1932

Abstract

Carbonate sediments and rocks are valuable archives of Earth's past whose geochemical compositions inform our understanding of Earth's surface evolution. Yet carbonates are also reactive minerals and often undergo compositional alteration between the time of deposition and sampling and analysis. These changes may be mineralogical, structural, and/or chemical, and they are broadly referred to as diagenesis. Building on work over the past 40 years, we present an overview of key carbonate diagenesis terminology and a process-based framework for evaluating the geochemical impacts of carbonate diagenesis; we also highlight recent experimental and field observations that suggest metal isotopes as valuable diagenetic indicators. Our primary objectives are to demonstrate the value of coupling quantitative and analytical approaches, specifically with regard to metal isotopes and Mg/Ca, and to focus attention on key avenues for future work, including the role of authigenesis in impacting global geochemical cycles and the isotopic composition of the rock record.

  • ▪   Quantitative frameworks utilizing well-understood diagenetic indicators and basic geochemical parameters allow us to assess the extent of diagenetic alteration in carbonate sediments.
  • ▪   The reactivity, duration of reaction, and degree of isotopic or elemental/chemical disequilibrium determine the extent to which carbonates may be altered.
  • ▪   Metal isotopic ratios (δ44Ca, δ26Mg, 87Sr/86Sr) can be used to constrain the extent and rate of carbonate recrystallization.
  • ▪   Diagenetic signals may be globally synchronous, while diagenetic fluxes may impact global geochemical cycles.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-073019-060021
2020-05-30
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/earth/48/1/annurev-earth-073019-060021.html?itemId=/content/journals/10.1146/annurev-earth-073019-060021&mimeType=html&fmt=ahah

Literature Cited

  1. Ahm A-SC, Bjerrum CJ, Blättler CL, Swart PK, Higgins JA 2018. Quantifying early marine diagenesis in shallow-water carbonate sediments. Geochim. Cosmochim. Acta 236:140–59
    [Google Scholar]
  2. Allan JR, Matthews RK. 1982. Isotope signatures associated with early meteoric diagenesis. Sedimentology 29:797–817
    [Google Scholar]
  3. Anagnostou E, Sherrell RM, Gagnon A, LaVigne M, Field MP, McDonough WF 2011. Seawater nutrient and carbonate ion concentrations recorded as P/Ca, Ba/Ca, and U/Ca in the deep-sea coral Desmophyllum dianthus. Geochim. Cosmochim. Acta 75:92529–43
    [Google Scholar]
  4. Baker PA, Gieskes JM, Elderfield H 1982. Diagenesis of carbonates in deep-sea—evidence from Sr/Ca ratios and interstitial dissolved Sr2+ data. J. Sediment. Res. 52:171–82
    [Google Scholar]
  5. Banner JL, Hanson GN. 1990. Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis. Geochim. Cosmochim. Acta 54:113123–37
    [Google Scholar]
  6. Bathurst RGC. 1975. Carbonate Sediment and Their Diagenesis Amsterdam: Elsevier. , 2nd ed..
  7. Bernard S, Daval D, Ackerer P, Pont S, Meibom A 2017. Burial-induced oxygen-isotope re-equilibration of fossil foraminifera explains ocean paleotemperature paradoxes. Nat. Commun. 8:11134
    [Google Scholar]
  8. Berner RA. 1980. Early Diagenesis: A Theoretical Approach Princeton, NJ: Princeton Univ. Press
  9. Bjerrum CJ, Canfield DE. 2011. Towards a quantitative understanding of the late Neoproterozoic carbon cycle. PNAS 108:145542–47
    [Google Scholar]
  10. Blättler CL, Miller NR, Higgins JA 2015. Mg and Ca isotope signatures of authigenic dolomite in siliceous deep-sea sediments. Earth Planet. Sci. Lett. 419:32–42
    [Google Scholar]
  11. Boudreau BP. 1997. Diagenetic Models and Their Implementation New York: Springer-Verlag
  12. Brand U, Veizer J. 1980. Chemical diagenesis of a multicomponent carbonate system—1: Trace elements. J. Sediment. Petrol. 50:41219–36
    [Google Scholar]
  13. Brand U, Veizer J. 1981. Chemical diagenesis of a multicomponent carbonate system—2: Stable isotopes. J. Sediment. Petrol. 51:3987–97
    [Google Scholar]
  14. Brennecka GA, Hermmann AD, Algeo TJ, Anbar AD 2011. Rapid expansion of oceanic anoxia immediately before the end-Permian mass extinction. PNAS 108:17631–34
    [Google Scholar]
  15. Broecker WS, Peng T-H. 1982. Tracers in the Sea New York: Columbia Univ. Press
  16. Burdige DJ. 2006. Geochemistry of Marine Sediments Princeton, NJ: Princeton Univ. Press
  17. Capo RC, DePaolo DJ. 1990. Seawater strontium isotropic variations from 2.5 million years ago to the present. Science 249:496451–55
    [Google Scholar]
  18. Carpenter SJ, Lohmann KC, Holden P, Walter LM, Huston TJ, Halliday AN 1991. δ18O values, 87Sr/86Sr and Sr/Mg ratios of Late Devonian abiotic marine calcite: implications for the composition of ancient seawater. Geochim. Cosmochim. Acta 55:1991–2010
    [Google Scholar]
  19. Chanda P, Fantle MS. 2017. Quantifying the effect of diagenetic recrystallization on the Mg isotopic composition of marine carbonates. Geochim. Cosmochim. Acta 204:219–39
    [Google Scholar]
  20. Chanda P, Gorski CA, Oakes RL, Fantle MS 2019. Low temperature stable mineral recrystallization of foraminiferal tests and implications for the fidelity of geochemical proxies. Earth Planet. Sci. Lett. 506:428–40
    [Google Scholar]
  21. Chang VTC, Williams RJP, Makishima A, Belshawl NS, O'Nions RK 2004. Mg and Ca isotope fractionation during CaCO3 biomineralisation. Biochem.Biophys. Res. Commun. 323:178–85
    [Google Scholar]
  22. Chen JH, Edwards RL, Wasserburg GJ 1986. 238U, 234U and 232Th in seawater. Earth Planet. Sci. Lett. 80:241–51
    [Google Scholar]
  23. Chen X, Romaniello SJ, Herrmann AD, Hardisty D, Gill BC, Anbar AD 2018a. Diagenetic effects on uranium isotope fractionation in carbonate sediments from the Bahamas. Geochim. Cosmochim. Acta 237:294–311
    [Google Scholar]
  24. Chen X, Romaniello SJ, Hermann AD, Samankassou E, Anbar AD 2018b. Biological effects on uranium isotope fractionation (238U/235U) in primary biogenic carbonate. Geochim. Cosmochim. Acta 240:1–10
    [Google Scholar]
  25. Chilingar GV, Bissell HJ, Wolf KH 1967. Diagenesis of carbonate rocks. Diagenesis in Sediments G Larsen, GV Chilingar 179–342 New York: Elsevier
    [Google Scholar]
  26. Choquette PW, James NP. 1987. Diagenesis #12. Diagenesis of limestones—3. The deep burial environment. GeoSci. Can 14:3–35
    [Google Scholar]
  27. Choquette PW, James NP. 1990. Limestones—the burial diagenetic environment. Diagenesis IA McIlreath, DW Morrow 75–111 St. John's, Can: Geosci. Can.
    [Google Scholar]
  28. Claypool GE, Kaplan IR. 1974. The origin and distribution of methane in marine sediments. Natural Gases in Marine Sediments IR Kaplan 99–139 New York: Plenum
    [Google Scholar]
  29. Cui H, Kaufman AJ, Xiao S, Zhou C, Liu XM 2017. Was the Ediacaran Shuram Excursion a globally synchronized early diagenetic event? Insights from methane-derived authigenic carbonates in the uppermost Doushantuo Formation, South China. Chem. Geol. 450:59–80
    [Google Scholar]
  30. de Segonzac GD. 1968. The birth and development of the concept of diagenesis (1866–1966). Earth-Sci. Rev. 4:153–201
    [Google Scholar]
  31. DeCarlo TM, Gaetani GA, Holcomb M, Cohen AL 2015. Experimental determination of factors controlling U/Ca of aragonite precipitated from seawater: implications for interpreting coral skeleton. Geochim. Cosmochim. Acta 162:151–65
    [Google Scholar]
  32. Delaney ML, Linn LJ. 1993. Interstitial water and bulk calcite chemistry, Leg 130, and calcite recrystallization. Proceedings of the Ocean Drilling Program, Scientific Results WH Berger, LW Kroenke, LA Mayer, WV Sliter 561–72 College Station, TX: Ocean Drill. Program
    [Google Scholar]
  33. Derry LA. 2010. A burial diagenesis origin for the Ediacaran Shuram–Wonoka carbon isotope anomaly. Earth Planet. Sci. Lett. 294:152–62
    [Google Scholar]
  34. Dunham RJ. 1962. Classification of carbonate rocks according to depositional texture. Classification of Carbonate Rocks—A Symposium WE Ham 108–21 Tulsa, OK: Am. Assoc. Pet. Geol.
    [Google Scholar]
  35. Dyer B, Maloof AC, Higgins JA 2015. Glacioeustasy, meteoric diagenesis, and the carbon cycle during the Middle Carboniferous. Geochem. Geophys. Geosyst. 16:1–21541–76
    [Google Scholar]
  36. Fantle MS. 2010. Evaluating the Ca isotope proxy. Am. J. Sci. 310:3194–230
    [Google Scholar]
  37. Fantle MS. 2015. Calcium isotopic evidence for rapid recrystallization of bulk marine carbonates and implications for geochemical proxies. Geochim. Cosmochim. Acta 148:378–401
    [Google Scholar]
  38. Fantle MS, DePaolo DJ. 2006. Sr isotopes and pore fluid chemistry in carbonate sediment of the Ontong Java Plateau: calcite recrystallization rates and evidence for a rapid rise in seawater Mg over the last 10 million years. Geochim. Cosmochim. Acta 70:153883–3904
    [Google Scholar]
  39. Fantle MS, DePaolo DJ. 2007. Ca isotopes in carbonate sediment and pore fluid from ODP Site 807A: the Ca2+(aq)-calcite equilibrium fractionation factor and calcite recrystallization rates in Pleistocene sediments. Geochim. Cosmochim. Acta 71:102524–46
    [Google Scholar]
  40. Fantle MS, Higgins J. 2014. The effects of diagenesis and dolomitization on Ca and Mg isotopes in marine platform carbonates: implications for the geochemical cycles of Ca and Mg. Geochim. Cosmochim. Acta 142:458–81
    [Google Scholar]
  41. Fantle MS, Maher KM, Depaolo DJ 2010. Isotopic approaches for quantifying the rates of marine burial diagenesis. Rev. Geophys. 48:3RG3002
    [Google Scholar]
  42. Fantle MS, Tipper ET. 2014. Calcium isotopes in the global biogeochemical Ca cycle: implications for development of a Ca isotope proxy. Earth-Sci. Rev. 129:148–77
    [Google Scholar]
  43. Flügel E. 2010. Microfacies of Carbonate Rocks New York: Springer
  44. Folk RL. 1959. Practical petrographic classification of limestones. AAPG Bull 43:1–38
    [Google Scholar]
  45. Folk RL. 1965. Some aspects of recrystallization in ancient limestones. Dolomitization and Limestone Diagenesis LC Pray, RC Murray 14–48 Tulsa, OK: SEPM
    [Google Scholar]
  46. Friedman GM. 1964. Early diagenesis and lithification in carbonate sediments. J. Sediment. Petrol. 34:4777–813
    [Google Scholar]
  47. Gabitov RI, Gaetani GA, Watson EB, Cohen AL, Ehrlich HL 2008. Experimental determination of growth rate effect on U6+ and Mg2+ partitioning between aragonite and fluid at elevated U6+ concentration. Geochim. Cosmochim. Acta 72:164058–68
    [Google Scholar]
  48. Gabitov RI, Sadekov A, Leinweber A 2014. Crystal growth rate effect on Mg/Ca and Sr/Ca partitioning between calcite and fluid: an in situ approach. Chem. Geol. 367:70–82
    [Google Scholar]
  49. Geske A, Goldstein RH, Mavromatis V, Richter DK, Buhl D et al. 2015. The magnesium isotope (δ26Mg) signature of dolomites. Geochim. Cosmochim. Acta 149:131–51
    [Google Scholar]
  50. Given RK, Wilkinson BH. 1987. Dolomite abundance and stratigraphic age: constraints on rates and mechanisms of Phanerozoic dolostone formation. J. Sediment. Petrol. 57:61068–78
    [Google Scholar]
  51. Gorski CA, Fantle MS. 2017. Stable mineral recrystallization in low temperature aqueous systems: a critical review. Geochim. Cosmochim. Acta 198:439–65
    [Google Scholar]
  52. Gothmann AM, Higgins JA, Adkins JF, Broecker W, Farley KA et al. 2019. A Cenozoic record of seawater uranium in fossil corals. Geochim. Cosmochim. Acta 250:173–90
    [Google Scholar]
  53. Griffith EM, Fantle MS, Eisenhauer A, Paytan A, Bullen TD 2015. Effects of ocean acidification on the marine calcium isotope record at the Paleocene–Eocene Thermal Maximum. Earth Planet. Sci. Lett. 419:81–92
    [Google Scholar]
  54. Grotzinger JP, Fike DA, Fischer WW 2011. Enigmatic origin of the largest-known carbon isotope excursion in Earth's history. Nat. Geosci. 4:285–92
    [Google Scholar]
  55. Hart MB, Hylton MD, Oxford MJ, Price GD, Hudson W, Smart CW 2003. The search for the origin of the planktic Foraminifera. J. Geol. Soc. Lond. 160:341–43
    [Google Scholar]
  56. Haug É 1907. Traité de Géologie, Vol. 1: Paris: Librairie Armand Colin
  57. Henderson GM, Slowey NC, Haddad GA 1999. Fluid flow through carbonate platforms: constraints from 234U/238U and Cl in Bahamas pore-waters. Earth Planet. Sci. Lett. 169:99–111
    [Google Scholar]
  58. Hess J, Bender ML, Schilling JG 1986. Evolution of the ratio of strontium-87 to strontium-86 in seawater from Cretaceous to present. Science 231:4741979–84
    [Google Scholar]
  59. Higgins JA, Blättler CL, Lundstrom EA, Santiago-Ramos DP, Akhtar AA et al. 2018. Mineralogy, early marine diagenesis, and the chemistry of shallow-water carbonate sediments. Geochim. Cosmochim. Acta 220:512–34
    [Google Scholar]
  60. Higgins JA, Schrag DP. 2010. Constraining magnesium cycling in marine sediments using magnesium isotopes. Geochim. Cosmochim. Acta 74:175039–53
    [Google Scholar]
  61. Higgins JA, Schrag DP. 2012. Records of Neogene seawater chemistry and diagenesis in deep-sea carbonate sediments and pore fluids. Earth Planet. Sci. Lett. 357:386–96
    [Google Scholar]
  62. Hippler D, Buhl D, Witbaard R, Richter DK, Immenhauser A 2009. Towards a better understanding of magnesium-isotope ratios from marine skeletal carbonate. Geochim. Cosmochim. Acta 73:6134–46
    [Google Scholar]
  63. Holmden C. 2009. Ca isotope study of Ordovician dolomite, limestone, and anhydrite in the Williston Basin: implications for subsurface dolomitization and local Ca cycling. Chem. Geol. 268:3–4180–88
    [Google Scholar]
  64. Holmden CE, Papanastassiou DA, Blanchon P, Evans S 2012. δ44/40Ca variability in shallow water carbonates and the impact of submarine groundwater discharge on Ca-cycling in marine environments. Geochim. Cosmochim. Acta 83:179–94
    [Google Scholar]
  65. Huber C, Druhan JL, Fantle MS 2017. Perspectives on geochemical proxies: the impact of model and parameter selection on the quantification of carbonate recrystallization rates. Geochim. Cosmochim. Acta 217:171–92
    [Google Scholar]
  66. Husson JM, Higgins JA, Maloof AC, Schoene B 2015. Ca and Mg isotope constraints on the origin of Earth's deepest δ13C excursion. Geochim. Cosmochim. Acta 160:243–66
    [Google Scholar]
  67. Inoue M, Suwa R, Suzuki A, Sakai K, Kawahata H 2011. Effects of seawater pH on growth and skeletal U/Ca ratios of Acropora digitifera coral polyps. Geophys. Res. Lett. 38:122–5
    [Google Scholar]
  68. Irwin H, Curtis CD, Coleman ML 1977. Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments. Nature 269:209–13
    [Google Scholar]
  69. Jacobsen SB, Kaufman AJ. 1999. The Sr, C and O isotopic evolution of Neoproterozoic seawater. Chem. Geol. 161:1–437–57
    [Google Scholar]
  70. James NP, Jones B. 2016. Origin of Carbonate Sedimentary Rocks Chichester, UK: Wiley & Sons
  71. Jones GD, Whitaker FF, Smart PL, Sanford WE 2004. Numerical analysis of seawater circulation in carbonate platforms: II. The dynamic interaction between geothermal and brine reflux circulation. Am. J. Sci. 304:3250–84
    [Google Scholar]
  72. Jost AB, Mundil R, He B, Brown ST, Altiner D et al. 2014. Constraining the cause of the end-Guadalupian extinction with coupled records of carbon and calcium isotopes. Earth Planet. Sci. Lett. 396:201–12
    [Google Scholar]
  73. Kastner M. 1999. Oceanic minerals: their origin, nature of their environment, and significance. PNAS 96:3380–87
    [Google Scholar]
  74. Katz A. 1973. Interaction of magnesium with calcite during crystal growth at 25–90°C and one atmosphere. Geochim. Cosmochim. Acta 37:1563–86
    [Google Scholar]
  75. Katz A, Sass E, Starinsky A 1972. Strontium behavior in the aragonite-calcite transformation: an experimental study at 40–98°C. Geochim. Cosmochim. Acta 36:481–96
    [Google Scholar]
  76. Kennett JP. 1982. Marine Geology Englewood Cliffs, NJ: Prentice Hall
  77. Kerisit S, Liu C. 2010. Molecular simulation of the diffusion of uranyl carbonate species in aqueous solution. Geochim. Cosmochim. Acta 74:174937–52
    [Google Scholar]
  78. Keul N, Langer G, de Nooijer L, Nehrke G, Reichart F-J, Bijma J 2013. Incorporation of uranium in benthic foraminiferal calcite reflects seawater carbonate ion concentration. Geochem. Geophys. Geosyst. 14:1102–11
    [Google Scholar]
  79. Killingley JS. 1983. Effects of diagenetic recrystallization on 18O/16O values of deep-sea sediments. Nature 301:5901594–97
    [Google Scholar]
  80. Kimmig SR, Holmden CE. 2017. Multi-proxy geochemical evidence for primary aragonite precipitation in a tropical-shelf “calcite sea” during the Hirnantian glaciation. Geochim. Cosmochim. Acta 206:254–72
    [Google Scholar]
  81. Kitano Y, Oomori T. 1971. The coprecipitation of uranium with calcium carbonate. J. Oceanogr. Soc. Jpn. 27:134–42
    [Google Scholar]
  82. Knauth LP, Kennedy MJ. 2009. The late Precambrian greening of the Earth. Nature 460:7256728–32
    [Google Scholar]
  83. Kozdon R, Kelly DC, Kitajima K, Strickland A, Fournelle JH, Valley JW 2013. In situ δ18O and Mg/Ca analyses of diagenetic and planktic foraminiferal calcite preserved in a deep-sea record of the Paleocene-Eocene thermal maximum. Paleoceanography 28:3517–28
    [Google Scholar]
  84. Kozdon R, Kelly DC, Valley JW 2018. Diagenetic attenuation of carbon isotope excursion recorded by planktic foraminifers during the Paleocene-Eocene thermal maximum. Paleoceanogr. Paleoclimatol. 33:4367–80
    [Google Scholar]
  85. Lammers LN, Mitnick EH. 2019. Magnesian calcite solid solution thermodynamics inferred from authigenic deep-sea carbonate. Geochim. Cosmochim. Acta 248:343–55
    [Google Scholar]
  86. Land LS. 1967. Diagenesis of skeletal carbonates. J. Sediment. Res. 37:3914–30
    [Google Scholar]
  87. Larsen G, Chilingar GV 1967. Introduction. In Developments in Sedimentology, Vol. 8: Diagenesis in Sediments, ed. G Larsen, GV Chilingar, pp. 1–17 New York: Elsevier
    [Google Scholar]
  88. Lau KV, Maher K, Brown ST, Jost AB, Altiner D et al. 2017. The influence of seawater carbonate chemistry, mineralogy, and diagenesis on calcium isotope variations in Lower-Middle Triassic carbonate rocks. Chem. Geol. 471:13–37
    [Google Scholar]
  89. Lear CH, Elderfield H, Wilson PA 2000. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science 287:5451269–72
    [Google Scholar]
  90. Li W, Beard BK, Li C, Xu H, Johnson CM 2015. Experimental calibration of Mg isotope fractionation between dolomite and aqueous solution and its geological implications. Geochim. Cosmochim. Acta 157:164–81
    [Google Scholar]
  91. Lohmann KC. 1988. Geochemical patterns of meteoric diagenetic systems and their application to studies of paleokarst. Paleokarst NP James, PW Choquette 58–80 New York: Springer
    [Google Scholar]
  92. Lohmann KC, Walker JCG. 1989. The δ18O record of Phanerozoic abiotic marine calcite cements. Geophys. Res. Lett. 16:4319–22
    [Google Scholar]
  93. Machel HG. 1997. Recrystallization versus neomorphism and the concept of “significant recrystallization” in dolomite research. Sediment. Geol. 113:161–68
    [Google Scholar]
  94. Machel HG. 2004. Concepts and models of dolomitization: a critical reappraisal. Geol. Soc. Lond. Spec. Publ. 235:7–63
    [Google Scholar]
  95. Machel HG. 2005. Investigations of burial diagenesis in carbonate hydrocarbon reservoir rocks. Geosci. Can. 32:3103–28
    [Google Scholar]
  96. Malone MJ. 2000. Data report: geochemistry and mineralogy of periplatform carbonate sediments: sites 1006, 1008, and 1009. Proceedings of the Ocean Drilling Program, Scientific Results 166 PK Swart, GP Eberli, MJ Malone, JF Sarg 145–52 College Station, TX: Ocean Drill. Program
    [Google Scholar]
  97. Manheim FT, Sayles FL. 1971. Interstitial water studies on small core samples, Deep Sea Drilling Project, Leg 6. Initial Reports of the Deep Sea Drilling Project, Vol. 6 AF Fischer 811–21 Washington, DC: Natl. Sci. Found.
    [Google Scholar]
  98. Marshall JD. 1992. Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation. Geol. Mag. 129:2143–60
    [Google Scholar]
  99. Marshall JD, Ashton M. 1980. Isotopic and trace element evidence for submarine lithification of hardgrounds in the Jurassic of eastern England. Sedimentology 27:271–89
    [Google Scholar]
  100. Matthews RK. 1968. Carbonate diagenesis: equilibration of sedimentary mineralogy to the subaerial environment; coral cap of Barbados, West Indies. J. Sediment. Res. 38:41110–19
    [Google Scholar]
  101. Mavromatis V, Gautier Q, Bosc O, Schott J 2013. Kinetics of Mg partition and Mg stable isotope fractionation during its incorporation in calcite. Geochim. Cosmochim. Acta 114:188–203
    [Google Scholar]
  102. McArthur JM, Howarth RJ, Bailey TR 2001. Strontium isotope stratigraphy: LOWESS version 3: best fit to the marine Sr-isotope curve for 0–509 Ma and accompanying look-up table for deriving numerical age. J. Geol. 109:2155–70
    [Google Scholar]
  103. Medina-Elizalde M, Lea DW, Fantle MS 2008. Implications of seawater Mg/Ca variability for Plio-Pleistocene tropical climate reconstruction. Earth Planet. Sci. Lett. 269:3–4585–95
    [Google Scholar]
  104. Meece DE, Benninger LK. 1993. The coprecipitation of Pu and other radionuclides with CaCO3. Geochim. Cosmochim. Acta 57:71447–58
    [Google Scholar]
  105. Melim LA, Swart PK, Eberli GP 2004. Mixing-zone diagenesis in the subsurface of Florida and the Bahamas. J. Sediment. Res. 74:6904–13
    [Google Scholar]
  106. Min GR, Edwards RL, Taylor FW, Recy J, Gallup CD, Beck JW 1995. Annual cycles of U/Ca in coral skeletons and U/Ca thermometry. Geochim. Cosmochim. Acta 59:102025–42
    [Google Scholar]
  107. Mitsuguchi T, Uchida T, Matsumoto E 2010. Na/Ca variability in coral skeletons. Geochem. J. 44:4261–73
    [Google Scholar]
  108. Moore CH. 1989. Carbonate Diagenesis and Porosity Amsterdam: Elsevier
  109. Mucci A. 1987. Influence of temperature on the composition of magnesian calcite overgrowths precipitated from seawater. Geochim. Cosmochim. Acta 51:1977–84
    [Google Scholar]
  110. Mucci A, Morse JW. 1983. The incorporation of Mg2+ and Sr2+ into calcite overgrowths: influences of growth rate and solution composition. Geochim. Cosmochim. Acta 47:217–33
    [Google Scholar]
  111. Murray ST, Swart PK. 2017. Evaluating formation fluid models and calibrations using clumped isotope paleothermometry on Bahamian dolomites. Geochim. Cosmochim. Acta 206:73–93
    [Google Scholar]
  112. Oomori T, Kaneshima H, Maezato Y 1987. Distribution coefficient of Mg2+ ions between calcite and solution at 10–50°C. Mar. Chem. 20:327–36
    [Google Scholar]
  113. Paytan A, Mearon S, Cobb K, Kastner M 2002. Origin of marine barite deposits: Sr and S isotope characterization. Geology 30:8747–50
    [Google Scholar]
  114. Pettijohn FJ. 1957. Sedimentary Rocks New York: Harper. , 2nd ed..
  115. Pingitore NE. 1978. The Behavior of Zn2+ and Mn2+ during carbonate diagenesis: theory and applications. J. Sediment. Petrol. 48:3799–814
    [Google Scholar]
  116. Pingitore NE, Iglesias A, Lytle F, Wellington GM 2002. X-ray absorption spectroscopy of uranium at low ppm levels in coral skeletal aragonite. Microchem. J. 71:2–3261–66
    [Google Scholar]
  117. Pogge von Strandmann PAE. 2008. Precise magnesium isotope measurements in core top planktic and benthic foraminifera. Geochem. Geophys. Geosyst. 9:Q12015
    [Google Scholar]
  118. Pruss SB, Bottjer DJ, Corsetti FA, Baud A 2006. A global marine sedimentary response to the end-Permian mass extinction: examples from southern Turkey and the western United States. Earth-Sci. Rev. 78:3–4193–206
    [Google Scholar]
  119. Raitzsch M, Kuhnert H, Hathorne EC, Groeneveld J, Bickert T 2011. U/Ca in benthic foraminifers: a proxy for the deep-sea carbonate saturation. Geochem. Geophys. Geosyst. 12:6Q06019
    [Google Scholar]
  120. Reeder RJ, Elzinga EJ, Tait CD, Rector KD, Donohoe RJ, Morris DE 2004. Site-specific incorporation of uranyl carbonate species at the calcite surface. Geochim. Cosmochim. Acta 68:234799–808
    [Google Scholar]
  121. Reeder RJ, Nugent M, Lamble GM, Tait CD, Morris DE 2000. Uranyl incorporation into calcite and aragonite: XAFS and luminescence studies. Environ. Sci. Technol. 34:4638–44
    [Google Scholar]
  122. Rehkämper M, Frank M, Hein JR, Porcelli D, Halliday A et al. 2002. Thallium isotope variations in seawater and hydrogenetic, diagenetic, and hydrothermal ferromanganese deposits. Earth Planet. Sci. Lett. 197:1–265–81
    [Google Scholar]
  123. Richter FM, DePaolo DJ. 1987. Numerical models for diagenesis and the Neogene Sr isotopic evolution of seawater from DSDP Site 590B. Earth Planet. Sci. Lett. 83:1–427–38
    [Google Scholar]
  124. Richter FM, DePaolo DJ. 1988. Diagenesis and Sr isotopic evolution of seawater using data from DSDP 590B and 575. Earth Planet. Sci. Lett. 90:4382–94
    [Google Scholar]
  125. Richter FM, Liang Y. 1993. The rate and consequences of Sr diagenesis in deep-sea carbonates. Earth Planet. Sci. Lett. 117:3–4553–65
    [Google Scholar]
  126. Richter FM, Mendybaev RA, Christensen JN, Hutcheon ID, Williams RW et al. 2006. Kinetic isotopic fractionation during diffusion of ionic species in water. Geochim. Cosmochim. Acta 70:2277–89
    [Google Scholar]
  127. Romaniello SJ, Herrmann AD, Anbar AD 2013. Uranium concentrations and 238U/235U isotope ratios in modern carbonates from the Bahamas: assessing a novel paleoredox proxy. Chem. Geol. 362:305–16
    [Google Scholar]
  128. Rothman DH, Hayes JM, Summons RE 2003. Dynamics of the Neoproterozoic carbon cycle. PNAS 100:148124–29
    [Google Scholar]
  129. Russell AD, Emerson S, Nelson BK, Erez J, Lea DW 1994. Uranium in foraminiferal calcite as a recorder of seawater uranium concentrations. Geochim. Cosmochim. Acta 58:2671–81
    [Google Scholar]
  130. Russell AD, Hönisch B, Spero HJ, Lea DW 2004. Effects of seawater carbonate ion concentration and temperature on shell U, Mg, and Sr in cultured planktonic foraminifera. Geochim. Cosmochim. Acta 68:214347–61
    [Google Scholar]
  131. Rustad JR, Casey WH, Yin QZ, Bylaska EJ, Felmy AR et al. 2010. Isotopic fractionation of Mg2+(aq), Ca2+(aq), and Fe2+(aq) with carbonate minerals. Geochim. Cosmochim. Acta 74:226301–23
    [Google Scholar]
  132. Sayles FL. 1979. The composition and diagenesis of interstitial solutions—I. Fluxes across the seawater-sediment interface in the Atlantic Ocean. Geochim. Cosmochim. Acta 43:4527–45
    [Google Scholar]
  133. Sayles FL. 1981. The composition and diagenesis of interstitial solutions—II. Fluxes and diagenesis at the water-sediment interface in the high latitude North and South Atlantic. Geochim. Cosmochim. Acta 45:71061–86
    [Google Scholar]
  134. Sayles FL, Manheim FT. 1975. Interstitial solutions and diagenesis in deeply buried marine sediments: results from the Deep Sea Drilling Project. Geochim. Cosmochim. Acta 39:2103–27
    [Google Scholar]
  135. Schlanger SO, Douglas RG. 1974. The pelagic ooze-chalk-limestone transition and its implications for marine stratigraphy. Pelagic Sediments: On Land and Under the Sea KJ Hsü, HC Jenkyns 117–48 London: Blackwell
    [Google Scholar]
  136. Schmidt V. 1965. Facies, diagenesis, and related reservoir properties in the Gigas Bed (Upper Jurassic), northwestern Germany. Dolomitization and Limestone Diagenesis: A Symposium LC Pray, RC Murray 124–68 Tulsa, OK: SEPM
    [Google Scholar]
  137. Schmoker JW, Halley RB. 1982. Carbonate porosity versus depth: a predictable relation for south Florida. AAPG Bull 66:122561–70
    [Google Scholar]
  138. Scholle PA, Halley RB. 1985. Burial diagenesis: out of sight, out of mind!. Carbonate Cements N Schneidermann, PM Harris 309–34 Tulsa, OK: SEPM
    [Google Scholar]
  139. Scholle PA, Ulmer-Scholle DS. 2003. A Color Guide to the Petrography of Carbonate Rocks: Grains, Textures, Porosity, Diagenesis Tulsa, OK: Am. Assoc. Pet. Geol.
  140. Schrag DP, Higgins JA, Macdonald FA, Johnston DT 2013. Authigenic carbonate and the history of the global carbon cycle. Science 339:6119540–43
    [Google Scholar]
  141. Schulz HD, Dahmke A, Schinzel U, Wallmann K, Zabel M 1994. Early diagenetic processes, fluxes, and reaction rates in sediments of the South Atlantic. Geochim. Cosmochim. Acta 58:92041–60
    [Google Scholar]
  142. Shen GT, Dunbar RB. 1995. Environmental controls on uranium in reef corals. Geochim. Cosmochim. Acta 59:102009–24
    [Google Scholar]
  143. Simms M. 1984. Dolomitization by groundwater flow systems in carbonate platforms. Trans. Gulf Coast Assoc. Geol. Soc. 34:411–20
    [Google Scholar]
  144. Staudigel PT, Swart PK. 2019. A diagenetic origin for isotopic variability of sediments deposited on the margin of Great Bahama Bank, insights from clumped isotopes. Geochim. Cosmochim. Acta 258:97–119
    [Google Scholar]
  145. Steinen RP, Matthews RK. 1973. Phreatic versus vadose diagenesis: stratigraphy and mineralogy of a cored borehole on Barbados, W.I. J. Sediment. Petrol. 43:41012–20
    [Google Scholar]
  146. Stolper DA, Eiler JM, Higgins JA 2018. Modeling the effects of diagenesis on carbonate clumped-isotope values in deep- and shallow-water settings. Geochim. Cosmochim. Acta 227:264–91
    [Google Scholar]
  147. Strakhov NM, Brodskaya NG, Knyazeva LM, Razzhivina AN, Rateev MA et al. 1954. Formation of Sediments in Recent Basins Moscow: Akad. Nauk SSSR
  148. Sturchio NC, Antonio MR, Soderholm L, Sutton SR, Brannon JC 1998. Tetravalent uranium in calcite. Science 281:971–73
    [Google Scholar]
  149. Sun X, Higgins J, Turchyn AV 2016. Diffusive cation fluxes in deep-sea sediments and insight into the global geochemical cycles of calcium, magnesium, sodium and potassium. Mar. Geol. 373:64–77
    [Google Scholar]
  150. Swart PK. 2015. The geochemistry of carbonate diagenesis: the past, present and future. Sedimentology 62:51233–304
    [Google Scholar]
  151. Swart PK, Eberli G. 2005. The nature of the δ13C of periplatform sediments: implications for stratigraphy and the global carbon cycle. Sediment. Geol. 175:1–4115–29
    [Google Scholar]
  152. Swart PK, Kennedy MJ. 2012. Does the global stratigraphic reproducibility of δ13C in Neoproterozoic carbonates require a marine origin? A Pliocene–Pleistocene comparison. Geology 40:187–90
    [Google Scholar]
  153. Swart PK, Oehlert AM. 2018. Revised interpretations of stable C and O patterns in carbonate rocks resulting from meteoric diagenesis. Sediment. Geol. 364:14–23
    [Google Scholar]
  154. Teichert BMA, Eisenhauer A, Bohrmann G, Haase-Schramm A, Bock B, Linke P 2003. U/Th systematics and ages of authigenic carbonates from Hydrate Ridge, Cascadia Margin: recorders of fluid flow variations. Geochim. Cosmochim. Acta 67:3845–57
    [Google Scholar]
  155. Tissot FLH, Chen C, Go BM, Naziemiec M, Healy G et al. 2018. Controls of eustasy and diagenesis on the 238U/235U of carbonates and evolution of the seawater (234U/238U) during the last 1.4 Myr. Geochim. Cosmochim. Acta 242:233–65
    [Google Scholar]
  156. Tucker ME, Wright VP. 1990. Carbonate Sedimentology Oxford, UK: Blackwell
  157. Usui A, Someya M. 1997. Distribution and composition of marine hydrogenetic and hydrothermal manganese deposits in the northwest Pacific. Geol. Soc. Lond. Spec. Publ. 119:1177–98
    [Google Scholar]
  158. Veillard C, John C, Krevor S, Najorka J 2019. Rock-buffered recrystallization of Marion Plateau dolomites at low temperature evidenced by clumped isotope thermometry and X-ray diffraction analysis. Geochim. Cosmochim. Acta 252:190–212
    [Google Scholar]
  159. Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D et al. 1999. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem. Geol. 161:1–359–88
    [Google Scholar]
  160. Von Gümbel CW. 1868. Geognostische Beschreibung Des Ostbayerischen Grenzgebirges Gotha, Ger: Justus Perthes
  161. Walther J. 1893. Einleitung in Die Geologie Als Historische Wissenschaft. Beobachtungen Fiber Die Bildung Der Gesteine Und Ihrer Organischen Einschliisse. Jena, Ger: Fischer
  162. Weremeichik JM, Gabitov RI, Thien BMJ, Sadekov A 2017. The effect of growth rate on uranium partitioning between individual calcite crystals and fluid. Chem. Geol. 450:145–53
    [Google Scholar]
  163. Whitaker FF, Smart PL, Jones GD 2004. Dolomitization: from conceptual to numerical models. Geol. Soc. Lond. Spec. Publ. 235:99–139
    [Google Scholar]
  164. Wombacher F, Eisenhauer A, Böhm F, Gussone N, Regenberg M et al. 2011. Magnesium stable isotope fractionation in marine biogenic calcite and aragonite. Geochim. Cosmochim. Acta 75:195797–818
    [Google Scholar]
  165. Woods AD, Bottjer DJ, Mutti M, Morrison J 1999. Lower Triassic large sea-floor carbonate cements: their origin and a mechanism for the prolonged biotic recovery from the end-Permian mass extinction. Geology 27:7645–48
    [Google Scholar]
  166. Wright VP. 1992. A revised classification of limestones. Sediment. Geol. 76:177–85
    [Google Scholar]
  167. Wycech JB, Kelly DC, Kozdon R, Orland IJ, Spero HJ, Valley JW 2018. Comparison of δ18O analyses on individual planktic foraminifer (Orbulina universa) shells by SIMS and gas-source mass spectrometry. Chem. Geol. 483:119–30
    [Google Scholar]
  168. Yu J, Elderfield H, Jin Z, Booth L 2008. A strong temperature effect on U/Ca in planktonic foraminiferal carbonates. Geochim. Cosmochim. Acta 72:204988–5000
    [Google Scholar]
  169. Zachos J, Pagani M, Sloan L, Thomas E, Billups K 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:5517686–93
    [Google Scholar]
  170. Zhu Z, Aller RC, Mak J 2002. Stable carbon isotope cycling in mobile coastal muds of Amapá, Brazil. Cont. Shelf Res. 22:152065–79
    [Google Scholar]
/content/journals/10.1146/annurev-earth-073019-060021
Loading
/content/journals/10.1146/annurev-earth-073019-060021
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error