, Stearns RE 1995. Repeated Games with Incomplete Information Cambridge, MA: MIT Press
  40. 40.  Mertens J, Sorin S, Zamir S 2015. Repeated Games Cambridge, UK: Cambridge Univ. Press
  41. 41.  Smith JC, Prince M, Geunes J 2013. Modern network interdiction problems and algorithms. Handbook of Combinatorial Optimization PM Pardalos, DZ Du, RL Graham 1949–87 New York: Springer
    [Google Scholar]
  42. 42.  Zheng J, Castañón DA 2012. Stochastic dynamic network interdiction games. 2012 American Control Conference (ACC)1838–44 New York: IEEE
    [Google Scholar]
  43. 43.  Zheng J, Castañón DA 2012. Dynamic network interdiction games with imperfect information and deception. 2012 51st Annual IEEE Conference on Decision and Control (CDC)7758–63 New York: IEEE
    [Google Scholar]
  44. 44.  Alpcan T, Başar T 2010. Network Security: A Decision and Game-Theoretic Approach Cambridge, UK: Cambridge Univ. Press
  45. 45.  Li L, Shamma JS 2015. Efficient computation of discounted asymmetric information zero-sum stochastic games. 2015 54th Annual IEEE Conference on Decision and Control (CDC)4531–36 New York: IEEE
    [Google Scholar]
  46. 46.  Li L, Langbort C, Shamma J 2017. Computing security strategies in finite horizon repeated bayesian games. 2017 American Control Conference (ACC)3664–69 New York: IEEE
    [Google Scholar]
  47. 47.  Ho YC 1980. Team decision theory and information structures. Proc. IEEE 68:644–54
    [Google Scholar]
  48. 48.  Lewis FL, Zhang H, Hengster-Movric K, Das A 2013. Cooperative Control of Multi-Agent Systems: Optimal and Adaptive Design Approaches New York: Springer
  49. 49.  Shamma JS 2008. Cooperative Control of Distributed Multi-Agent Systems Hoboken, NJ: Wiley
  50. 50.  van Schuppen J, Villa T 2014. Coordination Control of Distributed Systems Cham, Switz.: Springer
  51. 51.  Wang Y, Zhang F 2017. Cooperative Control of Multi-Agent Systems: Theory and Applications Hoboken, NJ: Wiley
  52. 52.  Radner R 1962. Team decision problems. Ann. Math. Stat. 33:857–81
    [Google Scholar]
  53. 53.  Witsenhausen HS 1968. A counterexample in stochastic optimum control. SIAM J. Control 6:131–47
    [Google Scholar]
  54. 54.  Başar T 2008. Variations on the theme of the Witsenhausen counterexample. 2008 47th IEEE Conference on Decision and Control1614–19 New York: IEEE
    [Google Scholar]
  55. 55.  Ho YC, Chu K 1974. Information structure in dynamic multi-person control problems. Automatica 10:341–51
    [Google Scholar]
  56. 56.  Nayyar A, Mahajan A, Teneketzis D 2013. Decentralized stochastic control with partial history sharing: a common information approach. IEEE Trans. Autom. Control 58:1644–58
    [Google Scholar]
  57. 57.  Nayyar A, Mahajan A, Teneketzis D 2014. The common-information approach to decentralized stochastic control. Information and Control in Networks G Como, B Bernhardsson, A Rantzer 123–56 Cham, Switz.: Springer
    [Google Scholar]
  58. 58.  Kurtaran BZ, Sivan R 1974. Linear-quadratic-Gaussian control with one-step-delay sharing pattern. IEEE Trans. Autom. Control 19:571–74
    [Google Scholar]
  59. 59.  Sandell N, Athans M 1974. Solution of some nonclassical LQG stochastic decision problems. IEEE Trans. Autom. Control 19:108–16
    [Google Scholar]
  60. 60.  Nayyar N, Kalathil D, Jain R 2018. Optimal decentralized control with asymmetric one-step delayed information sharing. IEEE Trans. Control Netw. Syst. 5:653–63
    [Google Scholar]
  61. 61.  Bamieh B, Voulgaris PG 2005. A convex characterization of distributed control problems in spatially invariant systems with communication constraints. Syst. Control Lett. 54:575–83
    [Google Scholar]
  62. 62.  Rotkowitz M, Lall S 2006. A characterization of convex problems in decentralized control. IEEE Trans. Autom. Control 51:274–86
    [Google Scholar]
  63. 63.  Roughgarden T 2005. Selfish Routing and the Price of Anarchy Cambridge, MA: MIT Press
  64. 64.  Brown PN, Marden JR 2017. Studies on robust social influence mechanisms, incentives for efficient network routing in uncertain settings. IEEE Control Syst. Mag. 37:98–115
    [Google Scholar]
  65. 65.  Lasaulce S, Jimenez T, Solan E 2017. Network Games, Control, and Optimization: Proceedings of NETGCOOP 2016, Avignon, France Basel, Switz.: Birkhaüser
  66. 66.  Ozdaglar A, Menache I 2011. Network Games: Theory, Models, and Dynamics San Rafael, CA: Morgan & Claypool
  67. 67.  Marden JR, Ruben S, Pao L 2013. A model-free approach to wind farm control using game theoretic methods. IEEE Trans. Control Syst. Technol. 21:1207–14
    [Google Scholar]
  68. 68.  Johnson KE, Thomas N 2009. Wind farm control: addressing the aerodynamic interaction among wind turbines. 2009 American Control Conference2104–9 New York: IEEE
    [Google Scholar]
  69. 69.  Steinbuch M, de Boer WW, Bosgra OH, Peters S, Ploeg J 1998. Optimal control of wind power plants. J. Wind Eng. Ind. Aerodyn. 27:237–46
    [Google Scholar]
  70. 70.  Pao L, Johnson KE 2009. A tutorial on the dynamics and control of wind turbines and wind farms. 2009 American Control Conference35–36 New York: IEEE
    [Google Scholar]
  71. 71.  Cortes J, Martinez S, Karatas T, Bullo F 2004. Coverage control for mobile sensing networks. IEEE Trans. Robot. Autom. 20:243–55
    [Google Scholar]
  72. 72.  Marden JR, Arslan G, Shamma JS 2009. Cooperative control and potential games. IEEE Trans. Syst. Man Cybernet. B 39:1393–407
    [Google Scholar]
  73. 73.  Yazicioglu AY, Egerstedt M, Shamma JS 2016. Communication-free distributed coverage for networked systems. IEEE Trans. Control Netw. Syst. 4:499–510
    [Google Scholar]
  74. 74.  Fudenberg D, Levine D 1998. The Theory of Learning in Games Cambridge, MA: MIT Press
  75. 75.  Hart S, Mas-Colell A 2003. Uncoupled dynamics do not lead to Nash equilibrium. Am. Econ. Rev. 93:1830–36
    [Google Scholar]
  76. 76.  Marden JR, Young HP, Arslan G, Shamma JS 2009. Payoff based dynamics for multi-player weakly acyclic games. SIAM J. Control Optim. 48:373–96
    [Google Scholar]
  77. 77.  Babichenko Y 2010. Completely uncoupled dynamics and Nash equilibria Discuss. Pap., Cent. Study Ration., Hebrew Univ Jerusalem:
  78. 78.  Hart S 2005. Adaptive heuristics. Econometrica 73:1401–30
    [Google Scholar]
  79. 79.  Young HP 2005. Strategic Learning and Its Limits Oxford, UK: Oxford Univ. Press
  80. 80.  Shamma JS, Arslan G 2005. Dynamic fictitious play, dynamic gradient play, and distributed convergence to Nash equilibria. IEEE Trans. Autom. Control 50:312–27
    [Google Scholar]
  81. 81.  Fox MJ, Shamma JS 2013. Population games, stable games, and passivity. Games 4:561–83
    [Google Scholar]
  82. 82.  Frihauf P, Krstic M, Başar T 2012. Nash equilibrium seeking in noncooperative games. IEEE Trans. Autom. Control 57:1192–207
    [Google Scholar]
  83. 83.  Monderer D, Shapley L 1996. Potential games. Games Econ. Behav. 14:124–43
    [Google Scholar]
  84. 84.  Blume L 1993. The statistical mechanics of strategic interaction. Games Econ. Behav. 5:387–424
    [Google Scholar]
  85. 85.  Blume L 1997. Population games. The Economy as an Evolving Complex System II B Arthur, S Durlauf, D Lane 425–60 Reading, MA: Addison-Wesley
    [Google Scholar]
  86. 86.  Marden JR, Shamma JS 2012. Revisiting log-linear learning: asynchrony, completeness and a payoff-based implementation. Games Econ. Behav. 75:788–808
    [Google Scholar]
  87. 87.  Alos-Ferrer C, Netzer N 2010. The logit-response dynamics. Games Econ. Behav. 68:413–27
    [Google Scholar]
  88. 88.  Koutsoupias E, Papadimitriou C 1999. Worst-case equilibria. STACS 99: 16th Annual Symposium on Theoretical Aspects of Computer Science, Trier, Germany, March 4–6, 1999: Proceedings C Meinel, S Tison 404–13 Berlin: Springer
    [Google Scholar]
  89. 89.  Wolpert D 2004. Theory of collective intelligence. Collectives and the Design of Complex Systems K Tumer, D Wolpert 43–106 New York: Springer
    [Google Scholar]
  90. 90.  Arslan G, Marden JR, Shamma JS 2007. Autonomous vehicle-target assignment: a game theoretical formulation. ASME J. Dyn. Syst. Meas. Control 129:584–96
    [Google Scholar]
  91. 91.  Marden JR, Wierman A 2013. Distributed welfare games. Oper. Res. 61:155–68
    [Google Scholar]
  92. 92.  Gopalakrishnan R, Marden JR, Wierman A 2011. An architectural view of game theoretic control. ACM SIGMETRICS Perf. Eval. Rev. 38:31–36
    [Google Scholar]
  93. 93.  Phillips M, Shalaby Y, Marden JR 2016. The importance of budget in efficient utility design. 2016 55th Annual IEEE Conference on Decision and Control (CDC)6117–22 New York: IEEE
    [Google Scholar]
  94. 94.  Marden J, Phillips M 2016. Optimizing the price of anarchy in concave cost sharing games. 2017 American Control Conference (ACC)5237–42 New York: IEEE
    [Google Scholar]
  95. 95.  Marden J, Roughgarden T 2014. Generalized efficiency bounds in distributed resource allocation. IEEE Trans. Autom. Control 59:571–84
    [Google Scholar]
  96. 96.  Vetta A 2002. Nash equilibria in competitive societies with applications to facility location, traffic routing, and auctions. 43rd Annual IEEE Symposium on Foundations of Computer Science416–25 New York: IEEE
    [Google Scholar]
  97. 97.  Marden JR, Effros M 2012. The price of selfishness in network coding. IEEE Trans. Inform. Theory 58:2349–61
    [Google Scholar]
  98. 98.  Gairing M 2009. Covering games: approximation through noncooperation. Internet and Network Economics: 5th International Workshop, WINE 2009, Rome, Italy, December 14–18, 2009: Proceedings S Leonardi 184–95 Berlin: Springer
    [Google Scholar]
  99. 99.  Brown PN, Marden JR 2016. Optimal mechanisms for robust coordination in congestion games. 2015 54th Annual IEEE Conference on Decision and Control (CDC)2283–88 New York: IEEE
    [Google Scholar]
  100. 100.  Chen HL, Roughgarden T, Valiant G 2008. Designing networks with good equilibria. Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA '08)854–63 New York: IEEE
    [Google Scholar]
  101. 101.  Gkatzelis V, Kollias K, Roughgarden T 2016. Optimal cost-sharing in general resource selection games. Oper. Res. 64:1230–38
    [Google Scholar]
  102. 102.  Dobzinski S, Mehta A, Roughgarden T, Sundararajan M 2017. Is Shapley cost sharing optimal?. Games Econ. Behav. In press
  103. 103.  Gopalakrishnan R, Marden JR, Wierman A 2014. Potential games are necessary to ensure pure Nash equilibria in cost sharing games. Math. Oper. Res. 39:1252–96
    [Google Scholar]
  104. 104.  Marden JR 2012. State based potential games. Automatica 48:3075–88
    [Google Scholar]
  105. 105.  Li N, Marden JR 2013. Designing games for distributed optimization. IEEE J. Sel. Top. Signal Process. 7:230–42
    [Google Scholar]
  106. 106.  Li N, Marden JR 2010. Designing games to handle coupled constraints. 2010 49th Annual IEEE Conference on Decision and Control (CDC)250–55 New York: IEEE
    [Google Scholar]
  107. 107.  Solan E, Vieille N 2015. Stochastic games. PNAS 112:13743–46
    [Google Scholar]
  108. 108.  Dudebout N, Shamma JS 2012. Empirical evidence equilibria in stochastic games. 2012 51st Annual IEEE Conference on Decision and Control (CDC)5780–85 New York: IEEE
    [Google Scholar]
  109. 109.  Dudebout N, Shamma JS 2014. Exogenous empirical-evidence equilibria in perfect-monitoring repeated games yield correlated equilibria. 2014 53rd Annual IEEE Conference on Decision and Control (CDC)1167–72 New York: IEEE
    [Google Scholar]
  110. 110.  Arslan G, Yksel S 2017. Decentralized Q-learning for stochastic teams and games. IEEE Trans. Autom. Control 62:1545–58
    [Google Scholar]
  111. 111.  Yu CK, van der Schaar M, Sayed AH 2017. Distributed learning for stochastic generalized Nash equilibrium problems. IEEE Trans. Signal Process. 65:3893–908
    [Google Scholar]
  112. 112.  Sandholm W 2010. Population Games and Evolutionary Dynamics Cambridge, MA: MIT Press
  113. 113.  Quijano N, Ocampo-Martinez C, Barreiro-Gomez J, Obando G, Pantoja A, Mojica-Nava E 2017. The role of population games and evolutionary dynamics in distributed control systems: the advantages of evolutionary game theory. IEEE Control Syst 37:70–97
    [Google Scholar]
  114. 114.  Caines PE 2013. Mean field games. Encyclopedia of Systems and Control J Baillieul, T Samad 1–6 London: Springer
    [Google Scholar]
  115. 115.  Hamza D, Shamma JS 2017. BLMA: a blind matching algorithm with application to cognitive radio networks. IEEE J. Sel. Areas Commun. 35:302–16
    [Google Scholar]
  116. 116.  Saad W, Han Z, Debbah M, Hjorungnes A, Basar T 2009. Coalitional game theory for communication networks. IEEE Signal Process. Mag. 26:77–97
    [Google Scholar]
  117. 117.  Saad W, Han Z, Poor HV 2011. Coalitional game theory for cooperative micro-grid distribution networks. 2011 IEEE International Conference on Communications Workshops (ICC) New York: IEEE https://doi.org/10.1109/iccw.2011.5963577
    [Crossref] [Google Scholar]
  118. 118.  Fele F, Maestre JM, Camacho EF 2017. Coalitional control: cooperative game theory and control. IEEE Control Syst 37:53–69
    [Google Scholar]
/content/journals/10.1146/annurev-control-060117-105102
Loading
/content/journals/10.1146/annurev-control-060117-105102
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error