1932

Abstract

One of the pillars of geomorphology is the study of geomorphic processes and their drivers, dynamics, and impacts. Like all activity that transfers energy to Earth's surface, a wide range of geomorphic process types create seismic waves that can be measured with standard seismic instruments. Seismic signals provide continuous high-resolution coverage with a spatial footprint that can vary from local to global, and in recent years, efforts to exploit these signals for information about surface processes have increased dramatically, coalescing into the emerging field of environmental seismology. The application of seismic methods has the potential to drive advances in our understanding of the occurrence, timing, and triggering of geomorphic events, the dynamics of geomorphic processes, fluvial bedload transport, and integrative geomorphic system monitoring. As new seismic applications move from development to proof of concept to routine application, integration between geomorphologists and seismologists is key for continued progress.

  • ▪  Geomorphic activity on Earth's surface produces seismic signals that can be measured with standard seismic instruments.
  • ▪  Seismic methods are driving advances in our understanding of the occurrence, triggering, and internal dynamics of a range of geomorphic processes.
  • ▪  Dedicated seismic-based observatories offer the potential to comprehensively characterize geomorphic activity and its impacts across a landscape.
  • ▪  Collaboration between seismologists and geomorphologists is fostering the development of new applications, models, and analysis techniques for geomorphic seismology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-032320-085133
2022-05-31
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/earth/50/1/annurev-earth-032320-085133.html?itemId=/content/journals/10.1146/annurev-earth-032320-085133&mimeType=html&fmt=ahah

Literature Cited

  1. Agurto-Detzel H, Bianchi M, Assumpção M, Schimmel M, Collaço B et al. 2016. The tailings dam failure of 5 November 2015 in SE Brazil and its preceding seismic sequence. Geophys. Res. Lett. 43:104929–36
    [Google Scholar]
  2. Allstadt K. 2013. Extracting source characteristics and dynamics of the August 2010 Mount Meager landslide from broadband seismograms. J. Geophys. Res. Earth Surf. 118:31472–90
    [Google Scholar]
  3. Allstadt KE, Farin M, Iverson RM, Obryk MK, Kean JW et al. 2020. Measuring basal force fluctuations of debris flows using seismic recordings and empirical Green's functions. J. Geophys. Res. Earth Surf. 125:9e2020JF005590
    [Google Scholar]
  4. Andermann C, Turowski J, Behling R, Cook K, Hovius N et al. 2016.. Landscape response to the Mw7.9 Gorkha earthquake. Geophys. Res. Abstr. 18:EPSC2016–9091
    [Google Scholar]
  5. Arattano M, Marchi L, Cavalli M. 2012. Analysis of debris-flow recordings in an instrumented basin: confirmations and new findings. Nat. Hazards Earth Syst. Sci. 12:3679–86
    [Google Scholar]
  6. Arattano M, Moia F. 1999. Monitoring the propagation of a debris flow along a torrent. Hydrol. Sci. J. 44:5811–23
    [Google Scholar]
  7. Bakker M, Gimbert F, Geay T, Misset C, Zanker S, Recking A 2020. Field application and validation of a seismic bedload transport model. J. Geophys. Res. Earth Surf. 125:5e2019JF005416
    [Google Scholar]
  8. Barrière J, Oth A, Hostache R, Krein A. 2015. Bed load transport monitoring using seismic observations in a low-gradient rural gravel bed stream. Geophys. Res. Lett. 42:72294–301
    [Google Scholar]
  9. Bell R, Gurung N, Andermann C, Fort M, Arnaud-Fassetta G, Cook KL. 2021. A catastrophic multi-hazard event in 2020 in Kali Gandaki valley, Nepal Himalaya. EGU Gen. Assem. 2021:EGU21–15530
    [Google Scholar]
  10. Benndorf H. 1910. Über die mikroseismischen Bewegungen. Geol. Rundsch. 1:5183–86
    [Google Scholar]
  11. Bormann P, ed. 2012. New Manual of Seismological Observatory Practice (NMSOP-2) Potsdam, Ger: GeoForschungsZentrum
  12. Bottelin P, Levy C, Baillet L, Jongmans D, Gueguen P 2013. Modal and thermal analysis of Les Arches unstable rock column (Vercors massif, French Alps). Geophys. J. Int. 194:2849–58
    [Google Scholar]
  13. Bourrier F, Berger F, Tardif P, Dorren L, Hungr O 2012. Rockfall rebound: comparison of detailed field experiments and alternative modelling approaches. Earth Surf. Process. Landf. 37:6656–65
    [Google Scholar]
  14. Brodsky EE, Gordeev E, Kanamori H. 2003. Landslide basal friction as measured by seismic waves. Geophys. Res. Lett. 30:242236
    [Google Scholar]
  15. Bunte K, Abt SR, Potyondy JP, Ryan SE. 2004. Measurement of coarse gravel and cobble transport using portable bedload traps. J. Hydraul. Eng. 130:9879–93
    [Google Scholar]
  16. Burtin A, Bollinger L, Vergne J, Cattin R, Nábělek JL 2008. Spectral analysis of seismic noise induced by rivers: a new tool to monitor spatiotemporal changes in stream hydrodynamics. J. Geophys. Res. 113:B5B05301
    [Google Scholar]
  17. Burtin A, Cattin R, Bollinger L, Vergne J, Steer P et al. 2011. Towards the hydrologic and bed load monitoring from high-frequency seismic noise in a braided river: the “torrent de St Pierre”, French Alps. J. Hydrol. 408:1–243–53
    [Google Scholar]
  18. Burtin A, Hovius N, McArdell BW, Turowski JM, Vergne J. 2014. Seismic constraints on dynamic links between geomorphic processes and routing of sediment in a steep mountain catchment. Earth Surf. Dyn. 2:121–33
    [Google Scholar]
  19. Burtin A, Hovius N, Milodowski DT, Chen YG, Wu YM et al. 2013. Continuous catchment-scale monitoring of geomorphic processes with a 2-D seismological array. J. Geophys. Res. Earth Surf. 118:31956–74
    [Google Scholar]
  20. Burtin A, Hovius N, Turowski JM. 2016. Seismic monitoring of torrential and fluvial processes. Earth Surf. Dyn. 4:2285–307
    [Google Scholar]
  21. Burtin A, Vergne J, Rivera L, Dubernet P. 2010. Location of river-induced seismic signal from noise correlation functions. Geophys. J. Int. 182:31161–73
    [Google Scholar]
  22. Carrivick JL, Jones R, Keevil G. 2011. Experimental insights on geomorphological processes within dam break outburst floods. J. Hydrol. 408:1–2153–63
    [Google Scholar]
  23. Chang JM, Chao WA, Chen H, Kuo YT, Yang CM. 2021. Locating rock slope failures along highways and understanding their physical processes using seismic signals. Earth Surf. Dyn. 9:3505–17
    [Google Scholar]
  24. Chao WA, Wu YM, Zhao L, Chen H, Chen YG et al. 2017. A first near real-time seismology-based landquake monitoring system. Sci. Rep. 7:143510
    [Google Scholar]
  25. Chao WA, Wu YM, Zhao L, Tsai VC, Chen CH. 2015. Seismologically determined bedload flux during the typhoon season. Sci. Rep. 5:18261
    [Google Scholar]
  26. Chmiel M, Walter F, Wenner M, Zhang Z, McArdell BW, Hibert C. 2021. Machine learning improves debris flow warning. Geophys. Res. Lett. 48:3e2020GL090874
    [Google Scholar]
  27. Clements T, Denolle MA. 2018. Tracking groundwater levels using the ambient seismic field. Geophys. Res. Lett. 45:136459–65
    [Google Scholar]
  28. Cook KL, Andermann C, Gimbert F, Adhikari BR, Hovius N. 2018. Glacial lake outburst floods as drivers of fluvial erosion in the Himalaya. Science 362:641053–57
    [Google Scholar]
  29. Cook KL, Rekapalli R, Dietze M, Pilz M, Cesca S et al. 2021. Detection and potential early warning of catastrophic flow events with regional seismic networks. Science 374:656387–92
    [Google Scholar]
  30. Cook KL, Turowski JM, Hovius N. 2020. Width control on event-scale deposition and evacuation of sediment in bedrock-confined channels. Earth Surf. Process. Landf. 45:143702–13
    [Google Scholar]
  31. Coviello V, Arattano M, Comiti F, Macconi P, Marchi L 2019. Seismic characterization of debris flows: insights into energy radiation and implications for warning. J. Geophys. Res. Earth Surf. 124:61440–63
    [Google Scholar]
  32. Coviello V, Arattano M, Turconi L 2015. Detecting torrential processes from a distance with a seismic monitoring network. Nat. Hazards 78:32055–80
    [Google Scholar]
  33. Coviello V, Capra L, Vázquez R, Márquez-Ramírez VH. 2018. Seismic characterization of hyperconcentrated flows in a volcanic environment. Earth Surf. Process. Landf. 43:102219–31
    [Google Scholar]
  34. D'Amato J, Hantz D, Guerin A, Jaboyedoff M, Baillet L, Mariscal A. 2016. Influence of meteorological factors on rockfall occurrence in a middle mountain limestone cliff. Nat. Hazards Earth Syst. Sci. 16:3719–35
    [Google Scholar]
  35. Dammeier F, Moore JR, Hammer C, Haslinger F, Loew S. 2016. Automatic detection of alpine rockslides in continuous seismic data using hidden Markov models. J. Geophys. Res. Earth Surf. 121:2351–71
    [Google Scholar]
  36. Díaz J, Ruiz M, Sánchez-Pastor PS, Romero P. 2017. Urban seismology: on the origin of earth vibrations within a city. Sci. Rep. 7:115296
    [Google Scholar]
  37. Dietze M. 2018. The R package “eseis”—a software toolbox for environmental seismology. Earth Surf. Dyn. 6:3669–86
    [Google Scholar]
  38. Dietze M, Cook KL, Illien L, Rach O, Puffpaff S et al. 2020a. Impact of nested moisture cycles on coastal chalk cliff failure revealed by multiseasonal seismic and topographic surveys. J. Geophys. Res. Earth Surf. 125:8e2019JF005487
    [Google Scholar]
  39. Dietze M, Lagarde S, Halfi E, Laronne JB, Turowski JM. 2019. Joint sensing of bedload flux and water depth by seismic data inversion. Water Resour. Res. 55:119892–904
    [Google Scholar]
  40. Dietze M, Losee J, Polvi L, Palm D 2020b. A seismic monitoring approach to detect and quantify river sediment mobilization by steelhead redd-building activity. Earth Surf. Process. Landf. 45:122840–49
    [Google Scholar]
  41. Dietze M, Mohadjer S, Turowski JM, Ehlers TA, Hovius N. 2017. Seismic monitoring of small alpine rockfalls—validity, precision and limitations. Earth Surf. Dyn. 5:4653–68
    [Google Scholar]
  42. Durand V, Mangeney A, Haas F, Jia X, Bonilla F et al. 2018. On the link between external forcings and slope instabilities in the Piton de la Fournaise Summit Crater, Reunion Island. J. Geophys. Res. Earth Surf. 123:102422–42
    [Google Scholar]
  43. Eibl EP, Bean CJ, Einarsson B, Pàlsson F, Vogfjörd KS 2020. Seismic ground vibrations give advanced early-warning of subglacial floods. Nat. Commun. 11:12504
    [Google Scholar]
  44. Ekström G, Nettles M, Abers GA. 2003. Glacial earthquakes. Science 302:5645622–24
    [Google Scholar]
  45. Ekström G, Stark CP. 2013. Simple scaling of catastrophic landslide dynamics. Science 339:61261416–19
    [Google Scholar]
  46. Ewing JA. 1884. Measuring earthquakes. Nature 30:764174–77
    [Google Scholar]
  47. Farin M, Tsai VC, Lamb MP, Allstadt KE. 2019. A physical model of the high-frequency seismic signal generated by debris flows. Earth Surf. Process. Landf. 44:132529–43
    [Google Scholar]
  48. Fernández-Ruiz MR, Soto MA, Williams EF, Martin-Lopez S, Zhan Z et al. 2020. Distributed acoustic sensing for seismic activity monitoring. APL Photonics 5:3030901
    [Google Scholar]
  49. Frantti GE. 1963. The nature of high-frequency earth noise spectra. Geophysics 28:4547–62
    [Google Scholar]
  50. Geay T, Belleudy P, Gervaise C, Habersack H, Aigner J et al. 2017. Passive acoustic monitoring of bed load discharge in a large gravel bed river. J. Geophys. Res. Earth Surf. 122:2528–45
    [Google Scholar]
  51. Gilbert GK. 1877. Report on the Geology of the Henry Mountains Washington, DC: US Gov. Print. Off.
  52. Gilmore MH. 1947. Tracking ocean storms with the seismograph. Bull. Am. Meteorol. Soc. 28:273–86
    [Google Scholar]
  53. Gilmore MH, Hubert WE. 1948. Microseisms and Pacific typhoons. Bull. Seismol. Soc. Am. 38:3195–228
    [Google Scholar]
  54. Gimbert F, Fuller BM, Lamb MP, Tsai VC, Johnson JP. 2019. Particle transport mechanics and induced seismic noise in steep flume experiments with accelerometer-embedded tracers. Earth Surf. Process. Landf. 44:1219–41
    [Google Scholar]
  55. Gimbert F, Tsai VC, Lamb MP. 2014. A physical model for seismic noise generation by turbulent flow in rivers. J. Geophys. Res. Earth Surf. 119:102209–38
    [Google Scholar]
  56. Govi M, Maraga F, Moia F. 1993. Seismic detectors for continuous bed load monitoring in a gravel stream. Hydrol. Sci. J. 38:2123–32
    [Google Scholar]
  57. Guerriero L, Ruzza G, Maresca R, Guadagno FM, Revellino P 2021. Clay landslide movement triggered by artificial vibrations: new insights from monitoring data. Landslides 18:2949–57
    [Google Scholar]
  58. Guillemot A, Helmstetter A, Larose É, Baillet L, Garambois S et al. 2020. Seismic monitoring in the Gugla rock glacier (Switzerland): ambient noise correlation, microseismicity and modelling. Geophys. J. Int. 221:31719–35
    [Google Scholar]
  59. Gutenberg B. 1947. Microseisms and weather forecasting. J. Atmos. Sci. 4:121–28
    [Google Scholar]
  60. Hammer C, Ohrnberger M, Schlindwein V. 2015. Pattern of cryospheric seismic events observed at Ekström Ice Shelf, Antarctica. Geophys. Res. Lett. 42:103936–43
    [Google Scholar]
  61. Heck M, Hammer C, Herwijnen AV, Schweizer J, Fäh D. 2018. Automatic detection of snow avalanches in continuous seismic data using hidden Markov models. Nat. Hazards Earth Syst. Sci. 18:1383–96
    [Google Scholar]
  62. Helmstetter A, Garambois S. 2010. Seismic monitoring of Séchilienne rockslide (French Alps): analysis of seismic signals and their correlation with rainfalls. J. Geophys. Res. 115:F3F03016
    [Google Scholar]
  63. Hibert C, Ekström G, Stark CP. 2014. Dynamics of the Bingham Canyon Mine landslides from seismic signal analysis. Geophys. Res. Lett. 41:134535–41
    [Google Scholar]
  64. Hibert C, Malet JP, Bourrier F, Provost F, Berger F et al. 2017b. Single-block rockfall dynamics inferred from seismic signal analysis. Earth Surf. Dyn. 5:2283–92
    [Google Scholar]
  65. Hibert C, Mangeney A, Grandjean G, Shapiro NM. 2011. Slope instabilities in Dolomieu crater, Réunion Island: from seismic signals to rockfall characteristics. J. Geophys. Res. 116:F4F04032
    [Google Scholar]
  66. Hibert C, Michéa D, Provost F, Malet JP, Geertsema M. 2019. Exploration of continuous seismic recordings with a machine learning approach to document 20 yr of landslide activity in Alaska. Geophys. J. Int. 219:21138–47
    [Google Scholar]
  67. Hibert C, Provost F, Malet JP, Maggi A, Stumpf A, Ferrazzini V 2017a. Automatic identification of rockfalls and volcano-tectonic earthquakes at the Piton de la Fournaise volcano using a Random Forest algorithm. J. Volcanol. Geotherm. Res. 340:130–42
    [Google Scholar]
  68. Hibert C, Stark CP, Ekström G. 2015. Dynamics of the Oso-Steelhead landslide from broadband seismic analysis. Nat. Hazards Earth Syst. Sci. 15:61265–73
    [Google Scholar]
  69. Hsu L, Finnegan NJ, Brodsky EE. 2011. A seismic signature of river bedload transport during storm events. Geophys. Res. Lett. 38:13L13407
    [Google Scholar]
  70. Huang CJ, Yin HY, Chen CY, Yeh CH, Wang CL. 2007. Ground vibrations produced by rock motions and debris flows. J. Geophys. Res. 112:F2F02014
    [Google Scholar]
  71. Illien L, Andermann C, Sens-Schönfelder C, Cook KL, Baidya KP et al. 2021. Subsurface moisture regulates Himalayan groundwater storage and discharge. AGU Adv. 2:2e2021AV000398
    [Google Scholar]
  72. Iverson RM, Logan M, LaHusen RG, Berti M 2010. The perfect debris flow? Aggregated results from 28 large-scale experiments. J. Geophys. Res. 115:F3F03005
    [Google Scholar]
  73. Iyer HM, Hitchcock T. 1974. Seismic noise measurements in Yellowstone National Park. Geophysics 39:4389–400
    [Google Scholar]
  74. Jousset P, Reinsch T, Ryberg T, Blanck H, Clarke A et al. 2018. Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features. Nat. Commun. 9:12509
    [Google Scholar]
  75. Kanamori H, Given JW. 1982. Analysis of long-period seismic waves excited by the May 18, 1980, eruption of Mount St. Helens—a terrestrial monopole?. J. Geophys. Res. 87:B75422–32
    [Google Scholar]
  76. Kawakatsu H. 1989. Centroid single force inversion of seismic waves generated by landslides. J. Geophys. Res. 94:B912363–74
    [Google Scholar]
  77. Kean JW, Coe JA, Coviello V, Smith JB, McCoy SW, Arattano M. 2015. Estimating rates of debris flow entrainment from ground vibrations. Geophys. Res. Lett. 42:156365–72
    [Google Scholar]
  78. Kishimura K, Izumi K. 1997. Seismic signals induced by snow avalanche flow. Nat. Hazards 15:189–100
    [Google Scholar]
  79. Kuo HL, Lin GW, Chen CW, Saito H, Lin CW et al. 2018. Evaluating critical rainfall conditions for large-scale landslides by detecting event times from seismic records. Nat. Hazards Earth Syst. Sci. 18:112877–91
    [Google Scholar]
  80. Kværna T. 1990. Sources of short-term fluctuations in the seismic noise level at NORESS. Phys. Earth Planet. Inter. 63:3–4269–76
    [Google Scholar]
  81. Lacroix P, Grasso JR, Roulle J, Giraud G, Goetz D et al. 2012. Monitoring of snow avalanches using a seismic array: location, speed estimation, and relationships to meteorological variables. J. Geophys. Res. 117:F1F01034
    [Google Scholar]
  82. Lagarde S, Dietze M, Gimbert F, Laronne JB, Turowski JM, Halfi E. 2021. Grain-size distribution and propagation effects on seismic signals generated by bedload transport. Water Resour. Res. 57:4e2020WR028700
    [Google Scholar]
  83. Lai VH, Tsai VC, Lamb MP, Ulizio TP, Beer AR. 2018. The seismic signature of debris flows: flow mechanics and early warning at Montecito, California. Geophys. Res. Lett. 45:115528–35
    [Google Scholar]
  84. Larose E, Carrière S, Voisin C, Bottelin P, Baillet L et al. 2015. Environmental seismology: What can we learn on earth surface processes with ambient noise?. J. Appl. Geophys. 116:62–74
    [Google Scholar]
  85. Lawrence WS, Williams TR. 1976. Seismic signals associated with avalanches. J. Glaciol. 17:77521–26
    [Google Scholar]
  86. Le Breton M, Bontemps N, Guillemot A, Baillet L, Larose É 2021. Landslide monitoring using seismic ambient noise correlation: challenges and applications. Earth Sci. Rev. 216:103518
    [Google Scholar]
  87. Le Roy G, Helmstetter A, Amitrano D, Guyoton F, Le Roux-Mallouf R 2019. Seismic analysis of the detachment and impact phases of a rockfall and application for estimating rockfall volume and free-fall height. J. Geophys. Res. Earth Surf. 124:112602–22
    [Google Scholar]
  88. Lin CH, Lin ML. 2015. Evolution of the large landslide induced by Typhoon Morakot: a case study in the Butangbunasi River, southern Taiwan using the discrete element method. Eng. Geol. 197:172–87
    [Google Scholar]
  89. Lindsey NJ, Martin ER. 2021. Fiber-optic seismology. Annu. Rev. Earth Planet. Sci. 49:309–36
    [Google Scholar]
  90. Lindsey NJ, Rademacher H, Ajo-Franklin JB. 2020. On the broadband instrument response of fiber-optic DAS arrays. J. Geophys. Res. Solid Earth 125:2e2019JB018145
    [Google Scholar]
  91. Manconi A, Coviello V, Galletti M, Seifert R. 2018. Monitoring rockfalls with the Raspberry Shake. Earth Surf. Dyn. 6:41219–27
    [Google Scholar]
  92. Manconi A, Picozzi M, Coviello V, De Santis F, Elia L. 2016. Real-time detection, location, and characterization of rockslides using broadband regional seismic networks. Geophys. Res. Lett. 43:136960–67
    [Google Scholar]
  93. Marc O, Sens-Schönfelder C, Illien L, Meunier P, Hobiger M et al. 2021. Toward using seismic interferometry to quantify landscape mechanical variations after earthquakes. Bull. Seismol. Soc. Am. 111:31631–49
    [Google Scholar]
  94. Marchi L, Arattano M, Deganutti AM 2002. Ten years of debris-flow monitoring in the Moscardo Torrent (Italian Alps). Geomorphology 46:1–2117
    [Google Scholar]
  95. Maurer JM, Schaefer JM, Russell JB, Rupper S, Wangdi N et al. 2020. Seismic observations, numerical modeling, and geomorphic analysis of a glacier lake outburst flood in the Himalayas. Sci. Adv. 6:38eaba3645
    [Google Scholar]
  96. McArdell BW, Bartelt P, Kowalski J. 2007. Field observations of basal forces and fluid pore pressure in a debris flow. Geophys. Res. Lett. 34:7L07406
    [Google Scholar]
  97. Meng H, Ben-Zion Y. 2018. Characteristics of airplanes and helicopters recorded by a dense seismic array near Anza California. J. Geophys. Res. Solid Earth 123:64783–97
    [Google Scholar]
  98. Mergili M, Jaboyedoff M, Pullarello J, Pudasaini SP 2020. Back calculation of the 2017 Piz Cengalo–Bondo landslide cascade with r.avaflow: what we can do and what we can learn. Nat. Hazards Earth Syst. Sci. 20:2505–20
    [Google Scholar]
  99. Misset C, Recking A, Legout C, Bakker M, Bodereau N et al. 2020. Combining multi-physical measurements to quantify bedload transport and morphodynamics interactions in an Alpine braiding river reach. Geomorphology 351:106877
    [Google Scholar]
  100. Mizuyama T, Laronne JB, Nonaka M, Sawada T, Satofuka Y et al. 2010. Calibration of a passive acoustic bedload monitoring system in Japanese mountain rivers. US Geol. Surv. Sci. Investig. Rep. 5091:296–318
    [Google Scholar]
  101. Moore JR, Geimer PR, Finnegan R, Thorne MS 2018. Use of seismic resonance measurements to determine the elastic modulus of freestanding rock masses. Rock Mech. Rock Eng. 51:123937–44
    [Google Scholar]
  102. Moretti L, Mangeney A, Walter F, Capdeville Y, Bodin T et al. 2020. Constraining landslide characteristics with Bayesian inversion of field and seismic data. Geophys. J. Int. 221:21341–48
    [Google Scholar]
  103. O'Connell-Rodwell CE. 2007. Keeping an “ear” to the ground: seismic communication in elephants. Physiology 22:4287–94
    [Google Scholar]
  104. Ogiso M, Yomogida K. 2015. Estimation of locations and migration of debris flows on Izu-Oshima Island, Japan, on 16 October 2013 by the distribution of high frequency seismic amplitudes. J. Volcanol. Geotherm. Res. 298:15–26
    [Google Scholar]
  105. Pérez-Guillén C, Tsunematsu K, Nishimura K, Issler D. 2019. Seismic location and tracking of snow avalanches and slush flows on Mt. Fuji, Japan. Earth Surf. Dyn. 7:4989–1007
    [Google Scholar]
  106. Piantini M, Gimbert F, Bakker M, Recking A, Nanni U 2021. Applying dense seismic array monitoring to locate fluvial processes during floods in a braided river reach. EGU Gen. Assem. 2021:EGU21–8800
    [Google Scholar]
  107. Podolskiy EA, Walter F 2016. Cryoseismology. Rev. Geophys. 54:4708–58
    [Google Scholar]
  108. Poli P. 2017. Creep and slip: seismic precursors to the Nuugaatsiaq landslide (Greenland). Geophys. Res. Lett. 44:178832–36
    [Google Scholar]
  109. Polvi LE, Dietze M, Lotsari E, Turowski JM, Lind L. 2020. Seismic monitoring of a subarctic river: seasonal variations in hydraulics, sediment transport, and ice dynamics. J. Geophys. Res. Earth Surf. 125:7e2019JF005333
    [Google Scholar]
  110. Porter R, Joyal T, Beers R, Loverich J, Laplante A et al. 2021. Seismic monitoring of post-wildfire debris flows following the 2019 Museum Fire, Arizona. Front. Earth Sci. 9:649938
    [Google Scholar]
  111. Provost F, Malet JP, Hibert C, Helmstetter A, Radiguet M et al. 2018. Towards a standard typology of endogenous landslide seismic sources. Earth Surf. Dyn. 6:41059–88
    [Google Scholar]
  112. Riahi N, Gerstoft P. 2015. The seismic traffic footprint: tracking trains, aircraft, and cars seismically. Geophys. Res. Lett. 42:82674–81
    [Google Scholar]
  113. Richter T, Sens-Schönfelder C, Kind R, Asch G 2014. Comprehensive observation and modeling of earthquake and temperature-related seismic velocity changes in northern Chile with passive image interferometry. J. Geophys. Res. Solid Earth 119:64747–65
    [Google Scholar]
  114. Rickenmann D. 1997. Sediment transport in Swiss torrents. Earth Surf. Process. Landf. 22:10937–51
    [Google Scholar]
  115. Rickenmann D, Turowski JM, Fritschi B, Klaiber A, Ludwig A 2012. Bedload transport measurements at the Erlenbach stream with geophones and automated basket samplers. Earth Surf. Process. Landf. 37:91000–11
    [Google Scholar]
  116. Roth DL, Brodsky EE, Finnegan NJ, Rickenmann D, Turowski JM, Badoux A. 2016. Bed load sediment transport inferred from seismic signals near a river. J. Geophys. Res. Earth Surf. 121:4725–47
    [Google Scholar]
  117. Roth DL, Finnegan NJ, Brodsky EE, Cook KL, Stark CP, Wang HW. 2014. Migration of a coarse fluvial sediment pulse detected by hysteresis in bedload generated seismic waves. Earth Planet. Sci. Lett. 404:144–53
    [Google Scholar]
  118. Roth DL, Finnegan NJ, Brodsky EE, Rickenmann D, Turowski JM et al. 2017. Bed load transport and boundary roughness changes as competing causes of hysteresis in the relationship between river discharge and seismic amplitude recorded near a steep mountain stream. J. Geophys. Res. Earth Surf. 122:51182–200
    [Google Scholar]
  119. Schimmel A, Coviello V, Comiti F. 2021. Debris-flow velocity and volume estimations based on seismic data. Nat. Hazards Earth Syst. Sci. Discuss. https://doi.org/10.5194/nhess-2020-411
    [Crossref] [Google Scholar]
  120. Schmandt B, Aster RC, Scherler D, Tsai VC, Karlstrom K. 2013. Multiple fluvial processes detected by riverside seismic and infrasound monitoring of a controlled flood in the Grand Canyon. Geophys. Res. Lett. 40:184858–63
    [Google Scholar]
  121. Schmandt B, Gaeuman D, Stewart R, Hansen SM, Tsai VC, Smith J. 2017. Seismic array constraints on reach-scale bedload transport. Geology 45:4299–302
    [Google Scholar]
  122. Schneider D, Bartelt P, Caplan-Auerbach J, Christen M, Huggel C, McArdell BW 2010. Insights into rock-ice avalanche dynamics by combined analysis of seismic recordings and a numerical avalanche model. J. Geophys. Res. 115:F4F04026
    [Google Scholar]
  123. Schöpa A, Chao WA, Lipovsky BP, Hovius N, White RS et al. 2018. Dynamics of the Askja caldera July 2014 landslide, Iceland, from seismic signal analysis: precursor, motion and aftermath. Earth Surf. Dyn. 6:2467–85
    [Google Scholar]
  124. Senfaute G, Duperret A, Lawrence JA 2009. Micro-seismic precursory cracks prior to rock-fall on coastal chalk cliffs: a case study at Mesnil-Val, Normandie, NW France. Nat. Hazards Earth Syst. Sci. 9:51625–41
    [Google Scholar]
  125. Sens-Schönfelder C, Wegler U. 2006. Passive image interferometry and seasonal variations of seismic velocities at Merapi Volcano, Indonesia. Geophys. Res. Lett. 33:21L21302
    [Google Scholar]
  126. Snieder R. 2004. Extracting the Green's function from the correlation of coda waves: a derivation based on stationary phase. Phys. Rev. E 69:4046610
    [Google Scholar]
  127. Snyder NP, Castele MR, Wright JR. 2009. Bedload entrainment in low-gradient paraglacial coastal rivers of Maine, USA: implications for habitat restoration. Geomorphology 103:3430–46
    [Google Scholar]
  128. Sovilla B, Schaer M, Kern M, Bartelt P. 2008. Impact pressures and flow regimes in dense snow avalanches observed at the Vallée de la Sionne test site. J. Geophys. Res. 113:F1F01010
    [Google Scholar]
  129. Stock GM, Collins BD, Santaniello DJ, Zimmer VL, Wieczorek GF, Snyder JB. 2013. Historical Rock Falls in Yosemite National Park, California (1857–2011) Reston, VA: US Geol. Surv.
  130. Subedi S, Hetényi G, Denton P, Sauron A. 2020. Seismology at school in Nepal: a program for educational and citizen seismology through a low-cost seismic network. Front. Earth Sci. 8:73
    [Google Scholar]
  131. Suriñach E, Vilajosana I, Khazaradze G, Biescas B, Furdada G, Vilaplana JM. 2005. Seismic detection and characterization of landslides and other mass movements. Nat. Hazards Earth Syst. Sci. 5:6791–98
    [Google Scholar]
  132. Toney L, Allstadt KE 2021. lsforce: a Python-based single-force seismic inversion framework for massive landslides. Seismol. Res. Lett. 92:42610–26
    [Google Scholar]
  133. Tsai VC, Atiganyanun S. 2014. Green's functions for surface waves in a generic velocity structure. Bull. Seismol. Soc. Am. 104:52573–78
    [Google Scholar]
  134. Tsai VC, Minchew B, Lamb MP, Ampuero JP. 2012. A physical model for seismic noise generation from sediment transport in rivers. Geophys. Res. Lett. 39:2L02404
    [Google Scholar]
  135. Turzewski MD, Huntington KW, LeVeque RJ 2019. The geomorphic impact of outburst floods: integrating observations and numerical simulations of the 2000 Yigong flood, eastern Himalaya. J. Geophys. Res. Earth Surf. 124:51056–79
    [Google Scholar]
  136. Vann Jones EC, Rosser NJ, Brain MJ, Petley DN 2015. Quantifying the environmental controls on erosion of a hard rock cliff. Mar. Geol. 363:230–42
    [Google Scholar]
  137. von Rebeur-Paschwitz E. 1892. Über horizontalpendel-beobachtungen in Wilhelmshaven, Potsdam und Puerto Orotava auf Teneriffa. Astron. Nachr. 130:193–216
    [Google Scholar]
  138. Walsh B, Jolly AD, Procter JN. 2016. Seismic analysis of the 13 October 2012 Te Maari, New Zealand, lake breakout lahar: insights into flow dynamics and the implications on mass flow monitoring. J. Volcanol. Geotherm. Res. 324:144–55
    [Google Scholar]
  139. Walter F, Amann F, Kos A, Kenner R, Phillips M et al. 2020a. Direct observations of a three million cubic meter rock-slope collapse with almost immediate initiation of ensuing debris flows. Geomorphology 351:106933
    [Google Scholar]
  140. Walter F, Burtin A, McArdell BW, Hovius N, Weder B, Turowski JM. 2017. Testing seismic amplitude source location for fast debris-flow detection at Illgraben, Switzerland. Nat. Hazards Earth Syst. Sci. 17:6939–55
    [Google Scholar]
  141. Walter F, Gräff D, Lindner F, Paitz P, Köpfli M et al. 2020b. Distributed acoustic sensing of microseismic sources and wave propagation in glaciated terrain. Nat. Commun. 11:1 2436.
    [Google Scholar]
  142. Weber S, Faillettaz J, Meyer M, Beutel J, Vieli A. 2018. Acoustic and microseismic characterization in steep bedrock permafrost on Matterhorn (CH). J. Geophys. Res. Earth Surf. 123:61363–85
    [Google Scholar]
  143. Wenner M, Hibert C, van Herwijnen A, Meier L, Walter F 2021. Near-real-time automated classification of seismic signals of slope failures with continuous random forests. Nat. Hazards Earth Syst. Sci. 21:1339–61
    [Google Scholar]
  144. Williams JG, Rosser NJ, Hardy RJ, Brain MJ, Afana AA 2018. Optimising 4-D surface change detection: an approach for capturing rockfall magnitude–frequency. Earth Surf. Dyn. 6:1101–19
    [Google Scholar]
  145. Withers MM, Aster RC, Young CJ, Chael EP 1996. High-frequency analysis of seismic background noise as a function of wind speed and shallow depth. Bull. Seismol. Soc. Am. 86:51507–15
    [Google Scholar]
  146. Yamada M, Kumagai H, Matsushi Y, Matsuzawa T. 2013. Dynamic landslide processes revealed by broadband seismic records. Geophys. Res. Lett. 40:122998–3002
    [Google Scholar]
  147. Yamada M, Mangeney A, Matsushi Y, Moretti L. 2016. Estimation of dynamic friction of the Akatani landslide from seismic waveform inversion and numerical simulation. Geophys. J. Int. 206:31479–86
    [Google Scholar]
  148. Yamada M, Matsushi Y, Chigira M, Mori J 2012. Seismic recordings of landslides caused by Typhoon Talas 2011, Japan. Geophys. Res. Lett. 39:13L13301
    [Google Scholar]
  149. Zhang Z, Walter F, McArdell BW, Wenner M, Chmiel M et al. 2021. Insights from the particle impact model into the high frequency seismic signature of debris flows. Geophys. Res. Lett. 48:1e2020GL088994
    [Google Scholar]
/content/journals/10.1146/annurev-earth-032320-085133
Loading
/content/journals/10.1146/annurev-earth-032320-085133
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error