1932

Abstract

Interpretations of the tempo of mass extinctions and recoveries often rely on the distribution of fossils in a stratigraphic column. These interpretations are generally compromised when they are not based on a knowledge of marine ecological gradients and sequence-stratigraphic architecture. Crucially, last and first occurrences of species do not record times of extinction and origination. A face-value interpretation of the stratigraphic record leads to incorrect inferences of pulsed extinction, underestimates of the duration of mass extinction, and overestimates of local recovery times. An understanding of the processes of extinction and recovery is substantially improved by knowledge of the distribution of species along marine environmental gradients, interpreting sequence-stratigraphic architecture to show how those gradients are sampled through time, and sampling along regional transects along depositional dip. Doing so suggests that most ancient mass extinctions were substantially longer and local recoveries substantially shorter than generally thought.

  • ▪   The concepts that let geologists find petroleum allow paleontologists to reinterpret ancient mass extinctions and their recoveries.
  • ▪   Most ancient mass extinctions were longer than the fossil record suggests, lasting hundreds of thousands of years to a few million years.
  • ▪   Ancient recoveries from mass extinctions were shorter than thought and likely overlapped with extinction during a period of turnover.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-071719-054827
2020-05-30
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/earth/48/1/annurev-earth-071719-054827.html?itemId=/content/journals/10.1146/annurev-earth-071719-054827&mimeType=html&fmt=ahah

Literature Cited

  1. Aberhan M, Kiessling W. 2014. Rebuilding biodiversity of Patagonian marine molluscs after the end-Cretaceous mass extinction. PLOS ONE 9:e102629
    [Google Scholar]
  2. Adrain JM, Westrop SR, Chatterton BDE, Ramsköld L 2000. Silurian trilobite alpha diversity and the end-Ordovician mass extinction. Paleobiology 26:625–46
    [Google Scholar]
  3. Algeo TJ, Hannigan R, Rowe H, Brookfield M, Baud A et al. 2007. Sequencing events across the Permian–Triassic boundary, Guryul Ravine (Kashmir, India). Palaeogeogr. Palaeoclimatol. Palaeoecol. 252:328–46
    [Google Scholar]
  4. Alvarez LW, Alvarez W, Asaro F, Michel HV 1980. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208:1095–108
    [Google Scholar]
  5. Atkinson JW, Wignall PB. 2019. How quick was marine recovery after the end-Triassic mass extinction and what role did anoxia play?. Palaeogeogr. Palaeoclimatol. Palaeoecol. 528:99–119
    [Google Scholar]
  6. Benton MJ. 2018. Hyperthermal-driven mass extinctions: killing models during the Permian–Triassic mass extinction. Philos. Trans. R. Soc. A 376:20170076
    [Google Scholar]
  7. Bond DPG, Grasby SE. 2017. On the causes of mass extinctions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 478:3–29
    [Google Scholar]
  8. Boucot AJ. 1981. Principles of Benthic Marine Paleoecology New York: Academic
  9. Boucot AJ. 1983. Does evolution take place in an ecological vacuum?. J. Paleontol. 57:1–30
    [Google Scholar]
  10. Brayard A, Meier M, Escarguel G, Fara E, Nützel A et al. 2015. Early Triassic Gulliver gastropods: spatio-temporal distribution and significance for biotic recovery after the end-Permian mass extinction. Earth Sci. Rev. 146:31–64
    [Google Scholar]
  11. Brenchley PJ, Carden GA, Hints L, Kaljo D, Marshall JD et al. 2003. High-resolution stable isotope stratigraphy of Upper Ordovician sequences: constraints on the timing of bioevents and environmental changes associated with mass extinction and glaciation. Geol. Soc. Am. Bull. 115:89–104
    [Google Scholar]
  12. Brenchley PJ, Marshall JD, Underwood CJ 2001. Do all mass extinctions represent an ecological crisis? Evidence from the Late Ordovician. Geol. J. 36:329–40
    [Google Scholar]
  13. Brett CE, Baird GC. 1995. Coordinated stasis and evolutionary ecology of Silurian to Middle Devonian faunas in the Appalachian Basin. New Approaches to Speciation in the Fossil Record DH Erwin, RL Anstey 285–315 New York: Columbia Univ. Press
    [Google Scholar]
  14. Brown GM, Larina E. 2019. Environmental controls on shallow subtidal molluscan death assemblages on San Salvador Island, the Bahamas. Palaeogeogr. Palaeoclimatol. Palaeoecol. 527:14–24
    [Google Scholar]
  15. Burgess SD, Bowring SA, Shen S 2014. High-precision timeline for Earth's most severe extinction. PNAS 111:3316–21
    [Google Scholar]
  16. Catuneanu O. 2006. Principles of Sequence Stratigraphy New York: Elsevier
  17. Chen D, Tucker ME. 2003. The Frasnian–Famennian mass extinction: insights from high-resolution sequence stratigraphy and cyclostratigraphy in South China. Palaeogeogr Palaeoclimatol. Palaeoecol. 193:87–111
    [Google Scholar]
  18. Chen D, Tucker ME. 2004. Palaeokarst and its implication for the extinction event at the Frasnian–Famennian boundary (Guilin, South China). J. Geol. Soc. Lond. 161:895–98
    [Google Scholar]
  19. Chen J, Tong J, Song H, Luo M, Huang Y et al. 2015. Recovery pattern of brachiopods after the Permian–Triassic crisis in South China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 433:91–105
    [Google Scholar]
  20. Chen ZQ, Benton MJ. 2012. The timing and pattern of biotic recovery following the end-Permian mass extinction. Nat. Geosci. 5:375–83
    [Google Scholar]
  21. Chen ZQ, Kaiho K, George AD 2005. Early Triassic recovery of the brachiopod faunas from the end-Permian mass extinction: a global review. Palaeogeogr. Palaeoclimatol. Palaeoecol. 224:270–90
    [Google Scholar]
  22. Christie M, Holland SM, Bush AM 2013. Contrasting the ecological and taxonomic consequences of extinction. Paleobiology 39:538–59
    [Google Scholar]
  23. Clarkson MO, Kasemann SA, Wood RA, Lenton TM, Daines SJ et al. 2015. Ocean acidification and the Permo-Triassic mass extinction. Science 348:229–32
    [Google Scholar]
  24. Clemens WA, Archibald JD. 1980. Evolution of terrestrial faunas during the Cretaceous-Tertiary transition. Mem. Soc. Geol. Fr. 139:67–74
    [Google Scholar]
  25. Danise S, Clémence ME, Price GD, Murphy DP, Gómez JJ et al. 2019. Stratigraphic and environmental control on marine benthic community change through the early Toarcian extinction event (Iberian Range, Spain). Palaeogeogr. Palaeoclimatol. Palaeoecol. 524:183–200
    [Google Scholar]
  26. Danise S, Twitchett RJ, Little CTS, Clémence M-E 2013. The impact of global warming and anoxia on marine benthic community dynamics: an example from the Toarcian (Early Jurassic). PLOS ONE 8:e56255
    [Google Scholar]
  27. Delabroye A, Vecoli M. 2010. The end-Ordovician glaciation and the Hirnantian Stage: a global review and questions about Late Ordovician event stratigraphy. Earth Sci. Rev. 98:269–82
    [Google Scholar]
  28. D'Hondt S, Donaghay P, Zachos JC, Luttenberg D, Lindinger M 1998. Organic carbon fluxes and ecological recovery from the Cretaceous-Tertiary mass extinction. Science 282:276–79
    [Google Scholar]
  29. Dineen AA, Fraiser ML, Sheehan PM 2014. Quantifying functional diversity in pre- and post-extinction paleocommunities: a test of ecological restructuring after the end-Permian mass extinction. Earth Sci. Rev. 136:339–49
    [Google Scholar]
  30. Donovan MP, Iglesias A, Wilf P, Labandeira CC, Cúneo NR 2016. Rapid recovery of Patagonian plant–insect associations after the end-Cretaceous extinction. Nat. Ecol. Evol. 1:0012
    [Google Scholar]
  31. Dowsett HJ. 1988. Diachrony of late Neogene microfossils in the southwest Pacific Ocean: application of the graphic correlation method. Paleoceanography 3:209–22
    [Google Scholar]
  32. Erwin DH. 1998. The end and the beginning: recoveries from mass extinctions. Trends Ecol. Evol. 13:344–49
    [Google Scholar]
  33. Erwin DH. 2001. Lessons from the past: biotic recoveries from mass extinctions. PNAS 98:5399–403
    [Google Scholar]
  34. Erwin DH, Droser ML. 1993. Elvis taxa. Palaios 8:623–24
    [Google Scholar]
  35. Farabegoli E, Perri MC, Posenato R 2007. Environmental and biotic changes across the Permian–Triassic boundary in western Tethys: the Bulla parastratotype, Italy. Glob. Planet. Change 55:109–35
    [Google Scholar]
  36. Finnegan S, Rasmussen CMØ, Harper DAT 2016. Biogeographic and bathymetric determinants of brachiopod extinction and survival during the Late Ordovician mass extinction. Proc. R. Soc. B 283:20160007
    [Google Scholar]
  37. Finney SC, Berry WBN, Cooper JD, Ripperdan R, Sweet WC et al. 1999. Late Ordovician mass extinction: a new perspective from stratigraphic sections in central Nevada. Geology 27:215–18
    [Google Scholar]
  38. Finney SC, Cooper JD, Berry WBN 1997. Late Ordovician mass extinction: sedimentologic, cyclostratigraphic, and biostratigraphic records from platform and basin successions, central Nevada. Brigham Young Univ. Geol. Stud. 42:79–104
    [Google Scholar]
  39. Foote M. 2003. Origination and extinction through the Phanerozoic: a new approach. J. Geol. 111:125–48
    [Google Scholar]
  40. Foote M. 2005. Pulsed origination and extinction in the marine realm. Paleobiology 31:6–20
    [Google Scholar]
  41. Foster WJ, Danise S, Price GD, Twitchett RJ 2017. Subsequent biotic crises delayed marine recovery following the late Permian mass extinction event in northern Italy. PLOS ONE 12:e0172321
    [Google Scholar]
  42. Foster WJ, Danise S, Price GD, Twitchett RJ 2018. Paleoecological analysis of benthic recovery after the Late Permian mass extinction event in eastern Lombardy, Italy. Palaios 33:266–81
    [Google Scholar]
  43. Fraiser ML, Bottjer DJ. 2004. The non-actualistic Early Triassic gastropod fauna: a case study of the Lower Triassic Sinbad Limestone Member. Palaios 19:259–75
    [Google Scholar]
  44. Fraiser ML, Twitchett RJ, Bottjer DJ 2005. Unique microgastropod biofacies in the Early Triassic: indicator of long-term biotic stress and the pattern of biotic recovery after the end-Permian mass extinction. C. R. Palevol. 4:475–84
    [Google Scholar]
  45. Freeman RL, Miller JF, Dattilo BF 2018. Linguliform brachiopods across a Cambrian-Ordovician (Furongian, Early Ordovician) biomere boundary: the Sunwaptan-Skullrockian North American Stage boundary in the Wilberns and Tanyard formations of central Texas. J. Paleontol. 92:751–67
    [Google Scholar]
  46. Gale AS, Smith AB, Monks N, Young J, Howard A et al. 2000. Marine biodiversity through the Late Cenomanian–Early Turonian: palaeoceanographic controls and sequence stratigraphic biases. J. Geol. Soc. Lond. 157:745–57
    [Google Scholar]
  47. Ghienne JF, Desrochers A, Vandenbroucke TRA, Achab A, Asselin E et al. 2014. A Cenozoic-style scenario for the end-Ordovician glaciation. Nat. Commun. 5:4485
    [Google Scholar]
  48. Hallam A. 1987. Radiations and extinctions relative to environmental change in the marine Lower Jurassic of northwest Europe. Paleobiology 13:152–68
    [Google Scholar]
  49. Hallam A, Wignall PB. 1997. Mass Extinctions and Their Aftermath Oxford, UK: Oxford Univ. Press
  50. Harper DAT, Hammarlund EU, Rasmussen CMØ 2014. End Ordovician extinctions: a coincidence of causes. Gondwana Res 25:1294–307
    [Google Scholar]
  51. Hedgepeth JW, Ladd HS 1957. Treatise on Marine Ecology and Paleoecology Boulder, CO: Geol. Soc. Am.
  52. Hesselbo SP, Robinson SA, Surlyk F 2004. Sea-level change and facies development across potential Triassic-Jurassic boundary horizons, SW Britain. J. Geol. Soc. Lond. 161:365–79
    [Google Scholar]
  53. Hofmann R, Hautmann M, Wasmer M, Bucher H 2013. Palaeoecology of the Spathian Virgin Formation (Utah, USA) and its implications for the Early Triassic recovery. Acta Palaeontol. Pol. 58:149–73
    [Google Scholar]
  54. Holland SM. 1995. The stratigraphic distribution of fossils. Paleobiology 21:92–109
    [Google Scholar]
  55. Holland SM. 2003. Confidence limits on fossil ranges that account for facies changes. Paleobiology 29:468–79
    [Google Scholar]
  56. Holland SM, Miller AI, Meyer DL, Dattilo BF 2001. The detection and importance of subtle biofacies within a single lithofacies: the Upper Ordovician Kope Formation of the Cincinnati, Ohio region. Palaios 16:205–17
    [Google Scholar]
  57. Holland SM, Patzkowsky ME. 1996. Sequence stratigraphy and long-term paleoceanographic change in the Middle and Upper Ordovician of the eastern United States. Geol. Soc. Am. Spec. Pap. 306:117–30
    [Google Scholar]
  58. Holland SM, Patzkowsky ME. 2002. Stratigraphic variation in the timing of first and last occurrences. Palaios 17:134–46
    [Google Scholar]
  59. Holland SM, Patzkowsky ME. 2015. The stratigraphy of mass extinction. Palaeontology 58:903–24
    [Google Scholar]
  60. Hongfu Y, Kexin Z, Jinnan T, Zunyi Y, Shunbao W 2001. The global stratotype section and point (GSSP) of the Permian-Triassic boundary. Episodes 24:102–14
    [Google Scholar]
  61. Hu S, Zhang Q, Chen ZQ, Zhou C, T et al. 2011. The Luoping biota: exceptional preservation, and new evidence on the Triassic recovery from end-Permian mass extinction. Proc. R. Soc. B 278:2274–82
    [Google Scholar]
  62. Huang B, Harper DAT, Rong J, Zhan R 2017. Brachiopod faunas after the end Ordovician mass extinction from South China: testing ecological change through a major taxonomic crisis. J. Asian Earth Sci. 138:502–14
    [Google Scholar]
  63. Hull PM. 2015. Life in the aftermath of mass extinctions. Curr. Biol. 25:R941–52
    [Google Scholar]
  64. Hull PM, Darroch SAF, Erwin DH 2015. Rarity in mass extinctions and the future of ecosystems. Nature 5238:345–51
    [Google Scholar]
  65. Hull PM, Norris RD, Bralower TJ, Schueth JD 2011. A role for chance in marine recovery from the end-Cretaceous extinction. Nat. Geosci. 4:856–60
    [Google Scholar]
  66. Jablonski D. 1986a. Causes and consequences of mass extinction: a comparative approach. Dynamics of Extinction DK Elliot 183–229 New York: Wiley
    [Google Scholar]
  67. Jablonski D. 1986b. Background and mass extinctions: the alternation of macroevolutionary regimes. Science 231:129–33
    [Google Scholar]
  68. Jablonski D. 1989. The biology of mass extinction: a paleontological view. Philos. Trans. R. Soc. B 325:357–68
    [Google Scholar]
  69. Jablonski D. 1998. Geographic variation in the molluscan recovery from the end-Cretaceous extinction. Science 279:1327–30
    [Google Scholar]
  70. Jablonski D. 2001. Lessons from the past: evolutionary impacts of mass extinctions. PNAS 98:5393–98
    [Google Scholar]
  71. Jablonski D. 2002. Survival without recovery after mass extinctions. PNAS 99:8139–44
    [Google Scholar]
  72. Kauffman EG, Erwin DH. 1995. Surviving mass extinctions. Geotimes 40:14–17
    [Google Scholar]
  73. Kauffman EG, Harries PJ. 1996. The importance of crisis progenitors in recovery from mass extinction. Geol. Soc. Lond. Spec. Publ. 102:15–39
    [Google Scholar]
  74. Kidwell SM. 1991. The stratigraphy of shell concentrations. Taphonomy: Releasing the Data Locked in the Fossil Record PA Allison, DEG Briggs 211–90 New York: Plenum
    [Google Scholar]
  75. Kiessling W, Schobben M, Ghaderi A, Hairapetian V, Leda L et al. 2018. Pre–mass extinction decline of latest Permian ammonoids. Geology 46:283–86
    [Google Scholar]
  76. Kirchner JW, Weil A. 2000. Delayed biological recovery from extinctions throughout the fossil record. Nature 404:177–80
    [Google Scholar]
  77. Krug AZ, Patzkowsky ME. 2004. Rapid recovery from the Late Ordovician mass extinction. PNAS 101:17605–10
    [Google Scholar]
  78. Landing E, Westrop SR, Kröger B, English AM 2011. Left behind—delayed extinction and a relict trilobite fauna in the Cambrian–Ordovician boundary succession (east Laurentian platform, New York). Geol. Mag. 148:529–57
    [Google Scholar]
  79. Lowery CM, Bralower TJ, Owens JD, Rodríguez-Tovar FJ, Jones H et al. 2018. Rapid recovery of life at ground zero of the end-Cretaceous mass extinction. Nature 558:288–91
    [Google Scholar]
  80. Lucas SG. 2017. The best sections method of studying mass extinctions. Lethaia 50:465–66
    [Google Scholar]
  81. Luo M, George AD, Chen ZQ 2016. Sedimentology and ichnology of two Lower Triassic sections in South China: implications for the biotic recovery following the end-Permian mass extinction. Glob. Planet. Change 144:198–212
    [Google Scholar]
  82. Macellari CE. 1986. Late Campanian-Maastrichtian ammonite fauna from Seymour Island (Antarctic Peninsula). Paleontol. Soc. Mem. 18:1–55
    [Google Scholar]
  83. Macellari CE. 1988. Stratigraphy, sedimentology, and paleoecology of Upper Cretaceous/Paleocene shelf-deltaic sediments of Seymour Island. Geol. Soc. Am. Mem. 169:25–54
    [Google Scholar]
  84. Marshall CR. 1997. Confidence intervals on stratigraphic ranges with nonrandom distributions of fossil horizons. Paleobiology 23:165–73
    [Google Scholar]
  85. Marshall CR, Ward P. 1996. Sudden and gradual molluscan extinctions in the latest Cretaceous of western European Tethys. Science 274:1360–63
    [Google Scholar]
  86. Martindale RC, Aberhan M. 2017. Response of macrobenthic communities to the Toarcian Oceanic Anoxic Event in northeastern Panthalassa (Ya Ha Tinda, Alberta, Canada). Palaeogeogr. Palaeoclimatol. Palaeoecol. 478:103–20
    [Google Scholar]
  87. Martindale RC, Foster WJ, Velledits F 2019. The survival, recovery, and diversification of metazoan reef systems following the end-Permian mass extinction event. Palaeogeogr. Palaeoclimatol. Palaeoecol. 513:100–15
    [Google Scholar]
  88. McGhee GR Jr 1996. The Late Devonian Mass Extinction New York: Columbia Univ. Press
  89. Miller AI. 1988. Spatial resolution in subfossil molluscan remains: implications for paleobiological analyses. Paleobiology 14:91–103
    [Google Scholar]
  90. Miller KG, Wright JD, Van Fossen MC, Kent DV 1994. Miocene stable isotopic stratigraphy and magnetostratigraphy of Buff Bay, Jamaica. Geol. Soc. Am. Bull. 106:1605–20
    [Google Scholar]
  91. Mitchell CE, Sheets HD, Belscher K, Finney S, Holmden C et al. 2007. Species abundance changes during mass extinction and the inverse Signor-Lipps effect: apparently abrupt graptolite mass extinction as an artifact of sampling. Acta Palaeontol. Sin. 46:340–44
    [Google Scholar]
  92. Nawrot R, Scarponi D, Azzarone M, Dexter TA, Kusnerik KM et al. 2018. Stratigraphic signatures of mass extinctions: ecological and sedimentary determinants. Proc. R. Soc. B 285:20181191
    [Google Scholar]
  93. Palmer AR. 1965. Biomere: a new kind of biostratigraphic unit. J. Paleontol. 39:149–53
    [Google Scholar]
  94. Palmer AR. 1984. The biomere problem: evolution of an idea. J. Paleontol. 58:599–611
    [Google Scholar]
  95. Patzkowsky ME, Holland SM. 1996. Extinction, invasion, and sequence stratigraphy: patterns of faunal change in the Middle and Upper Ordovician of the eastern United States. Geol. Soc. Am. Spec. Pap. 306:131–42
    [Google Scholar]
  96. Patzkowsky ME, Holland SM. 2012. Stratigraphic Paleobiology: Understanding the Distribution of Fossil Taxa in Time and Space Chicago: Univ. Chicago Press
  97. Payne JL, Summers M, Rego BL, Altiner D, Wei J et al. 2011. Early and Middle Triassic trends in diversity, evenness, and size of foraminifers on a carbonate platform in South China: implications for tempo and mode of biotic recovery from the end-Permian mass extinction. Paleobiology 37:409–25
    [Google Scholar]
  98. Petsios E, Thompson JR, Pietsch C, Bottjer DJ 2019. Biotic impacts of temperature before, during, and after the end-Permian extinction: a multi-metric and multi-scale approach to modeling extinction and recovery dynamics. Palaeogeogr. Palaeoclimatol. Palaeoecol. 513:86–99
    [Google Scholar]
  99. Raup DM. 1981. Extinction: bad genes or bad luck?. Acta Geol. Hispan. 16:25–33
    [Google Scholar]
  100. Raup DM, Sepkoski JJ Jr 1982. Mass extinctions in the marine fossil record. Science 215:1501–2
    [Google Scholar]
  101. Rodland DL, Bottjer DJ. 2001. Biotic recovery from the end-Permian mass extinction: behavior of the inarticulate brachiopod Lingula as a disaster taxon. Palaios 16:95–101
    [Google Scholar]
  102. Sadler PM. 2004. Quantitative biostratigraphy—achieving finer resolution in global correlation. Annu. Rev. Earth Planet. Sci. 32:187–213
    [Google Scholar]
  103. Scheyer TM, Romano C, Jenks J, Bucher H 2014. Early Triassic marine biotic recovery: the predators’ perspective. PLOS ONE 9:e88987
    [Google Scholar]
  104. Schneider DA, Backman J, Chaisson WP, Raffi I 1997. Miocene calibration for calcareous nannofossils from low-latitude Ocean Drilling Program sites and the Jamaican conundrum. Geol. Soc. Am. Bull. 109:1073–79
    [Google Scholar]
  105. Sepkoski JJ Jr 1988. Alpha, beta, or gamma: Where does all the diversity go?. Paleobiology 14:221–34
    [Google Scholar]
  106. Shaw AB. 1964. Time in Stratigraphy New York: McGraw-Hill
  107. Sheehan PM. 1996. A new look at Ecologic Evolutionary Units (EEUs). Palaeogeogr. Palaeoclimatol. Palaeoecol. 127:21–32
    [Google Scholar]
  108. Sheehan PM. 2001. The Late Ordovician mass extinction. Annu. Rev. Earth Planet Sci. 29:331–64
    [Google Scholar]
  109. Sheehan PM, Fastovsky DE, Barreto C, Hoffmann RG 2000. Dinosaur abundance was not declining in a “3 m gap” at the top of the Hell Creek Formation, Montana and North Dakota. Geology 28:523–26
    [Google Scholar]
  110. Sheets HD, Mitchell CE, Melchin MJ, Loxton J, Storch P et al. 2016. Graptolite community responses to global climate change and the Late Ordovician mass extinction. PNAS 113:8380–85
    [Google Scholar]
  111. Shen SZ, Crowley JL, Wang Y, Bowring SA, Erwin DH et al. 2011. Calibrating the end-Permian mass extinction. Science 334:1367–72
    [Google Scholar]
  112. Signor PW, Lipps JH. 1982. Sampling bias, gradual extinction patterns and catastrophes in the fossil record. Geol. Soc. Am. Spec. Pap. 190:291–96
    [Google Scholar]
  113. Smith AB, Gale AS, Monks N 2001. Sea-level change and rock-record bias in the Cretaceous: a problem for extinction and biodiversity studies. Paleobiology 27:241–53
    [Google Scholar]
  114. Smith RW, Bergen M, Weisberg SB, Cadien D, Dalkey A et al. 2001. Benthic response index for assessing infaunal communities on the southern California mainland shelf. Ecol. Appl. 11:1073–87
    [Google Scholar]
  115. Smith SM, Sprain CJ, Clemens WA, Lofgren DL, Renne PR et al. 2018. Early mammalian recovery after the end-Cretaceous mass extinction: a high-resolution view from McGuire Creek area, Montana, USA. Geol. Soc. Am. Bull. 130:2000–14
    [Google Scholar]
  116. Solé RV, Montoya JM, Erwin DH 2002. Recovery after mass extinction: evolutionary assembly in large-scale biosphere dynamics. Philos. Trans. R. Soc. B 357:697–707
    [Google Scholar]
  117. Song H, Wignall PB, Chen ZQ, Tong J, Bond DPG et al. 2011. Recovery tempo and pattern of marine ecosystems after the end-Permian mass extinction. Geology 39:739–42
    [Google Scholar]
  118. Song H, Wignall PB, Tongh J, Yin H 2013. Two pulses of extinction during the Permian–Triassic crisis. Nat. Geosci. 6:52–56
    [Google Scholar]
  119. Song H, Yang L, Tong J, Chen J, Tian L et al. 2015. Recovery dynamics of foraminifers and algae following the Permian-Triassic extinction in Qingyan, South China. Geobios 48:71–83
    [Google Scholar]
  120. Spencer-Cervato C, Thierstein HR, Lazarus DB, Beckmann JP 1994. How synchronous are Neogene marine plankton events?. Paleoceanography 9:739–63
    [Google Scholar]
  121. Stitt JH. 1977. Late Cambrian and Earliest Ordovician Trilobites, Wichita Mountain Area, Oklahoma Norman: Univ Okla:.
  122. Strauss D, Sadler PM. 1989. Classical confidence intervals and Bayesian probability estimates for ends of local taxon ranges. Math. Geol. 21:411–27
    [Google Scholar]
  123. Thibodeau AM, Ritterbush K, Yager JA, West AJ, Ibarra Y et al. 2016. Mercury anomalies and the timing of biotic recovery following the end-Triassic mass extinction. Nat. Commun. 7:11147
    [Google Scholar]
  124. Tobin TS. 2017. Recognition of a likely two phased extinction at the K-Pg boundary in Antarctica. Sci. Rep. 7:16317
    [Google Scholar]
  125. Tobin TS, Ward PD, Steig EJ, Olivero EB, Hilburn IA et al. 2012. Extinction patterns, δ18O trends, and magnetostratigraphy from a southern high-latitude Cretaceous–Paleogene section: links with Deccan volcanism. Palaeogeogr. Palaeoclimatol. Palaeoecol. 350–52:180–88
    [Google Scholar]
  126. Todaro S, Rigo M, Randazzo V, Di Stefano P 2018. The end-Triassic mass extinction: a new correlation between extinction events and δ13C fluctuations from a Triassic-Jurassic peritidal succession in western Sicily. Sediment. Geol. 368:105–13
    [Google Scholar]
  127. Twitchett RJ. 2006. The palaeoclimatology, palaeoecology and palaeoenvironmental analysis of mass extinction events. Palaeogeogr. Palaeoclimatol. Palaeoecol. 232:190–213
    [Google Scholar]
  128. Twitchett RJ, Krystyn L, Baud A, Wheeley JR, Richoz S 2004. Rapid marine recovery after the end-Permian mass-extinction event in the absence of marine anoxia. Geology 32:805–8
    [Google Scholar]
  129. Twitchett RJ, Looy CV, Morante R, Visscher H, Wignall PB 2001. Rapid and synchronous collapse of marine and terrestrial ecosystems during the end-Permian mass extinction event. Geology 29:351–54
    [Google Scholar]
  130. Urbanek A. 1993. Biotic crises in the history of Upper Silurian graptoloids: a palaeobiological model. Hist. Biol. 7:29–50
    [Google Scholar]
  131. Wagner PJ, Kosnik MA, Lidgard S 2006. Abundance distributions imply elevated complexity of post-Paleozoic marine ecosystems. Science 314:1289–92
    [Google Scholar]
  132. Wang SC, Marshall CR. 2016. Estimating times of extinction in the fossil record. Biol. Lett. 12:20150989
    [Google Scholar]
  133. Wang Y, Sadler PM, Shen S, Erwin DH, Zhang Y et al. 2014. Quantifying the process and abruptness of the end-Permian mass extinction. Paleobiology 40:113–29
    [Google Scholar]
  134. Ware D, Bucher H, Brayard A, Schneebeli-Hermann E, Brühwiler T 2015. High-resolution biochronology and diversity dynamics of the Early Triassic ammonoid recovery: the Dienerian faunas of the Northern Indian Margin. Palaeogeogr. Palaeoclimatol. Palaeoecol. 440:363–73
    [Google Scholar]
  135. Westrop SR, Cuggy M. 1999. Comparative paleoecology of Cambrian trilobite extinctions. J. Paleontol. 73:337–54
    [Google Scholar]
  136. Westrop SR, Ludvigsen R. 1987. Biogeographic control of trilobite mass extinction at an Upper Cambrian “biomere” boundary. Paleobiology 13:84–99
    [Google Scholar]
  137. Williams ME. 1994. Catastrophic versus noncatastrophic extinction of the dinosaurs: testing, falsifiability, and the burden of proof. J. Paleontol. 68:183–90
    [Google Scholar]
  138. Witts JD, Whittle RJ, Wignall PB, Crame JA, Francis JE et al. 2016. Macrofossil evidence for a rapid and severe Cretaceous–Paleogene mass extinction in Antarctica. Nat. Commun. 7:11738
    [Google Scholar]
  139. Woods AD, Alms PD, Monarrez PM, Mata S 2019. The interaction of recovery and environmental conditions: an analysis of the outer shelf edge of western North America during the early Triassic. Palaeogeogr. Palaeoclimatol. Palaeoecol. 513:52–64
    [Google Scholar]
  140. Xiao Y, Suzuki N, He W 2018. Low-latitudinal standard Permian radiolarian biostratigraphy for multiple purposes with Unitary Association, Graphic Correlation, and Bayesian inference methods. Earth Sci. Rev. 179:168–206
    [Google Scholar]
  141. Yedid G, Ofria CA, Lenski RE 2009. Selective press extinctions, but not random pulse extinctions, cause delayed ecological recovery in communities of digital organisms. Am. Nat. 173:139–54
    [Google Scholar]
  142. Zecchin M, Catuneanu O, Caffau M 2019. Wave-ravinement surfaces: classification and key characteristics. Earth Sci. Rev. 188:210–39
    [Google Scholar]
  143. Zhang F, Romaniello SJ, Algeo TJ, Lau KV, Clapham ME et al. 2018. Multiple episodes of extensive marine anoxia linked to global warming and continental weathering following the latest Permian mass extinction. Sci. Adv. 4:e1602921
    [Google Scholar]
  144. Zinsmeister WJ. 1998. Discovery of fish mortality horizon at the K-T boundary on Seymour Island: re-evaluation of events at the end of the Cretaceous. Palaeontol. J. 72:556–71
    [Google Scholar]
  145. Zinsmeister WJ, Feldmann RM, Woodburne MO, Elliot DH 1989. Latest Cretaceous/earliest Tertiary transition on Seymour Island, Antarctica. Palaeontol. J. 63:731–38
    [Google Scholar]
/content/journals/10.1146/annurev-earth-071719-054827
Loading
/content/journals/10.1146/annurev-earth-071719-054827
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error