1932

Abstract

Severe climatic and environmental changes are far more prevalent in Earth history than major extinction events, and the relationship between environmental change and extinction severity has important implications for the outcome of the ongoing anthropogenic extinction event. The response of mineralized marine plankton to environmental change offers an interesting contrast to the overall record of marine biota, which is dominated by benthic invertebrates. Here, we summarize changes in the species diversity of planktic foraminifera and calcareous nannoplankton over the Mesozoic–Cenozoic and that of radiolarians and diatoms over the Cenozoic. We find that, aside from the Triassic–Jurassic and Cretaceous–Paleogene mass extinction events, extinction in the plankton is decoupled from that in the benthos. Extinction in the plankton appears to be driven primarily by majorclimatic shifts affecting water column stratification, temperature, and, perhaps, chemistry. Changes that strongly affect the benthos, such as acidification and anoxia, have little effect on the plankton or are associated with radiation.

  • ▪   Fossilizing marine plankton provide some of the most highly temporally and taxonomically resolved records of biodiversity since the Mesozoic.
  • ▪   The record of extinction and origination in the plankton differs from the overall marine biodiversity record in revealing ways.
  • ▪   Changes to water column stratification and global circulation are the main drivers of plankton diversity.
  • ▪   Anoxia, acidification, and eutrophication (which strongly influence total marine fossil diversity) are less important in the plankton.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-081619-052818
2020-05-30
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/earth/48/1/annurev-earth-081619-052818.html?itemId=/content/journals/10.1146/annurev-earth-081619-052818&mimeType=html&fmt=ahah

Literature Cited

  1. Agnini C, Fornaciari E, Raffi I, Catanzariti R, Pälike H et al. 2014. Biozonation and biochronology of Paleogene calcareous nannofossils from low and middle latitudes. Newsl. Stratigr. 47:131–81
    [Google Scholar]
  2. Alegret L, Arenillas I, Arz JA, Molina E 2004. Foraminiferal event-stratigraphy across the Cretaceous/Paleogene boundary. Neues Jahrb. Geol. Paläontol. Abh. 231:25–50
    [Google Scholar]
  3. Alegret L, Thomas E, Lohmann KC 2012. End-Cretaceous marine mass extinction not caused by productivity collapse. PNAS 109:3728–32
    [Google Scholar]
  4. Alroy J. 2008. Dynamics of origination and extinction in the marine fossil record. PNAS 105:Suppl. 111536–42
    [Google Scholar]
  5. Alvarez LW, Alvarez W, Asaro F, Michel HV 1980. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208:44481095–108
    [Google Scholar]
  6. Alvarez SA, Gibbs SJ, Bown PR, Kim H, Sheward RM, Ridgwell A 2019. Diversity decoupled from ecosystem function and resilience during mass extinction recovery. Nature 574:242–45
    [Google Scholar]
  7. Arenillas I, Arz JA, Molina E, Dupuis C 2000. An independent test of planktic foraminiferal turnover across the Cretaceous/Paleogene (K/P) boundary at El Kef, Tunisia: catastrophic mass extinction and possible survivorship. Micropaleontology 46:131–49
    [Google Scholar]
  8. Artemieva N, Morgan J. 2017. Quantifying the release of climate‐active gases by large meteorite impacts with a case study of Chicxulub. Geophys. Res. Lett. 44:2010180–88
    [Google Scholar]
  9. Arthur MA, Natland JH. 1979. Carbonaceous sediments in the North and South Atlantic: the role of salinity in stable stratification of Early Cretaceous basins. Deep Drilling Results in the Atlantic Ocean: Continental Margins and Paleoenvironment M Talwani, WW Hay, WBF Ryan 375–401 Washington, DC: Am. Geophys. Union
    [Google Scholar]
  10. Arthur MA, Schlanger SO. 1979. Cretaceous. AAPG Bull 63:6870–85
    [Google Scholar]
  11. Aze T, Ezard TH, Purvis A, Coxall HK, Stewart DR et al. 2011. A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data. Biol. Rev. 86:4900–27
    [Google Scholar]
  12. Aze T, Pearson PN, Dickson AJ, Badger MP, Bown PR et al. 2014. Extreme warming of tropical waters during the Paleocene–Eocene Thermal Maximum. Geology 42:9739–42
    [Google Scholar]
  13. Bambach RK, Knoll AH, Wang SC 2004. Origination, extinction, and mass depletions of marine diversity. Paleobiology 30:4522–42
    [Google Scholar]
  14. Barnosky AD, Matzke N, Tomiya S, Wogan GO, Swartz B et al. 2011. Has the Earth's sixth mass extinction already arrived. ? Nature 471:733651–57
    [Google Scholar]
  15. Barton AD, Irwin AJ, Finkel ZV, Stock CA 2016. Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities. PNAS 113:112964–69
    [Google Scholar]
  16. Beerling DJ, Berner RA. 2002. Biogeochemical constraints on the Triassic–Jurassic boundary carbon cycle event. Glob. Biogeochem. Cycles 16:310–113
    [Google Scholar]
  17. Birch HS, Coxall HK, Pearson PN 2012. Evolutionary ecology of Early Paleocene planktonic foraminifera: size, depth habitat and symbiosis. Paleobiology 38:3374–90
    [Google Scholar]
  18. Birch HS, Coxall HK, Pearson PN, Kroon D, Schmidt DN 2016. Partial collapse of the marine carbon pump after the Cretaceous-Paleogene boundary. Geology 44:4287–90
    [Google Scholar]
  19. Bown PR. 2005a. Selective calcareous nannoplankton survivorship at the Cretaceous-Tertiary boundary. Geology 33:653–56
    [Google Scholar]
  20. Bown PR. 2005b. Calcareous nannoplankton evolution: a tale of two oceans. Micropaleontology 51:4299–308
    [Google Scholar]
  21. Bown PR, Lees JA, Young JR 2004. Calcareous nannoplankton evolution and diversity through time. Coccolithophores: From Molecular Processes to Global Impact HR Thierstein, JR Young 481–508 Berlin: Springer
    [Google Scholar]
  22. Bown PR, Pearson P. 2009. Calcareous plankton evolution and the Paleocene/Eocene thermal maximum event: new evidence from Tanzania. Mar. Micropaleontol. 71:1–260–70
    [Google Scholar]
  23. Bralower TJ, Self‐Trail JM. 2016. Nannoplankton malformation during the Paleocene‐Eocene Thermal Maximum and its paleoecological and paleoceanographic significance. Paleoceanography 31:101423–39
    [Google Scholar]
  24. Browning EL, Watkins DK. 2008. Elevated primary productivity of calcareous nannoplankton associated with ocean anoxic event 1b during the Aptian/Albian transition (Early Cretaceous). Paleoceanography 23:2PA2213
    [Google Scholar]
  25. Brugger J, Feulner G, Petri S 2017. Baby, it's cold outside: climate model simulations of the effects of the asteroid impact at the end of the Cretaceous. Geophys. Res. Lett. 44:1419–27
    [Google Scholar]
  26. Carter ES, Hori RS. 2005. Global correlation of the radiolarian faunal change across the Triassic–Jurassic boundary. Can. J. Earth Sci. 42:5777–90
    [Google Scholar]
  27. Cohen AS, Coe AL, Harding SM, Schwark L 2004. Osmium isotope evidence for the regulation of atmospheric CO2 by continental weathering. Geology 32:2157–60
    [Google Scholar]
  28. Coxall HK, D'Hondt S, Zachos JC 2006. Pelagic evolution and environmental recovery after the Cretaceous-Paleogene mass extinction. Geology 34:4297–300
    [Google Scholar]
  29. Coxall HK, Wilson PA, Pälike H, Lear CH, Backman J 2005. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature 433:53–57
    [Google Scholar]
  30. Cramer BS, Toggweiler JR, Wright JD, Katz ME, Miller KG 2009. Ocean overturning since the Late Cretaceous: inferences from a new benthic foraminiferal isotope compilation. Paleoceanography 24:4PA4216
    [Google Scholar]
  31. Culver SJ. 2003. Benthic foraminifera across the Cretaceous–Tertiary (K–T) boundary: a review. Mar. Micropaleontol. 47:3–4177–226
    [Google Scholar]
  32. D'Hondt S. 2005. Consequences of the Cretaceous/Paleogene mass extinction for marine ecosystems. Annu. Rev. Ecol. Evol. Syst. 36:295–317
    [Google Scholar]
  33. D'Hondt S, Donaghay P, Zachos JC, Luttenberg D, Lindinger M 1998. Organic carbon fluxes and ecological recovery from the Cretaceous-Tertiary mass extinction. Science 282:5387276–79
    [Google Scholar]
  34. D'Hondt S, Keller G. 1991. Some patterns of planktic foraminiferal assemblage turnover at the Cretaceous-Tertiary boundary. Mar. Micropaleontol. 17:1–277–118
    [Google Scholar]
  35. DeConto RM, Galeotti S, Pagani M, Tracy D, Schaefer K et al. 2012. Past extreme warming events linked to massive carbon release from thawing permafrost. Nature 484:739287–91
    [Google Scholar]
  36. DeConto RM, Pollard D. 2003. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature 421:6920245–49
    [Google Scholar]
  37. Dickens GR, Castillo MM, Walker JC 1997. A blast of gas in the latest Paleocene: simulating first-order effects of massive dissociation of oceanic methane hydrate. Geology 25:3259–62
    [Google Scholar]
  38. Dickens GR, O'Neil JR, Rea DK, Owen RM 1995. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography 10:6965–71
    [Google Scholar]
  39. Doney SC, Balch WM, Fabry VJ, Feely RA 2009. Ocean acidification: a critical emerging problem for the ocean sciences. Oceanography 22:416–25
    [Google Scholar]
  40. Edgar KM, Bohaty SM, Gibbs SJ, Sexton PF, Norris RD, Wilson PA 2013. Symbiont ‘bleaching’ in planktic foraminifera during the Middle Eocene Climatic Optimum. Geology 41:115–18
    [Google Scholar]
  41. Erba E. 1994. Nannofossils and superplumes: the early Aptian “nannoconid crisis. .” Paleoceanography 9:3483–501
    [Google Scholar]
  42. Erba E, Bottini C, Faucher G, Gambacorta G, Visentin S 2019. The response of calcareous nannoplankton to Oceanic Anoxic Events: the Italian pelagic record. Boll. Soc. Paleontol. Ital. 58:151–71
    [Google Scholar]
  43. Erba E, Bottini C, Weissert HJ, Keller CE 2010. Calcareous nannoplankton response to surface-water acidification around Oceanic Anoxic Event 1a. Science 329:5990428–32
    [Google Scholar]
  44. Erbacher J, Thurow J. 1997. Influence of oceanic anoxic events on the evolution of mid-Cretaceous radiolaria in the North Atlantic and western Tethys. Mar. Micropaleontol. 30:1–3139–58
    [Google Scholar]
  45. Erbacher J, Thurow J, Littke R 1996. Evolution patterns of radiolaria and organic matter variations: a new approach to identify sea-level changes in mid-Cretaceous pelagic environments. Geology 24:6499–502
    [Google Scholar]
  46. Ezard TH, Aze T, Pearson PN, Purvis A 2011. Interplay between changing climate and species’ ecology drives macroevolutionary dynamics. Science 332:6027349–51
    [Google Scholar]
  47. Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA et al. 2004. The evolution of modern eukaryotic phytoplankton. Science 305:5682354–60
    [Google Scholar]
  48. Fraass AJ, Kelly DC, Peters SE 2015. Macroevolutionary history of the planktic foraminifera. Annu. Rev. Earth Planet. Sci. 43:139–66
    [Google Scholar]
  49. Friedrich O, Norris RD, Erbacher J 2012. Evolution of middle to Late Cretaceous oceans—a 55 m.y. record of Earth's temperature and carbon cycle. Geology 40:2107–10
    [Google Scholar]
  50. Frieling J, Gebhardt H, Huber M, Adekeye OA, Akande SO et al. 2017. Extreme warmth and heat-stressed plankton in the tropics during the Paleocene-Eocene Thermal Maximum. Sci. Adv. 3:3e1600891
    [Google Scholar]
  51. Funakawa S, Nishi H, Moore TC, Nigrini CA 2006. Radiolarian faunal turnover and paleoceanographic change around Eocene/Oligocene boundary in the central equatorial Pacific, ODP Leg 199, Holes 1218A, 1219A, and 1220A. Palaeogeogr. Palaeoclimatol. Palaeoecol. 230:3–4183–203
    [Google Scholar]
  52. Gambacorta G, Bersezio R, Weissert H, Erba E 2016. Onset and demise of Cretaceous oceanic anoxic events: the coupling of surface and bottom oceanic processes in two pelagic basins of the western Tethys. Paleoceanography 31:6732–57
    [Google Scholar]
  53. Gibbs SJ, Bown PR, Sessa JA, Bralower TJ, Wilson PA 2006a. Nannoplankton extinction and origination across the Paleocene-Eocene Thermal Maximum. Science 314:58061770–73
    [Google Scholar]
  54. Gibbs SJ, Bralower TJ, Bown PR, Zachos JC, Bybell LM 2006b. Shelf and open-ocean calcareous phytoplankton assemblages across the Paleocene-Eocene Thermal Maximum: implications for global productivity gradients. Geology 34:4233–36
    [Google Scholar]
  55. Gibbs SJ, Poulton AJ, Bown PR, Daniels CJ, Hopkins J et al. 2013. Species-specific growth response of coccolithophores to Palaeocene–Eocene environmental change. Nat. Geosci. 6:3218–22
    [Google Scholar]
  56. Giraud F, Pittet B, Grosheny D, Baudin F, Lécuyer C, Sakamoto T 2018. The palaeoceanographic crisis of the Early Aptian (OAE 1a) in the Vocontian Basin (SE France). Palaeogeogr. Palaeoclimatol. Palaeoecol. 511:483–505
    [Google Scholar]
  57. Greene SE, Martindale RC, Ritterbush KA, Bottjer DJ, Corsetti FA, Berelson WM 2012. Recognising ocean acidification in deep time: an evaluation of the evidence for acidification across the Triassic-Jurassic boundary. Earth-Sci. Rev. 113:1–272–93
    [Google Scholar]
  58. Hart MB. 1980. The recognition of mid-Cretaceous sea-level changes by means of foraminifera. Cretac. Res. 1:4289–97
    [Google Scholar]
  59. Hart MB, Hylton MD, Oxford MJ, Price GD, Hudson W, Smart CW 2003. The search for the origin of the planktic Foraminifera. J. Geol. Soc. 160:3341–43
    [Google Scholar]
  60. Henehan MJ, Hull PM, Penman DE, Rae JW, Schmidt DN 2016. Biogeochemical significance of pelagic ecosystem function: an end-Cretaceous case study. Philos. Trans. R. Soc. B: Biol. Sci. 371:169420150510
    [Google Scholar]
  61. Henehan MJ, Ridgewell A, Thomas E, Zhang S, Alegret L et al. 2019. Rapid ocean acidification and protracted Earth system recovery followed the end-Cretaceous Chicxulub impact. PNAS 116:4522500–4
    [Google Scholar]
  62. Hildebrand AR, Penfield GT, Kring DA, Pilkington M, Camargo ZA et al. 1991. Chicxulub crater: a possible Cretaceous/Tertiary boundary impact crater on the Yucatan Peninsula, Mexico. Geology 19:9867–71
    [Google Scholar]
  63. Hollis CJ, Dickens GR, Field BD, Jones CM, Strong CP 2005. The Paleocene–Eocene transition at Mead Stream, New Zealand: a southern Pacific record of early Cenozoic global change. Palaeogeogr. Palaeoclimatol. Palaeoecol. 215:3–4313–43
    [Google Scholar]
  64. Hollis CJ, Strong CP. 2003. Biostratigraphic review of the Cretaceous/Tertiary boundary transition, mid‐Waipara river section, North Canterbury, New Zealand. N. Z. J. Geol. Geophys. 46:2243–53
    [Google Scholar]
  65. Hönisch B, Ridgwell A, Schmidt DN, Thomas E, Gibbs SJ et al. 2012. The geological record of ocean acidification. Science 335:60721058–63
    [Google Scholar]
  66. Hsü KJ, Mckenzie JA. 1985. A “Strangelove” ocean in the earliest Tertiary. The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present ET Sundquist, WS Broecker 487–92 Washington, DC: Am. Geophys. Union
    [Google Scholar]
  67. Huber BT, Leckie RM. 2011. Planktic foraminiferal species turnover across deep-sea Aptian/Albian boundary sections. J. Foraminif. Res. 41:153–95
    [Google Scholar]
  68. Huber BT, Leckie RM, Norris RD, Bralower TJ, CoBabe E 1999. Foraminiferal assemblage and stable isotopic change across the Cenomanian-Turonian boundary in the subtropical North Atlantic. J. Foraminifer. Res. 29:4392–417
    [Google Scholar]
  69. Huber BT, Olsson RK, Pearson PN 2006. Taxonomy, biostratigraphy, and phylogeny of Eocene microperforate planktonic foraminifera (Jenkinsina, Cassigerinelloita, Chiloguembelina, Streptochilus, Zeauvigerina, Tenuitella, and Cassigerinella) and Problematica (Dipsidripella). Atlas of Eocene Planktonic Foraminifera PN Pearson 461–508 Cushman Found. Foraminif. Res. Spec. Publ. 41 Fredericksburg, VA: Cushman Found. Foraminif. Res.
    [Google Scholar]
  70. Hull PM, Norris RD. 2011. Diverse patterns of ocean export productivity change across the Cretaceous‐Paleogene boundary: new insights from biogenic barium. Paleoceanography 26:3PA3205
    [Google Scholar]
  71. Hull PM, Norris RD, Bralower TJ, Schueth JD 2011. A role for chance in marine recovery from the end-Cretaceous extinction. Nat. Geosci. 4:12856–60
    [Google Scholar]
  72. Ito T, Minobe S, Long MC, Deutsch C 2017. Upper ocean O2 trends: 1958–2015. Geophys. Res. Lett. 44:94214–23
    [Google Scholar]
  73. Jablonski D. 1995. Extinction in the fossil record. Extinction Rates JH Lawton, RM May 25–44 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  74. Jenkyns HC. 1995. Carbon-isotope stratigraphy and paleoceanographic significance of the Lower Cretaceous shallow-water carbonates of Resolution Guyot, Mid-Pacific Mountains. Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 143:99–104 College Station, TX: Ocean Drilling Program
    [Google Scholar]
  75. Jenkyns HC. 2010. Geochemistry of oceanic anoxic events. Geochem. Geophys. Geosyst. 11:3Q0300
    [Google Scholar]
  76. Jiang S, Bralower TJ, Patzkowsky ME, Kump LR, Schueth JD 2010. Geographic controls on nannoplankton extinction across the Cretaceous/Palaeogene boundary. Nat. Geosci. 3:4280–85
    [Google Scholar]
  77. Jones HL, Lowery CM, Bralower TJ 2019. Delayed calcareous nannoplankton boom-bust successions in the earliest Paleocene Chicxulub (Mexico) impact crater. Geology 47:753–56
    [Google Scholar]
  78. Jonkers L, Hillebrand H, Kucera M 2019. Global change drives modern plankton communities away from the pre-industrial state. Nature 570:372–75
    [Google Scholar]
  79. Kaiho K, Kajiwara Y, Tazaki K, Ueshima M, Takeda N et al. 1999. Oceanic primary productivity and dissolved oxygen levels at the Cretaceous/Tertiary boundary: their decrease, subsequent warming, and recovery. Paleoceanography 14:4511–24
    [Google Scholar]
  80. Kamikuri SI, Wade BS. 2012. Radiolarian magnetobiochronology and faunal turnover across the middle/late Eocene boundary at Ocean Drilling Program Site 1052 in the western North Atlantic Ocean. Mar. Micropaleontol. 88:41–53
    [Google Scholar]
  81. Katz ME, Cramer BS, Toggweiler JR, Esmay G, Liu C et al. 2011. Impact of Antarctic Circumpolar Current development on late Paleogene ocean structure. Science 332:60331076–79
    [Google Scholar]
  82. Kelly DC, Bralower TJ, Zachos JC 1998. Evolutionary consequences of the latest Paleocene thermal maximum for tropical planktonic foraminifera. Palaeogeogr. Palaeoclimatol. Palaeoecol. 141:1–2139–61
    [Google Scholar]
  83. Kelly DC, Bralower TJ, Zachos JC, Silva IP, Thomas E 1996. Rapid diversification of planktonic foraminifera in the tropical Pacific (ODP Site 865) during the late Paleocene thermal maximum. Geology 24:5423–26
    [Google Scholar]
  84. Kennett JP. 1977. Cenozoic evolution of Antarctic glaciation, the circum‐Antarctic Ocean, and their impact on global paleoceanography. J. Geophys. Res. 82:273843–60
    [Google Scholar]
  85. Kidder DL, Erwin DH. 2001. Secular distribution of biogenic silica through the Phanerozoic: comparison of silica-replaced fossils and bedded cherts at the series level. J. Geol. 109:4509–22
    [Google Scholar]
  86. Kiessling W, Danelian T. 2011. Trajectories of Late Permian–Jurassic radiolarian extinction rates: no evidence for an end‐Triassic mass extinction. Fossil Rec 14:195–101
    [Google Scholar]
  87. Kirchner JW, Weil A. 2000. Delayed biological recovery from extinctions throughout the fossil record. Nature 404:6774177–80
    [Google Scholar]
  88. Knoll AH, Follows MJ. 2016. A bottom-up perspective on ecosystem change in Mesozoic oceans. Proc. R. Soc. B: Biol. Sci. 283:184120161755
    [Google Scholar]
  89. Lamolda MA, Melinte MC, Kaiho K 2005. Nannofloral extinction and survivorship across the K/T boundary at Caravaca, southeastern Spain. Palaeogeogr. Palaeoclimatol. Palaeoecol. 224:1–327–52
    [Google Scholar]
  90. Lazarus D. 1994. Neptune: a marine micropaleontology database. Math. Geol. 26:7817–32
    [Google Scholar]
  91. Lazarus D, Barron J, Renaudie J, Diver P, Türke A 2014. Cenozoic planktonic marine diatom diversity and correlation to climate change. PLOS ONE 9:1e84857
    [Google Scholar]
  92. Lear CH, Bailey TR, Pearson PN, Coxall HK, Rosenthal Y 2008. Cooling and ice growth across the Eocene-Oligocene transition. Geology 36:3251–54
    [Google Scholar]
  93. Leckie RM. 1987. Paleoecology of mid-Cretaceous planktonic foraminifera: a comparison of open ocean and epicontinental sea assemblages. Micropaleontology 33:164–76
    [Google Scholar]
  94. Leckie RM. 1989. A paleoceanographic model for the early evolutionary history of planktonic foraminifera. Palaeogeogr. Palaeoclimatol. Palaeoecol. 73:1–2107–38
    [Google Scholar]
  95. Leckie RM. 2009. Seeking a better life in the plankton. PNAS 106:3414183–84
    [Google Scholar]
  96. Leckie RM, Bralower TJ, Cashman R 2002. Oceanic anoxic events and plankton evolution: biotic response to tectonic forcing during the mid‐Cretaceous. Paleoceanography 17:313–129
    [Google Scholar]
  97. Leckie RM, Yuretich RF, West OL, Finkelstein D, Schmidt M 1998. Paleoceanography of the southwestern Western Interior Sea during the time of the Cenomanian-Turonian boundary (Late Cretaceous). 6101–26
  98. Liu J, Aitchison JC, Ali JR 2011. Upper Paleocene radiolarians from DSDP Sites 549 and 550, Goban Spur, NE Atlantic. Palaeoworld 20:2–3218–31
    [Google Scholar]
  99. Lowery CM, Bralower TJ, Owens JD, Rodríguez-Tovar FJ, Jones H et al. 2018. Rapid recovery of life at ground zero of the end-Cretaceous mass extinction. Nature 558:7709288–91
    [Google Scholar]
  100. Lowery CM, Fraass AJ. 2019. Morphospace expansion paces taxonomic diversification after end Cretaceous mass extinction. Nat. Ecol. Evol. 3:6900–4
    [Google Scholar]
  101. Lowery CM, Leckie RM, Sageman BB 2017. Micropaleontological evidence for redox changes in the OAE3 interval of the US Western Interior: global versus local processes. Cretaceous Res 69:34–48
    [Google Scholar]
  102. Lowery CM, Morgan JV, Gulick SP, Bralower TJ, Christeson GL 2019. Ocean drilling perspectives on meteorite impacts. Oceanography 32:1120–34
    [Google Scholar]
  103. MacRae RA, Fensome RA, Williams GL 1996. Fossil dinoflagellate diversity, originations, and extinctions and their significance. Can. J. Bot. 74:111687–94
    [Google Scholar]
  104. McAnena A, Flögel S, Hofmann P, Herrle JO, Griesand A et al. 2013. Atlantic cooling associated with a marine biotic crisis during the mid-Cretaceous period. Nat. Geosci. 6:7558–61
    [Google Scholar]
  105. McElwain JC, Beerling DJ, Woodward FI 1999. Fossil plants and global warming at the Triassic-Jurassic boundary. Science 285:54321386–90
    [Google Scholar]
  106. McElwain JC, Wade-Murphy J, Hesselbo SP 2005. Changes in carbon dioxide during an oceanic anoxic event linked to intrusion into Gondwana coals. Nature 435:7041479–82
    [Google Scholar]
  107. Mizukami T, Kaiho K, Oba M 2013. Significant changes in land vegetation and oceanic redox across the Cretaceous/Paleogene boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 369:41–47
    [Google Scholar]
  108. Monteiro FM, Pancost RD, Ridgwell A, Donnadieu Y 2012. Nutrients as the dominant control on the spread of anoxia and euxinia across the Cenomanian‐Turonian oceanic anoxic event (OAE2): model‐data comparison. Paleoceanography 27:4PA4209
    [Google Scholar]
  109. Moore JK, Fu W, Primeau F, Britten GL, Lindsay K et al. 2018. Sustained climate warming drives declining marine biological productivity. Science 359:63801139–43
    [Google Scholar]
  110. Musavu-Moussavou B, Danelian T, Baudin F, Coccioni R, Fröhlich F 2007. The Radiolarian biotic response during OAE2. A high-resolution study across the Bonarelli level at Bottaccione (Gubbio, Italy). Rev. Micropaléontol. 50:3253–87
    [Google Scholar]
  111. Muttoni G, Kent DV. 2007. Widespread formation of cherts during the early Eocene climate optimum. Palaeogeogr. Palaeoclimatol. Palaeoecol. 253:3–4348–62
    [Google Scholar]
  112. Nederbragt AJ, Fiorentino A, Klosowska B 2001. Quantitative analysis of calcareous microfossils across the Albian–Cenomanian boundary oceanic anoxic event at DSDP Site 547 (North Atlantic). Palaeogeogr. Palaeoclimatol. Palaeoecol. 166:3–4401–21
    [Google Scholar]
  113. Olsen PE, Kent DV, Et-Touhami M, Puffer J 2003. Cyclo-, magneto-, and bio-stratigraphic constraints on the duration of the CAMP event and its relationship to the Triassic-Jurassic boundary. Geophys. Monogr. Ser. 136:7–32
    [Google Scholar]
  114. Olsson RK, Berggren WA, Hemleben CI, Huber BT 1999. Atlas of Paleocene Planktonic Foraminifera Washington, DC: Smithsonian Inst.
  115. Ostrander CM, Owens JD, Nielsen SG 2017. Constraining the rate of oceanic deoxygenation leading up to a Cretaceous Oceanic Anoxic Event (OAE-2: ∼94 Ma). Science 3:e1701020
    [Google Scholar]
  116. Pälike H, Nishi H, Lyle M, Raffi I, Klaus A, Gamage K Exp. 320 Scientists 2009. Integrated Ocean Drilling Program Expedition 320 Preliminary Report College Station, TX: Ocean Drill. Program
  117. Panchuk K, Ridgwell A, Kump LR 2008. Sedimentary response to Paleocene-Eocene Thermal Maximum carbon release: a model-data comparison. Geology 36:4315–18
    [Google Scholar]
  118. Pardo A, Adatte T, Keller G, Oberhänsli H 1999. Paleoenvironmental changes across the Cretaceous–Tertiary boundary at Koshak, Kazakhstan, based on planktic foraminifera and clay mineralogy. Palaeogeogr. Palaeoclimatol. Palaeoecol. 154:3247–73
    [Google Scholar]
  119. Parente M, Frijia G, Di Lucia M, Jenkyns HC, Woodfine RG, Baroncini F 2008. Stepwise extinction of larger foraminifers at the Cenomanian-Turonian boundary: a shallow-water perspective on nutrient fluctuations during Oceanic Anoxic Event 2 (Bonarelli Event). Geology 36:9715–18
    [Google Scholar]
  120. Penman DE, Hönisch B, Zeebe RE, Thomas E, Zachos JC 2014. Rapid and sustained surface ocean acidification during the Paleocene‐Eocene Thermal Maximum. Paleoceanography 29:5357–69
    [Google Scholar]
  121. Pereira HM, Navarro LM, Martins IS 2012. Global biodiversity change: the bad, the good, and the unknown. Annu. Rev. Environ. Resour. 37:25–50
    [Google Scholar]
  122. Peti L, Thibault N. 2017. Abundance and size changes in the calcareous nannofossil Schizosphaerella—relation to sea-level, the carbonate factory and palaeoenvironmental change from the Sinemurian to earliest Toarcian of the Paris Basin. Palaeogeogr. Palaeoclimatol. Palaeoecol. 485:271–82
    [Google Scholar]
  123. Peti L, Thibault N, Clémence M-E, Korte C, Dommergues J-L et al. 2017. SinemurianPliensbachian calcareous nannofossil biostratigraphy and organic carbon isotope stratigraphy in the Paris Basin: calibration to the ammonite biozonation of NW Europe. Palaeogeogr. Palaeoclimatol. Palaeoecol. 468:142–61
    [Google Scholar]
  124. Petrizzo MR, Huber BT, Wilson PA 2005. Foraminiferal isotope record across the latest Albian Oceanic Anoxic Event 1d at ODP Sites 1050 and 1052 (Blake Nose, western North Atlantic). 7th International Symposium on the Cretaceous Val-impressions
    [Google Scholar]
  125. Petrizzo MR, Huber BT, Wilson PA, MacLeod KG 2008. Late Albian paleoceanography of the western subtropical North Atlantic. Paleoceanography 23:1PA1213
    [Google Scholar]
  126. Pogge von Strandmann PAE, Jenkyns HC, Woodfine RG 2013. Lithium isotope evidence for enhanced weathering during Oceanic Anoxic Event 2. Nat. Geosci. 6:8668–72
    [Google Scholar]
  127. Pratt LM, Threlkeld CN. 1984. Stratigraphic significance of 13C/12C ratios in mid-Cretaceous rocks of the Western Interior, USA. The Mesozoic of Middle North America: A Selection of Papers from the Symposium on the Mesozoic of Middle North America, Calgary, Alberta, Canada, May 1983 DF Scott, DJ Glass 305–12 Calgary, Can.: Can. Soc. Pet. Geol.
    [Google Scholar]
  128. Premoli Silva I, Erba E, Salvini G, Locatelli C, Verga D 1999. Biotic changes in Cretaceous oceanic anoxic events of the Tethys. J. Foraminif. Res. 29:4352–70
    [Google Scholar]
  129. Premoli Silva I, Sliter WV 1999. Cretaceous paleoceanography: evidence from planktonic foraminiferal evolution. Geol. Soc. Am. Spec. Pap. 332:301–28
    [Google Scholar]
  130. Raffi I, De Bernardi B 2008. Response of calcareous nannofossils to the Paleocene–Eocene Thermal Maximum: observations on composition, preservation and calcification in sediments from ODP Site 1263 (Walvis Ridge—SW Atlantic). Mar. Micropaleontol. 69:2119–38
    [Google Scholar]
  131. Raup DM, Sepkoski JJ. 1982. Mass extinctions in the marine fossil record. Science 215:45391501–3
    [Google Scholar]
  132. Renaudie J, Drews E-L, Böhne S 2018. The Paleocene record of marine diatoms in deep-sea sediments. Fossil Rec 21:183–205
    [Google Scholar]
  133. Sanfilippo A, Blome CD. 2001. Biostratigraphic implications of mid-latitude Palaeocene-Eocene radiolarian faunas from Hole 1051A, ODP Leg 171B, Blake Nose, western North Atlantic. Geol. Soc. Lond. Spec. Publ. 183:1185–224
    [Google Scholar]
  134. Schaller MF, Wright JD, Kent DV, Olsen PE 2012. Rapid emplacement of the Central Atlantic Magmatic Province as a net sink for CO2. Earth Planet. Sci. Lett. 323:27–39
    [Google Scholar]
  135. Scheibner C, Speijer RP. 2008. Late Paleocene–early Eocene Tethyan carbonate platform evolution—a response to long-and short-term paleoclimatic change. Earth-Sci. Rev. 90:3–471–102
    [Google Scholar]
  136. Scher HD, Martin EE. 2006. Timing and climatic consequences of the opening of Drake Passage. Science 312:5772428–30
    [Google Scholar]
  137. Scher HD, Martin EE. 2008. Oligocene deep water export from the North Atlantic and the development of the Antarctic Circumpolar Current examined with neodymium isotopes. Paleoceanography 23:1PA1205
    [Google Scholar]
  138. Schlanger SO, Jenkyns HC. 1976. Cretaceous oceanic anoxic events: causes and consequences. Geol. Mijnb. 55:3–4279–84
    [Google Scholar]
  139. Schueth JD, Bralower TJ, Jiang S, Patzkowsky ME 2015. The role of regional survivor incumbency in the evolutionary recovery of calcareous nannoplankton from the Cretaceous/Paleogene (K/Pg) mass extinction. Paleobiology 41:4661–79
    [Google Scholar]
  140. Schulte P, Alegret L, Arenillas I, Arz JA, Barton PJ et al. 2010. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327:59701214–18
    [Google Scholar]
  141. Sepkoski JJ. 1998. Rates of speciation in the fossil record. Philos. Trans. R. Soc. B: Biol. Sci 353:1366315–26
    [Google Scholar]
  142. Sepúlveda J, Alegret L, Thomas E, Haddad E, Cao C, Summons RE 2019. Stable isotope constraints on marine productivity across the Cretaceous–Paleogene mass extinction. Paleoceanography 34:1195–217
    [Google Scholar]
  143. Sepúlveda J, Wendler JE, Summons RE, Hinrichs KU 2009. Rapid resurgence of marine productivity after the Cretaceous-Paleogene mass extinction. Science 326:5949129–32
    [Google Scholar]
  144. Sims PA, Mann DG, Medlin LK 2006. Evolution of the diatoms: insights from fossil, biological and molecular data. Phycologia 45:4361–402
    [Google Scholar]
  145. Sluijs A, Brinkhuis H. 2009. A dynamic climate and ecosystem state during the Paleocene-Eocene Thermal Maximum: inferences from dinoflagellate cyst assemblages on the New Jersey Shelf. Biogeosciences 6:81755–81
    [Google Scholar]
  146. Sluijs A, Schouten S, Pagani M, Woltering M, Brinkhuis H et al. 2006. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum. Nature 441:7093610–13
    [Google Scholar]
  147. Smit J, Hertogen J. 1980. An extraterrestrial event at the Cretaceous–Tertiary boundary. Nature 285:5762198–200
    [Google Scholar]
  148. Smit J, Silver LT, Schultz PH 1982. Extinction and evolution of planktonic foraminifera after a major impact at the Cretaceous/Tertiary boundary. Geol. Soc. Am. Spec. Pap. 190:329–52
    [Google Scholar]
  149. Snow LJ, Duncan RA, Bralower TJ 2005. Trace element abundances in the Rock Canyon Anticline, Pueblo, Colorado, marine sedimentary section and their relationship to Caribbean plateau construction and oxygen anoxic event 2. Paleoceanography 20:3PA3005
    [Google Scholar]
  150. Speijer R, Scheibner C, Stassen P, Morsi AMM 2012. Response of marine ecosystems to deep-time global warming: a synthesis of biotic patterns across the Paleocene-Eocene thermal maximum (PETM). Austrian J. Earth Sci. 105:16–16
    [Google Scholar]
  151. Spencer-Cervato C. 1999. The Cenozoic deep sea microfossil record: explorations of the DSDP/ODP sample set using the Neptune database. Palaeontol. Electron. 2:2270
    [Google Scholar]
  152. Tappan H, Loeblich AR Jr 1988. Foraminiferal evolution, diversification, and extinction. J. Paleontol. 62:695–714
    [Google Scholar]
  153. Tarduno JA, Sliter WV, Kroenke L, Leckie M, Mayer H et al. 1991. Rapid formation of Ontong Java Plateau by Aptian mantle plume volcanism. Science 254:5030399–403
    [Google Scholar]
  154. Thomas E. 2007. Cenozoic mass extinctions in the deep sea: What perturbs the largest habitat on Earth. ? Geol. Soc. Am. Spec. Pap. 424:1–23
    [Google Scholar]
  155. Thomas E, Shackleton NJ. 1996. The Paleocene-Eocene benthic foraminiferal extinction and stable isotope anomalies. Geol. Soc. Lond. Spec. Publ 101:1401–41
    [Google Scholar]
  156. Toon OB, Zahnle K, Morrison D, Turco RP, Covey C 1997. Environmental perturbations caused by the impacts of asteroids and comets. Rev. Geophys 35:141–78
    [Google Scholar]
  157. Trabucho Alexandre J, Tuenter E, Henstra GA, van der Zwan KJ, van de Wal RS et al. 2010. The mid‐Cretaceous North Atlantic nutrient trap: black shales and OAEs. Paleoceanography 25:4PA4201
    [Google Scholar]
  158. Trubovitz S, Lazarus D, Renaudie J, Noble P 2019. New census of radiolarian communities in the eastern equatorial Pacific reveals unprecedented biodiversity throughout the late Neogene. PaleoBios 36:Suppl. 1350 (Abstr.)
    [Google Scholar]
  159. Turgeon SC, Creaser RA. 2008. Cretaceous oceanic anoxic event 2 triggered by a massive magmatic episode. Nature 454:7202323–26
    [Google Scholar]
  160. Tyrrell T, Merico A, McKay DI 2015. Severity of ocean acidification following the end-Cretaceous asteroid impact. PNAS 112:216556–61
    [Google Scholar]
  161. Varol O. 1989. Palaeocene calcareous nannofossil biostratigraphy. Nannofossils and their Applications JA Crux, SE van Heck 267–310 New York: Halsted
    [Google Scholar]
  162. Vermeij GJ. 1977. The Mesozoic marine revolution: evidence from snails, predators and grazers. Paleobiology 3:3245–58
    [Google Scholar]
  163. Wagreich M. 2012. “OAE 3”—regional Atlantic organic carbon burial during the Coniacian–Santonian. Clim. Past 8:51447–55
    [Google Scholar]
  164. Wang T, Li G, Aitchison JC, Ding L, Sheng J 2019. Evolution of mid-Cretaceous radiolarians in response to oceanic anoxic events in the eastern Tethys (southern Tibet, China). Palaeogeogr. Palaeoclimatol. Palaeoecol. 536:109369
    [Google Scholar]
  165. Watkins DK, Bergen JA. 2003. Late Albian adaptive radiation in the calcareous nannofossil genus Eiffellithus. . Micropaleontology 49:3231–51
    [Google Scholar]
  166. Watkins DK, Cooper MJ, Wilson PA 2005. Calcareous nannoplankton response to late Albian oceanic anoxic event 1d in the western North Atlantic. Paleoceanography 20:2PA2010
    [Google Scholar]
  167. Whitechurch H, Montigny R, Sevigny J, Storey M, Salters V 1992. K-Ar and 40Ar/39Ar ages of central Kerguelen Plateau basalts. Proc. Ocean Drill. Program Sci. Results 120:71–77
    [Google Scholar]
  168. Wignall PB. 2001. Large igneous provinces and mass extinctions. Earth-Sci. Rev. 53:1–21–33
    [Google Scholar]
  169. Wilson PA, Norris RD. 2001. Warm tropical ocean surface and global anoxia during the mid-Cretaceous period. Nature 412:6845425–29
    [Google Scholar]
  170. Witkowski J, Bohaty SM, Edgar KM, Harwood DM 2014. Rapid fluctuations in mid-latitude siliceous plankton production during the Middle Eocene Climatic Optimum (ODP Site 1051, western North Atlantic). Mar. Micropaleontol. 106:110–29
    [Google Scholar]
  171. Witkowski J, Bohaty SM, McCartney K, Harwood DM 2012. Enhanced siliceous plankton productivity in response to middle Eocene warming at Southern Ocean ODP Sites 748 and 749. Palaeogeogr. Palaeoclimatol. Palaeoecol. 326:78–94
    [Google Scholar]
  172. Young JR, Geisen M, Probert I 2005. A review of selected aspects of coccolithophore biology with implications for paleobiodiversity estimation. Micropaleontology 51:4267–88
    [Google Scholar]
  173. Zachos JC, Arthur MA, Dean WE 1989. Geochemical evidence for suppression of pelagic marine productivity at the Cretaceous/Tertiary boundary. Nature 337:620261–64
    [Google Scholar]
  174. Zachos JC, Pagani M, Sloan L, Thomas E, Billups K 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:5517686–93
    [Google Scholar]
  175. Zachos JC, Quinn TM, Salamy KA 1996. High‐resolution (104 years) deep‐sea foraminiferal stable isotope records of the Eocene‐Oligocene climate transition. Paleoceanography 11:3251–66
    [Google Scholar]
  176. Zachos JC, Röhl U, Schellenberg SA, Sluijs A, Hodell DA et al. 2005. Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum. Science 308:57281611–15
    [Google Scholar]
  177. Zeebe RE, Ridgwell A, Zachos JC 2016. Anthropogenic carbon release rate unprecedented during the past 66 million years. Nat. Geosci. 9:4325–29
    [Google Scholar]
  178. Zeebe RE, Zachos JC, Dickens GR 2009. Carbon dioxide forcing alone insufficient to explain Palaeocene–Eocene Thermal Maximum warming. Nat. Geosci. 2:8576–80
    [Google Scholar]
/content/journals/10.1146/annurev-earth-081619-052818
Loading
/content/journals/10.1146/annurev-earth-081619-052818
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error