1932

Abstract

Carbonatites are igneous rocks formed in the crust by fractional crystallization of carbonate-rich parental melts that are mostly mantle derived. They dominantly consist of carbonate minerals such as calcite, dolomite, and ankerite, as well as minor phosphates, oxides, and silicates. They are emplaced in continental intraplate settings such as cratonic interiors and margins, as well as rift zones, and rarely on oceanic islands. Carbonatites are cumulate rocks, which are formed by physical separation and accumulation of crystals that crystallize from a melt, and their parental melts form by either () direct partial melting of carbonate-bearing, metasomatized, lithospheric mantle producing alkali-bearing calciodolomitic melts or () silicate-carbonate liquid immiscibility following fractional crystallization of carbonate-bearing, silica-undersaturated magmas such as nephelinites, melilitites, or lamprophyres. Their emplacement into the crust is usually accompanied by fenitization, alkali metasomatism of wallrock caused by fluids expelled from the crystallizing carbonatite.Carbonatites are major hosts of deposits of the rare earth elements and niobium, and the vast majority of the global production of these commodities is from carbonatites.

  • ▪  Carbonatites are igneous rocks formed from carbonate-rich magmas, which ultimately formed in Earth's upper mantle.
  • ▪  Carbonatites are associated with economic deposits of metals such as the rare earth elements and niobium, which are essential in high-tech applications.
  • ▪  There are more than 600 carbonatites in the geological record but only one currently active carbonatite volcano, Oldoinyo Lengai in Tanzania.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-032320-104243
2022-05-31
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/earth/50/1/annurev-earth-032320-104243.html?itemId=/content/journals/10.1146/annurev-earth-032320-104243&mimeType=html&fmt=ahah

Literature Cited

  1. Alt JC, Honnorez J, Laverne C, Emmermann R 1986. Hydrothermal alteration of a 1 km section through the upper oceanic crust, Deep Sea Drilling Project Hole 504B: mineralogy, chemistry and evolution of seawater-basalt interactions. J. Geophys. Res. 91:B1010309–35
    [Google Scholar]
  2. Amsellem E, Moynier F, Bertrand H, Bouyon A, Mata J et al. 2020. Calcium isotopic evidence for the mantle sources of carbonatites. Sci. Adv. 6:eaba3269
    [Google Scholar]
  3. Andersen AK, Clark JG, Larson PB, Donovan JJ. 2017. REE fractionation, mineral speciation, and supergene enrichment of the Bear Lodge carbonatites, Wyoming, USA. Ore Geol. Rev. 89:780–807
    [Google Scholar]
  4. Andersen AK, Clark JG, Larson PB, Neill OK. 2016. Mineral chemistry and petrogenesis of a HFSE(+HREE) occurrence, peripheral to carbonatites of the Bear Lodge alkaline complex, Wyoming. Am. Mineral. 101:1604–23
    [Google Scholar]
  5. Andersson M, Malehmir A, Troll VR, Dehghannejad M, Juhlin C, Ask M. 2013. Carbonatite ring-complexes explained by caldera-style volcanism. Sci. Rep. 3:1677
    [Google Scholar]
  6. Anenburg M, Burnham AD, Mavrogenes JA. 2018. REE redistribution textures in altered fluorapatite: symplectites, veins, and phosphate-silicate-carbonate assemblages from the Nolans Bore P-REE-Th deposit, Northern Territory, Australia. Can. Mineral. 56:331–54
    [Google Scholar]
  7. Anenburg M, Mavrogenes JA. 2018. Carbonatitic versus hydrothermal origin for fluorapatite REE-Th deposits: experimental study of REE transport and crustal “antiskarn” metasomatism. Am. J. Sci. 318:335–66
    [Google Scholar]
  8. Anenburg M, Mavrogenes JA, Bennett VC. 2020a. The fluorapatite P–REE–Th vein deposit at Nolans Bore: genesis by carbonatite metasomatism. J. Petrol. 61:egaa003
    [Google Scholar]
  9. Anenburg M, Mavrogenes JA, Frigo C, Wall F. 2020b. Rare earth element mobility in and around carbonatites controlled by sodium, potassium, and silica. Sci. Adv. 6:eabb6570
    [Google Scholar]
  10. Audétat A, Edmonds M. 2020. Magmatic-hydrothermal fluids. Elements 16:401–6
    [Google Scholar]
  11. Ballhaus C. 1995. Is the upper mantle metal-saturated?. Earth Planet. Sci. Lett. 132:75–86
    [Google Scholar]
  12. Barbosa ESR, Brod JA, Cordeiro PFO, Junqueira-Brod TC, Santos RV, Dantas EL 2020. Phoscorites of the Salitre I complex: origin and petrogenetic implications. Chem. Geol. 535:119463
    [Google Scholar]
  13. Baudouin C, Parat F, Michel T 2018. CO2-rich phonolitic melt and carbonatite immiscibility in early stage of rifting: melt inclusions from Hanang volcano (Tanzania). J. Volcanol. Geotherm. Res. 358:261–72
    [Google Scholar]
  14. Bell K, Blenkinsop J. 1987. Nd and Sr isotopic compositions of East-African carbonatites: implications for mantle heterogeneity. Geology 15:99–102
    [Google Scholar]
  15. Bell K, Simonetti A. 2010. Source of parental melts to carbonatites–critical isotopic constraints. Mineral. Petrol. 98:77–89
    [Google Scholar]
  16. Bell K, Tilton GR. 2001. Nd, Pb and Sr isotopic compositions of East African carbonatites: evidence for mantle mixing and plume inhomogeneity. J. Petrol. 42:1927–45
    [Google Scholar]
  17. Bell K, Tilton GR. 2002. Probing the mantle: the story from carbonatites. Eos Trans. AGU 83:273–77
    [Google Scholar]
  18. Berkesi M, Bali E, Bodnar RJ, Szabó Á, Guzmics T. 2020. Carbonatite and highly peralkaline nephelinite melts from Oldoinyo Lengai Volcano, Tanzania: the role of natrite-normative fluid degassing. Gondwana Res 85:76–83
    [Google Scholar]
  19. Bizimis M, Sen G, Salters VJM. 2003. Hf–Nd isotope decoupling in the oceanic lithosphere: constraints from spinel peridotites from Oahu, Hawaii. Earth Planet. Sci. Lett. 217:43–58
    [Google Scholar]
  20. Bouvier A, Vervoort JD, Patchett PJ. 2008. The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 273:48–57
    [Google Scholar]
  21. Brey G. 1978. Origin of olivine melilitites—chemical and experimental constraints. J. Volcanol. Geotherm. Res. 3:61–88
    [Google Scholar]
  22. Brooker RA, Kjarsgaard BA. 2011. Silicate–carbonate liquid immiscibility and phase relations in the system SiO2–Na2O–Al2O3–CaO–CO2 at 0.1–2.5 GPa with applications to carbonatite genesis. J. Petrol. 52:1281–305
    [Google Scholar]
  23. Broom-Fendley S, Brady AE, Wall F, Gunn G, Dawes W. 2017. REE minerals at the Songwe Hill carbonatite, Malawi: HREE-enrichment in late-stage apatite. Ore Geol. Rev. 81:23–41
    [Google Scholar]
  24. Broom-Fendley S, Heaton T, Wall F, Gunn G. 2016a. Tracing the fluid source of heavy REE mineralisation in carbonatites using a novel method of oxygen-isotope analysis in apatite: the example of Songwe Hill, Malawi. Chem. Geol. 440:275–87
    [Google Scholar]
  25. Broom-Fendley S, Styles MT, Appleton JD, Gunn G, Wall F. 2016b. Evidence for dissolution-reprecipitation of apatite and preferential LREE mobility in carbonatite-derived late-stage hydrothermal processes. Am. Mineral. 101:596–611
    [Google Scholar]
  26. Bühn B, Rankin AH. 1999. Composition of natural, volatile-rich Na–Ca–REE−Sr carbonatitic fluids trapped in fluid inclusions. Geochim. Cosmochim. Acta 63:3781–97
    [Google Scholar]
  27. Bühn B, Rankin AH, Schneider J, Dulski P. 2002. The nature of orthomagmatic, carbonatitic fluids precipitating REE,Sr-rich fluorite: fluid-inclusion evidence from the Okorusu fluorite deposit, Namibia. Chem. Geol. 186:75–98
    [Google Scholar]
  28. Cangelosi D, Broom-Fendley S, Banks D, Morgan D, Yardley B 2020. Light rare earth element redistribution during hydrothermal alteration at the Okorusu carbonatite complex, Namibia. Mineral. Mag 84:49–64
    [Google Scholar]
  29. Chakhmouradian AR, Dahlgren S. 2021. Primary inclusions of burbankite in carbonatites from the Fen complex, southern Norway. Mineral. Petrol. 115:161–71
    [Google Scholar]
  30. Chakhmouradian AR, Reguir EP, Zaitsev AN. 2016. Calcite and dolomite in intrusive carbonatites. I. Textural variations. Mineral. Petrol. 110:333–60
    [Google Scholar]
  31. Chen CF, Liu YS, Foley SF, Ducea MN, He DT et al. 2016. Paleo-Asian oceanic slab under the North China craton revealed by carbonatites derived from subducted limestones. Geology 44:1039–42
    [Google Scholar]
  32. Chen W, Kamenetsky VS, Simonetti A. 2013. Evidence for the alkaline nature of parental carbonatite melts at Oka complex in Canada. Nat. Commun. 4:2687
    [Google Scholar]
  33. Church AA, Jones AP. 1995. Silicate–carbonate immiscibility at Oldoinyo Lengai. J. Petrol. 36:869–89
    [Google Scholar]
  34. Cooper AF, Palin JM, Collins AK. 2016. Fenitization of metabasic rocks by ferrocarbonatites at Haast River, New Zealand. Lithos 244:109–21
    [Google Scholar]
  35. Dalton JA, Presnall DC. 1998. The continuum of primary carbonatitic–kimberlitic melt compositions in equilibrium with lherzolite: data from the system CaO–MgO–Al2O3–SiO2–CO2 at 6 GPa. J. Petrol. 39:1953–64
    [Google Scholar]
  36. Dalton JA, Wood BJ. 1993. The compositions of primary carbonate melts and their evolution through wallrock reaction in the mantle. Earth Planet. Sci. Lett. 119:511–25
    [Google Scholar]
  37. Dasgupta R, Hirschmann MM. 2006. Melting in the Earth's deep upper mantle caused by carbon dioxide. Nature 440:659–62
    [Google Scholar]
  38. Dasgupta R, Hirschmann MM. 2010. The deep carbon cycle and melting in Earth's interior. Earth Planet. Sci. Lett. 298:1–13
    [Google Scholar]
  39. Davies DR, Rawlinson N. 2014. On the origin of recent intraplate volcanism in Australia. Geology 42:1031–34
    [Google Scholar]
  40. Dawson JB, Pinkerton H, Norton GE, Pyle DM 1990. Physicochemical properties of alkali carbonatite lavas: data from the 1988 eruption of Oldoinyo Lengai, Tanzania. Geology 18:260–63
    [Google Scholar]
  41. de Moor JM, Fischer TP, King PL, Botcharnikov RE, Hervig RL et al. 2013. Volatile-rich silicate melts from Oldoinyo Lengai volcano (Tanzania): implications for carbonatite genesis and eruptive behavior. Earth Planet. Sci. Lett. 361:379–90
    [Google Scholar]
  42. Decrée S, Boulvais P, Cobert C, Baele J-M, Midende G et al. 2015. Structurally-controlled hydrothermal alteration in the syntectonic Neoproterozoic Upper Ruvubu Alkaline Plutonic Complex (Burundi): implications for REE and HFSE mobilities. Precambrian Res 269:281–95
    [Google Scholar]
  43. Decrée S, Boulvais P, Tack L, André L, Baele J-M. 2016. Fluorapatite in carbonatite-related phosphate deposits: the case of the Matongo carbonatite (Burundi). Miner. Deposita 51:453–66
    [Google Scholar]
  44. Decrée S, Cawthorn G, Deloule E, Mercadier J, Frimmel H, Baele J-M. 2020a. Unravelling the processes controlling apatite formation in the Phalaborwa Complex (South Africa) based on combined cathodoluminescence, LA-ICPMS and in-situ O and Sr isotope analyses. Contrib. Mineral. Petrol. 175:34
    [Google Scholar]
  45. Decrée S, Savolainen M, Mercadier J, Debaille V, Höhn S et al. 2020b. Geochemical and spectroscopic investigation of apatite in the Siilinjärvi carbonatite complex: keys to understanding apatite forming processes and assessing potential for rare earth elements. Appl. Geochem. 123:104778
    [Google Scholar]
  46. DePaolo DJ, Wasserburg GJ. 1976. Nd isotopic variations and petrogenetic models. Geophys. Res. Lett. 3:5249–52
    [Google Scholar]
  47. Djeddi A, Parat F, Bodinier J-L, Ouzegane K, Dautria J-M. 2021. The syenite–carbonatite complex of Ihouhaouene (Western Hoggar, Algeria): interplay between alkaline magma differentiation and hybridization of cumulus crystal mushes. Front. Earth Sci. 8:693
    [Google Scholar]
  48. Doroshkevich AG, Veksler IV, Klemd R, Khromova EA, Izbrodin IA. 2017. Trace-element composition of minerals and rocks in the Belaya Zima carbonatite complex (Russia): implications for the mechanisms of magma evolution and carbonatite formation. Lithos 284–285:91–108
    [Google Scholar]
  49. Durand C, Baumgartner LP, Marquer D 2015. Low melting temperature for calcite at 1000 bars on the join CaCO3-H2O—some geological implications. Terra Nova 27:364–69
    [Google Scholar]
  50. Eggler DH 1989. Carbonatites, primary melts, and mantle dynamics. Carbonatites: Genesis and Evolution K Bell 561–79 London: Unwin Hyman
    [Google Scholar]
  51. Evans KA, Tomkins AG. 2020. Metamorphic fluids in orogenic settings. Elements 16:381–87
    [Google Scholar]
  52. Falloon TJ, Green DH. 1989. The solidus of carbonated, fertile peridotite. Earth Planet. Sci. Lett. 94:364–70
    [Google Scholar]
  53. Feng M, Song W, Kynicky J, Smith M, Cox C et al. 2020. Primary rare earth element enrichment in carbonatites: evidence from melt inclusions in Ulgii Khiid carbonatite, Mongolia. Ore Geol. Rev. 117:103294
    [Google Scholar]
  54. Fischer T, Burnard P, Marty B, Palhol F, Mangasini F, Shaw AM 2006. The 2005 and 2006 eruptions of Ol Doinyo Lengai: assessing deep and shallow processes at an active carbonatite volcano using volatile chemistry and fluxes Paper presented at AGU Fall Meet Dec. 11–15 San Francisco, Abstr: V14B-04
  55. Foley SF. 2011. A reappraisal of redox melting in the Earth's mantle as a function of tectonic setting and time. J. Petrol. 52:1363–91
    [Google Scholar]
  56. Foley SF, Yaxley GM, Rosenthal A, Buhre S, Kiseeva ES et al. 2009. The composition of near-solidus melts of peridotite in the presence of CO2 and H2O between 40 and 60 kbar. Lithos 112:274–83
    [Google Scholar]
  57. Fortier SM, Hammarstrom JH, Ryker SJ, Day WC, Seal RR 2019. USGS critical metals review. Min. Eng. 71:35–49
    [Google Scholar]
  58. Fosu BR, Ghosh P, Weisenberger TB, Spürgin S, Viladkar SG 2021. A triple oxygen isotope perspective on the origin, evolution, and diagenetic alteration of carbonatites. Geochim. Cosmochim. Acta 299:52–68
    [Google Scholar]
  59. Frisch W, Keusen H-U. 1977. Gardiner intrusion, an ultramafic alkaline complex at Kangerdlugssuaq, East Greenland. Bull. Geol. Surv. Greenl. 122:1–62
    [Google Scholar]
  60. Frost DJ, McCammon CA. 2008. The redox state of Earth's mantle. Annu. Rev. Earth Planet. Sci. 36:389–420
    [Google Scholar]
  61. Giebel RJ, Marks MAW, Gauert CDK, Markl G. 2019. A model for the formation of carbonatite-phoscorite assemblages based on the compositional variations of mica and apatite from the Palabora Carbonatite Complex, South Africa. Lithos 324–325:89–104
    [Google Scholar]
  62. Gittins J, Harmer RE. 1997. What is ferrocarbonatite? A revised classification. J. Afr. Earth Sci. 25:159–68
    [Google Scholar]
  63. Grassi D, Schmidt MW. 2011a. Melting of carbonated pelites at 8–13 GPa: generating K-rich carbonatites for mantle metasomatism. Contrib. Mineral. Petrol. 162:169–91
    [Google Scholar]
  64. Grassi D, Schmidt MW. 2011b. The melting of carbonated pelites from 70 to 700km depth. J. Petrol. 52:765–89
    [Google Scholar]
  65. Green DH. 2015. Experimental petrology of peridotites, including effects of water and carbon on melting in the Earth's upper mantle. Phys. Chem. Miner. 42:95–122
    [Google Scholar]
  66. Green DH, Falloon TJ, Taylor WR 1987. Mantle-derived magmas—roles of variable source peridotite and variable C–H–O fluid compositions. Magmatic Process and Physicochemical Principles HS Yoder, BU Mysen 139–54 University Park, PA: Geochem. Soc.
    [Google Scholar]
  67. Green DH, Wallace ME. 1988. Mantle metasomatism by ephemeral carbonatite melts. Nature 336:459–62
    [Google Scholar]
  68. Guzmics T, Berkesi M, Bodnar RJ, Fall A, Bali E et al. 2019. Natrocarbonatites: a hidden product of three-phase immiscibility. Geology 47:527–30
    [Google Scholar]
  69. Guzmics T, Mitchell RH, Szabó C, Berkesi M, Milke R, Abart R 2011. Carbonatite melt inclusions in coexisting magnetite, apatite and monticellite in Kerimasi calciocarbonatite, Tanzania: melt evolution and petrogenesis. Contrib. Mineral. Petrol. 161:177–96
    [Google Scholar]
  70. Guzmics T, Mitchell RH, Szabó C, Berkesi M, Milke R, Ratter K 2012. Liquid immiscibility between silicate, carbonate and sulfide melts in melt inclusions hosted in co-precipitated minerals from Kerimasi volcano (Tanzania): evolution of carbonated nephelinitic magma. Contrib. Mineral. Petrol. 164:101–22
    [Google Scholar]
  71. Guzmics T, Zajacz Z, Mitchell RH, Szabó C, Wälle M. 2015. The role of liquid–liquid immiscibility and crystal fractionation in the genesis of carbonatite magmas: insights from Kerimasi melt inclusions. Contrib. Mineral. Petrol. 169:17
    [Google Scholar]
  72. Halama R, McDonough WF, Rudnick RL, Bell K. 2008. Tracking the lithium isotopic evolution of the mantle using carbonatites. Earth Planet. Sci. Lett. 265:726–42
    [Google Scholar]
  73. Hamilton DL, Freestone IC, Dawson JB, Donaldson CH 1979. Origin of carbonatites by liquid immiscibility. Nature 279:52–54
    [Google Scholar]
  74. Hammouda T, Chantel J, Manthilake G, Guignard J, Crichton W 2014. Hot mantle geotherms stabilize calcic carbonatite magmas up to the surface. Geology 42:911–14
    [Google Scholar]
  75. Hammouda T, Keshav S. 2015. Melting in the mantle in the presence of carbon: review of experiments and discussion on the origin of carbonatites. Chem. Geol. 418:171–88
    [Google Scholar]
  76. Hammouda T, Laporte D. 2000. Ultrafast mantle impregnation by carbonatite melts. Geology 28:283–85
    [Google Scholar]
  77. Harmer RE. 1999. The petrogenetic association of carbonatite and alkaline magmatism. Constraints from the Spitskop Complex, South Africa. J. Petrol. 40:525–48
    [Google Scholar]
  78. Harmer RE, Gittins J. 1997. The origin of dolomitic carbonatites: field and experimental constraints. J. Afr. Earth Sci. 25:5–28
    [Google Scholar]
  79. Hart SR, Staudigel H. 1978. Oceanic crust: age of hydrothermal alteration. Geophys. Res. Lett. 5:1009–12
    [Google Scholar]
  80. Hawkesworth CJ, Cawood PA, Dhuime B, Kemp AIS. 2017. Earth's continental lithosphere through time. Annu. Rev. Earth Planet. Sci. 45:169–98
    [Google Scholar]
  81. Hegner E, Rajesh S, Willbold M, Müller D, Joachimski M et al. 2020. Sediment-derived origin of the putative Munnar carbonatite, South India. J. Asian Earth Sci. 200:104432
    [Google Scholar]
  82. Hoernle K, Tilton GR, Le Bas MJ, Garbe-Schönberg D 2002. Geochemistry of oceanic carbonatites compared with continental carbonatites: mantle recycling of oceanic crustal carbonate. Contrib. Mineral. Petrol. 142:520–42
    [Google Scholar]
  83. Horton F. 2021. Rapid recycling of subducted sedimentary carbon revealed by Afghanistan carbonatite volcano. Nat. Geosci. 14:508–12
    [Google Scholar]
  84. Horton F, Nielsen S, Shu Y, Gagnon A, Blusztajn J. 2021. Thallium isotopes reveal brine activity during carbonatite magmatism. Geochem. Geophys. Geosyst. 22:e2020GC009472
    [Google Scholar]
  85. Hou ZQ, Tian SH, Yuan ZX, Xie YL, Yin SP et al. 2006. The Himalayan collision zone carbonatites in western Sichuan, SW China: petrogenesis, mantle source and tectonic implication. Earth Planet. Sci. Lett. 244:234–50
    [Google Scholar]
  86. Hulett SRW, Simonetti A, Rasbury ET, Hemming NG. 2016. Recycling of subducted crustal components into carbonatite melts revealed by boron isotopes. Nat. Geosci. 9:904–8
    [Google Scholar]
  87. Humphreys-Williams ER, Zahirovic S. 2021. Carbonatites and global tectonics. Elements 1733944
  88. Hutchison W, Babiel RJ, Finch AA, Marks MAW, Markl G et al. 2019. Sulphur isotopes of alkaline magmas unlock long-term records of crustal recycling on Earth. Nat. Commun. 10:4208
    [Google Scholar]
  89. Ita J, Stixrude L. 1992. Petrology, elasticity, and composition of the mantle transition zone. J. Geophys. Res. 97:B56849–66
    [Google Scholar]
  90. Jago BC, Gittins J. 1991. The role of fluorine in carbonatite magma evolution. Nature 349:56–58
    [Google Scholar]
  91. Kelemen PB, Manning CE. 2015. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. PNAS 112:E3997–4006
    [Google Scholar]
  92. Keller J, Krafft M. 1990. Effusive natrocarbonatite activity of Oldoinyo Lengai, June 1988. Bull. Volcanol 52:629–45
    [Google Scholar]
  93. Kiseeva ES, Litasov KD, Yaxley GM, Ohtani E, Kamenetsky VS. 2013a. Melting and phase relations of carbonated eclogite at 9–21 GPa and the petrogenesis of alkali-rich melts in the deep mantle. J. Petrol. 54:1555–83
    [Google Scholar]
  94. Kiseeva ES, Yaxley GM, Stepanov AS, Tkalčić H, Litasov KD, Kamenetsky VS. 2013b. Metapyroxenite in the mantle transition zone revealed from majorite inclusions in diamonds. Geology 41:883–86
    [Google Scholar]
  95. Kjarsgaard BA. 1998. Phase relations of a carbonated high-CaO nephelinite at 0.2 and 0.5 GPa. J. Petrol. 39:2061–75
    [Google Scholar]
  96. Kjarsgaard BA, Hamilton DL, Peterson TD 1995. Peralkaline nephelinite/carbonatite liquid immiscibility: comparison of phase compostions in experiments and natural lavas from Oldoinyo Lengai. Carbonatite Volcanism: Oldoinyo Lengai and the Petrogenesis of Natrocarbonatites K Bell, J Keller 163–90 Berlin: Springer-Verlag
    [Google Scholar]
  97. Kjarsgaard BA, Mitchell RH. 2008. Solubility of Ta in the system CaCO3 – Ca(OH)2 – NaTaO3 – NaNbO3 ± F at 0.1 GPa: implications for the crystallisation of pyrochlore-group minerals in carbonatites. Can. Mineral. 46:981–90
    [Google Scholar]
  98. Klemme S. 2010. Experimental constraints on the evolution of iron and phosphorus-rich melts: experiments in the system CaO-MgO-Fe2O3-P2O5-SiO2-H2O-CO2. J. Mineral. Petrol. Sci. 105:1–8
    [Google Scholar]
  99. Kogarko LN, Plant DA, Henderson CMB, Kjarsgaard BA 1991. Na-rich carbonate inclusions in perovskite and calzirtite from the Guli intrusive Ca-carbonatite, polar Siberia. Contrib. Mineral. Petrol. 109:124–29
    [Google Scholar]
  100. Kono Y, Kenney-Benson C, Hummer D, Ohfuji H, Park C et al. 2014. Ultralow viscosity of carbonate melts at high pressures. Nat. Commun. 5:5091
    [Google Scholar]
  101. Kozlov E, Fomina E, Sidorov M, Shilovskikh V, Bocharov V et al. 2020. The Petyayan-Vara carbonatite-hosted rare earth deposit (Vuoriyarvi, NW Russia): mineralogy and geochemistry. Minerals 10:73
    [Google Scholar]
  102. Kresten P. 1983. Carbonatite nomenclature. Geol. Rundsch. 72:389–95
    [Google Scholar]
  103. Kuebler C, Simonetti A, Chen W, Simonetti SS 2020. Boron isotopic investigation of the Bayan Obo carbonatite complex: insights into the source of mantle carbon and hydrothermal alteration. Chem. Geol. 557:119859
    [Google Scholar]
  104. Labidi J, Cartigny P, Moreira M 2013. Non-chondritic sulphur isotope composition of the terrestrial mantle. Nature 501:208–11
    [Google Scholar]
  105. Le Bas MJ 2008. Fenites associated with carbonatites. Can. Mineral. 46:915–32
    [Google Scholar]
  106. Le Maitre RW 2002. Igneous Rocks: A Classification and Glossary of Terms Cambridge, UK: Cambridge Univ. Press
  107. Lee W-J, Fanelli MF, Cava N, Wyllie PJ 2000. Calciocarbonatite and magnesiocarbonatite rocks and magmas represented in the system CaO-MgO-CO2-H2O at 0.2GPa. Mineral. Petrol. 68:225–56
    [Google Scholar]
  108. Lee W-J, Wyllie PJ. 1997. Liquid immiscibility between nephelinite and carbonatite from 1.0 to 2.5GPa compared with mantle melt compositions. Contrib. Mineral. Petrol. 127:1–16
    [Google Scholar]
  109. Lee W-J, Wyllie PJ. 1998. Petrogenesis of carbonatite magmas from mantle to crust, constrained by the system CaO–(MgO + FeO*)–(Na2O + K2O)–(SiO2 + Al2O3 + TiO2)-CO2. J. Petrol. 39:495–517
    [Google Scholar]
  110. Li WY, Teng FZ, Halama R, Keller J, Klaudius J. 2016. Magnesium isotope fractionation during carbonatite magmatism at Oldoinyo Lengai, Tanzania. Earth Planet. Sci. Lett 444:26–33
    [Google Scholar]
  111. Løvik AN, Hagelüken C, Wäger P. 2018. Improving supply security of critical metals: current developments and research in the EU. Sustain. Mater. Technol. 15:9–18
    [Google Scholar]
  112. Lustrino M, Ronca S, Caracausi A, Bordenca CV, Agostini S, Faraone DB 2020. Strongly SiO2-undersaturated, CaO-rich kamafugitic Pleistocene magmatism in Central Italy (San Venanzo volcanic complex) and the role of shallow depth limestone assimilation. Earth-Sci. Rev. 208:103256
    [Google Scholar]
  113. Marschall HR, Wanless VD, Shimizu N, Pogge von Strandmann PAE, Elliott T, Monteleone BD 2017. The boron and lithium isotopic composition of mid-ocean ridge basalts and the mantle. Geochim. Cosmochim. Acta 207:102–38
    [Google Scholar]
  114. Martin LHJ, Schmidt MW, Mattsson HB, Guenther D. 2013. Element partitioning between immiscible carbonatite and silicate melts for dry and H2O-bearing systems at 1–3 GPa. J. Petrol. 54:2301–38
    [Google Scholar]
  115. Martin LHJ, Schmidt MW, Mattsson HB, Ulmer P, Hametner K, Günther D. 2012. Element partitioning between immiscible carbonatite–kamafugite melts with application to the Italian ultrapotassic suite. Chem. Geol. 320–321:96–112
    [Google Scholar]
  116. Massuyeau M, Gardés E, Rogerie G, Aulbach S, Tappe S et al. 2021. MAGLAB: a computing platform connecting geophysical signatures to melting processes in Earth's mantle. Phys. Earth Planet. Inter. 314:106638
    [Google Scholar]
  117. Matjuschkin V, Woodland AB, Yaxley GM. 2018. Methane-bearing fluids in the upper mantle: an experimental approach. Contrib. Mineral. Petrol. 174:1
    [Google Scholar]
  118. McKenzie D, Jackson J, Priestley K 2005. Thermal structure of oceanic and continental lithosphere. Earth Planet. Sci. Lett. 233:337–49
    [Google Scholar]
  119. Milani L, Bolhar R, Frei D, Harlov DE, Samuel VO. 2017. Light rare earth element systematics as a tool for investigating the petrogenesis of phoscorite-carbonatite associations, as exemplified by the Phalaborwa Complex, South Africa. Miner. Deposita 52:1105–25
    [Google Scholar]
  120. Mitchell RH. 2005. Carbonatites and carbonatites and carbonatites. Can. Mineral. 43:2049–68
    [Google Scholar]
  121. Mitchell RH. 2009. Peralkaline nephelinite–natrocarbonatite immiscibility and carbonatite assimilation at Oldoinyo Lengai, Tanzania. Contrib. Mineral. Petrol. 158:589–98
    [Google Scholar]
  122. Mitchell RH, Dawson JB 2012. Carbonate–silicate immiscibility and extremely peralkaline silicate glasses from Nasira cone and recent eruptions at Oldoinyo Lengai Volcano, Tanzania. Lithos 152:40–46
    [Google Scholar]
  123. Mitchell RH, Kjarsgaard BA. 2002. Solubility of niobium in the system CaCO3–Ca(OH)2–NaNbO3 at 0.1 GPa pressure. Contrib. Mineral. Petrol. 144:93–97
    [Google Scholar]
  124. Mitchell RH, Kjarsgaard BA. 2011. Experimental studies of the system Na2CO3–CaCO3–MgF2 at 0·1 GPa: implications for the differentiation and low-temperature crystallization of natrocarbonatite. J. Petrol. 52:1265–80
    [Google Scholar]
  125. Nabyl Z, Massuyeau M, Gaillard F, Tuduri J, Iacono-Marziano G et al. 2020. A window in the course of alkaline magma differentiation conducive to immiscible REE-rich carbonatites. Geochim. Cosmochim. Acta 282:297–323
    [Google Scholar]
  126. Nelson DR, Chivas AR, Chappell BW, McCulloch MT. 1988. Geochemical and isotopic systematics in carbonatites and implications for the evolution of ocean-island sources. Geochim. Cosmochim. Acta 52:1–17
    [Google Scholar]
  127. Nielsen TFD. 1981. The ultramafic cumulate series, Gardiner complex, East Greenland. Contrib. Mineral. Petrol. 76:60–72
    [Google Scholar]
  128. Nielsen TFD, Solovova IP, Veksler IV. 1997. Parental melts of melilitolite and origin of alkaline carbonatite: evidence from crystallised melt inclusions, Gardiner complex. Contrib. Mineral. Petrol. 126:331–44
    [Google Scholar]
  129. Nielsen TFD, Veksler IV. 2002. Is natrocarbonatite a cognate fluid condensate?. Contrib. Mineral. Petrol. 142:425–35
    [Google Scholar]
  130. Özkan M, Çelik ÖF, Marzoli A, Çörtük RM, Billor MZ. 2021. The origin of carbonatites from the eastern Armutlu Peninsula (NW Turkey). J. Geolog. Soc. 178:6jgs2020–171
    [Google Scholar]
  131. Panina LI, Motorina IV. 2008. Liquid immiscibility in deep-seated magmas and the generation of carbonatite melts. Geochem. Int. 46:448–64
    [Google Scholar]
  132. Peterson TD. 1989. Peralkaline nephelinites. I. Comparative petrology of Shombole and Oldoinyo L'engai, East Africa. Contrib. Mineral. Petrol. 101:458–78
    [Google Scholar]
  133. Pilet S, Baker MB, Stolper EM. 2008. Metasomatized lithosphere and the origin of alkaline lavas. Science 320:916–19
    [Google Scholar]
  134. Pintér Z, Foley SF, Yaxley GM, Rosenthal A, Rapp RP et al. 2021. Experimental investigation of the composition of incipient melts in upper mantle peridotites in the presence of CO2 and H2O. Lithos 396–397:106224
    [Google Scholar]
  135. Pirajno F. 1994. Mineral resources of anorogenic alkaline complexes in Namibia: a review. Aust. J. Earth Sci. 41:157–68
    [Google Scholar]
  136. Plank T, Langmuir CH. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol. 145:325–94
    [Google Scholar]
  137. Poli S, Franzolin E, Fumagalli P, Crottini A 2009. The transport of carbon and hydrogen in subducted oceanic crust: an experimental study to 5 GPa. Earth Planet. Sci. Lett. 278:350–60
    [Google Scholar]
  138. Prokopyev IR, Doroshkevich AG, Zhumadilova DV, Starikova AE, Nugumanova YN, Vladykin NV. 2021. Petrogenesis of Zr–Nb (REE) carbonatites from the Arbarastakh complex (Aldan Shield, Russia): mineralogy and inclusion data. Ore Geol. Rev. 131:104042
    [Google Scholar]
  139. Rankin AH. 1975. Fluid inclusion studies in apatite from carbonatites of the Wasaki area of western Kenya. Lithos 8:123–36
    [Google Scholar]
  140. Rass IT, Petrenko DB, Koval'chuk EV, Yakushev AI 2020. Phoscorites and carbonatites: relations, possible petrogenetic processes, and parental magma, with reference to the Kovdor Massif, Kola Peninsula. Geochem. Int. 58:753–78
    [Google Scholar]
  141. Rass IT, Plechov PY. 2000. Melt inclusions in olivines from the olivine-melilitite rock of the Guli massif, northwestern Siberian platform. Dokl. Earth Sci. 375:389–92
    [Google Scholar]
  142. Rohrbach A, Ghosh S, Schmidt MW, Wijbrans CH, Klemme S. 2014. The stability of Fe–Ni carbides in the Earth's mantle: evidence for a low Fe–Ni–C melt fraction in the deep mantle. Earth Planet. Sci. Lett. 388:211–21
    [Google Scholar]
  143. Rohrbach A, Schmidt MW. 2011. Redox freezing and melting in the Earth's deep mantle resulting from carbon–iron redox coupling. Nature 472:209–12
    [Google Scholar]
  144. Rooney TO, Nelson WR, Ayalew D, Hanan B, Yirgu G, Kappelman J 2017. Melting the lithosphere: metasomes as a source for mantle-derived magmas. Earth Planet. Sci. Lett. 461:105–18
    [Google Scholar]
  145. Rudnick RL, McDonough WF, Chappell BW. 1993. Carbonatite metasomatism in the northern Tanzanian mantle: petrographic and geochemical characteristics. Earth Planet. Sci. Lett. 114:463–75
    [Google Scholar]
  146. Ryabchikov ID, Kogarko LN. 2016. Deep differentiation of alkali ultramafic magmas: formation of carbonatite melts. Geochem. Int. 54:739–47
    [Google Scholar]
  147. Salters VJM, Stracke A. 2004. Composition of the depleted mantle. Geochem. Geophys. Geosyst. 5:Q05B07
    [Google Scholar]
  148. Savard JJ, Mitchell RH. 2021. Petrology of ijolite series rocks from the Prairie Lake (Canada) and Fen (Norway) alkaline rock-carbonatite complexes. Lithos 396–397:106188
    [Google Scholar]
  149. Schmidt MW, Wiedendorfer D. 2018. Carbonatites in oceanic hotspots. Geology 46:435–38
    [Google Scholar]
  150. Schumann D, Martin RF, Fuchs S, de Fourestier J. 2019. Silicocarbonatitic melt inclusions in fluorapatite from the Yates prospect, Otter Lake, Québec: evidence of marble anatexis in the central metasedimentary belt of the Grenville Province. Can. Mineral. 57:583–604
    [Google Scholar]
  151. Sharygin VV, Kamenetsky VS, Zaitsev AN, Kamenetsky MB. 2012. Silicate–natrocarbonatite liquid immiscibility in 1917 eruption combeite–wollastonite nephelinite, Oldoinyo Lengai Volcano, Tanzania: melt inclusion study. Lithos 152:23–39
    [Google Scholar]
  152. Shaw CSJ. 2018. Evidence for the presence of carbonate melt during the formation of cumulates in the Colli Albani Volcanic District, Italy. Lithos 310–311:105–19
    [Google Scholar]
  153. Sieber MJ, Hermann J, Yaxley GM 2018. An experimental investigation of C–O–H fluid-driven carbonation of serpentinites under forearc conditions. Earth Planet. Sci. Lett. 496:178–88
    [Google Scholar]
  154. Sieber MJ, Yaxley GM, Hermann J. 2020. Investigation of fluid-driven carbonation of a hydrated, forearc mantle wedge using serpentinite cores in high-pressure experiments. J. Petrol. 61:egaa035
    [Google Scholar]
  155. Slezak P, Spandler C. 2020. Petrogenesis of the Gifford Creek Carbonatite Complex, Western Australia. Contrib. Mineral. Petrol. 175:28
    [Google Scholar]
  156. Song W, Xu C, Veksler IV, Kynicky J. 2016. Experimental study of REE, Ba, Sr, Mo and W partitioning between carbonatitic melt and aqueous fluid with implications for rare metal mineralization. Contrib. Mineral. Petrol. 171:1
    [Google Scholar]
  157. Stagno V, Ojwang DO, McCammon CA, Frost DJ. 2013. The oxidation state of the mantle and the extraction of carbon from Earth's interior. Nature 493:84–88
    [Google Scholar]
  158. Stracke A. 2012. Earth's heterogeneous mantle: a product of convection-driven interaction between crust and mantle. Chem. Geol. 330–331:274–99
    [Google Scholar]
  159. Streckeisen A. 1980. Classification and nomenclature of volcanic rocks, lamprophyres, carbonatites and melilitic rocks IUGS Subcommission on the Systematics of Igneous Rocks. Geol. Rundsch. 69:194–207
    [Google Scholar]
  160. Sun J, Zhu XK, Belshaw NS, Chen W, Doroshkevich AG et al. 2021. Ca isotope systematics of carbonatites: insights into carbonatite source and evolution. Geochem. Perspect. Lett. 17:11–15
    [Google Scholar]
  161. Sweeney RJ. 1994. Carbonatite melt compositions in the Earth's mantle. Earth Planet. Sci. Lett. 128:259–70
    [Google Scholar]
  162. Tappe S, Massuyeau M, Smart KA, Woodland AB, Gussone N et al. 2021. Sheared peridotite and megacryst formation beneath the Kaapvaal craton: a snapshot of tectonomagmatic processes across the lithosphere–asthenosphere transition. J. Petrol. 62:8egab046
    [Google Scholar]
  163. Tappe S, Romer RL, Stracke A, Steenfelt A, Smart KA et al. 2017. Sources and mobility of carbonate melts beneath cratons, with implications for deep carbon cycling, metasomatism and rift initiation. Earth Planet. Sci. Lett. 466:152–67
    [Google Scholar]
  164. Tappe S, Stracke A, van Acken D, Strauss H, Luguet A. 2020. Origins of kimberlites and carbonatites during continental collision—insights beyond decoupled Nd-Hf isotopes. Earth-Sci. Rev. 208:103287
    [Google Scholar]
  165. Teague AJ, Seward TM, Harrison D. 2008. Mantle source for Oldoinyo Lengai carbonatites: evidence from helium isotopes in fumarole gases. J. Volcanol. Geotherm. Res. 175:386–90
    [Google Scholar]
  166. Thomsen TB, Schmidt MW. 2008. Melting of carbonated pelites at 2.5–5.0 GPa, silicate–carbonatite liquid immiscibility, and potassium–carbon metasomatism of the mantle. Earth Planet. Sci. Lett. 267:17–31
    [Google Scholar]
  167. Thomson AR, Walter MJ, Kohn SC, Brooker RA. 2016. Slab melting as a barrier to deep carbon subduction. Nature 529:76–79
    [Google Scholar]
  168. Tilton GR, Bell K. 1994. Sr-Nd-Pb isotope relationships in Late Archean carbonatites and alkaline complexes: applications to the geochemical evolution of Archean mantle. Geochim. Cosmochim. Acta 58:3145–54
    [Google Scholar]
  169. Treiman AH, Essene EJ. 1985. The Oka carbonatite complex, Quebec: geology and evidence for silicate-carbonate liquid immiscibility. Am. Mineral. 70:1101–13
    [Google Scholar]
  170. Tsuno K, Dasgupta R. 2015. Fe–Ni–Cu–C–S phase relations at high pressures and temperatures—the role of sulfur in carbon storage and diamond stability at mid- to deep-upper mantle. Earth Planet. Sci. Lett. 412:132–42
    [Google Scholar]
  171. Tucker RD, Belkin HE, Schulz KJ, Peters SG, Horton Fet al 2012. A major light rare-earth element (LREE) resource in the Khanneshin Carbonatite Complex, Southern Afghanistan. Econ. Geol 107:197208
    [Google Scholar]
  172. Veksler IV, Dorfman AM, Dulski P, Kamenetsky VS, Danyushevsky LV et al. 2012. Partitioning of elements between silicate melt and immiscible fluoride, chloride, carbonate, phosphate and sulfate melts, with implications to the origin of natrocarbonatite. Geochim. Cosmochim. Acta 79:20–40
    [Google Scholar]
  173. Veksler IV, Keppler H. 2000. Partitioning of Mg, Ca, and Na between carbonatite melt and hydrous fluid at 0.1–0.2 GPa. Contrib. Mineral. Petrol. 138:27–34
    [Google Scholar]
  174. Veksler IV, Nielsen TFD, Sokolov SV. 1998. Mineralogy of crystallized melt inclusions from Gardiner and Kovdor ultramafic alkaline complexes: implications for carbonatite genesis. J. Petrol. 39:2015–31
    [Google Scholar]
  175. Wallace ME, Green DH 1988. An experimental determination of primary carbonatite magma composition. Nature 335:343–46
    [Google Scholar]
  176. Walter BF, Giebel RJ, Steele-MacInnis M, Marks MAW, Kolb J, Markl G. 2021. Fluids associated with carbonatitic magmatism: a critical review and implications for carbonatite magma ascent. Earth-Sci. Rev. 215:103509
    [Google Scholar]
  177. Walter BF, Steele-MacInnis M, Giebel RJ, Marks MAW, Markl G. 2020. Complex carbonate-sulfate brines in fluid inclusions from carbonatites: estimating compositions in the system H2O-Na-K-CO3-SO4-Cl. Geochim. Cosmochim. Acta 277:224–42
    [Google Scholar]
  178. Wei C-W, Xu C, Chakhmouradian AR, Brenna M, Kynicky J, Song W-L 2020. Carbon–strontium isotope decoupling in carbonatites from Caotan (Qinling, China): implications for the origin of calcite carbonatite in orogenic settings. J. Petrol. 61:egaa024
    [Google Scholar]
  179. Weidendorfer D, Schmidt MW, Mattsson HB. 2017. A common origin of carbonatite magmas. Geology 45:507–10
    [Google Scholar]
  180. Weidendorfer D, Schmidt MW, Mattsson HB. 2019. Mineral resorption triggers explosive mixed silicate–carbonatite eruptions. Earth Planet. Sci. Lett. 510:219–30
    [Google Scholar]
  181. Woolley AR. 1982. A discussion of carbonatite evolution and nomenclature, and the generation of sodic and potassic fenites. Mineralog. Mag. 46:13–17
    [Google Scholar]
  182. Woolley AR, Church AA. 2005. Extrusive carbonatites: a brief review. Lithos 85:1–14
    [Google Scholar]
  183. Woolley AR, Kempe DRC 1989. Carbonatites: nomenclature, average chemical compositions, and element distribution. Carbonatites: Genesis and Evolution K Bell 1–14 London: Unwin Hyman
    [Google Scholar]
  184. Woolley AR, Kjarsgaard BA. 2008. Paragenetic types of carbonatite as indicated by the diversity and relative abundances of associated silicate rocks: evidence from a global database. Can. Mineral. 46:741–52
    [Google Scholar]
  185. Xu C, Kynicky J, Chakhmouradian AR, Campbell IH, Allen CM. 2010. Trace-element modeling of the magmatic evolution of rare-earth-rich carbonatite from the Miaoya deposit, Central China. Lithos 118:145–55
    [Google Scholar]
  186. Yaxley GM, Crawford A, Green D 1991. Evidence for carbonatite metasomatism in spinel peridotite xenoliths from Western Victoria, Australia. Earth Planet. Sci. Lett 107:305–17
    [Google Scholar]
  187. Yaxley GM, Ghosh S, Kiseeva ES, Mallik A, Spandler C et al. 2020. CO2-rich melts in Earth. Deep Carbon: Past to Present BN Orcutt, I Daniel, R Dasgupta 129–62 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  188. Yaxley GM, Green D. 1994. Experimental demonstration of refractory carbonate-bearing eclogite and siliceous melt in the subduction regime. Earth Planet. Sci. Lett. 128:313–25
    [Google Scholar]
  189. Ying Y-C, Chen W, Simonetti A, Jiang S-Y, Zhao K-D. 2020. Significance of hydrothermal reworking for REE mineralization associated with carbonatite: constraints from in situ trace element and C-Sr isotope study of calcite and apatite from the Miaoya carbonatite complex (China). Geochim. Cosmochim. Acta 280:340–59
    [Google Scholar]
  190. Zaitsev AN, Keller J. 2006. Mineralogical and chemical transformation of Oldoinyo Lengai natrocarbonatites, Tanzania. Lithos 91:191–207
    [Google Scholar]
  191. Zeng RS, MacKenzie WS 1984. Preliminary report on the system NaAlSiO4-KAlSiO4-SiO2-H2O at PH2O = 5 kbar. Bull. Mineralog 107:571–755
    [Google Scholar]
  192. Zindler A, Hart SR. 1986. Chemical geodynamics. Annu. Rev. Earth Planet. Sci. 14:493–571
    [Google Scholar]
/content/journals/10.1146/annurev-earth-032320-104243
Loading
/content/journals/10.1146/annurev-earth-032320-104243
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error