1932

Abstract

We give an overview of recently developed methods to reconstruct phylog-enies of taxa that include allopolyploids that have originated in relatively recent times—in other words, taxa for which at least some of the parental lineages of lower ploidy levels are not extinct and for which ploidy information is clearly shown by variation in chromosome counts. We review how these methods have been applied to empirical data, discuss challenges, and outline prospects for future research. In the absence of recombination between parental subgenomes, the allopolyploid phylogenetic histories can in principle be treated as genome tree inference. However, without whole genome or whole chromosome data, sequences must be assigned from genes sampled to parental subgenomes. The new version of the AlloppNET method, which now can handle any number of species at the diploid and tetraploid level and any number of hybridizations, is a promising attempt that can also treat gene tree discordance due to the coalescent process. The ongoing development of models that take migration, paralogy, and uncertainties in species delimitations into account offers exciting opportunities for the future of inference of species networks.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-110316-022729
2017-11-02
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/48/1/annurev-ecolsys-110316-022729.html?itemId=/content/journals/10.1146/annurev-ecolsys-110316-022729&mimeType=html&fmt=ahah

Literature Cited

  1. Albertin W, Marullo P. 2012. Polyploidy in fungi: evolution after whole-genome duplication. Proc. R. Soc. B 279:2497–509 [Google Scholar]
  2. Álvarez I, Wendel JF. 2003. Ribosomal ITS sequences and plant phylogenetic inference. Mol. Phylogenetics Evol. 29:417–34 [Google Scholar]
  3. Barker MS, Arrigo N, Baniaga AE, Li Z, Levin DA. 2015. On the relative abundance of autopolyploids and allopolyploids. New Phytol 210:391–98 [Google Scholar]
  4. Barker MS, Husband BC, Pires JC. 2016. Spreading Winge and flying high: the evolutionary importance of polyploidy after a century of study. Am. J. Bot. 103:1139–45 [Google Scholar]
  5. Bendiksby M, Tribsch A, Borgen L, Trávníček P, Brysting AK. 2011. Allopolyploid origins of the Galeopsis tetraploids—revisiting Müntzing's classical textbook example using molecular tools. New Phytol 191:1150–67 [Google Scholar]
  6. Bertrand YJK, Scheen A-C, Marcussen T, Pfeil BE, Sousa F, Oxelman B. 2015. Assignment of homoeologs to parental genomes in allopolyploids for species tree inference, with an example from Fumaria (Papaveraceae). Syst. Biol. 64:448–71 [Google Scholar]
  7. Bingham ET. 1968. Transfer of diploid Medicago spp. germplasm to tetraploid M. sativa L. in 4x-2x crosses. Crop Sci 8:760–62 [Google Scholar]
  8. Brochmann C, Nilsson T, Gabrielsen TM. 1996. A classic example of postglacial allopolyploid speciation re-examined using RAPD markers and nucleotide sequences: Saxifraga osloensis (Saxifragaceae). Symb. Bot. Ups. 31:75–89 [Google Scholar]
  9. Brysting AK, Mathiesen C, Marcussen T. 2011. Challenges in polyploid phylogenetic reconstruction: a case story from the arctic-alpine Cerastium alpinum complex. Taxon 60:333–47 [Google Scholar]
  10. Brysting AK, Oxelman B, Huber KT, Moulton V, Brochmann C. 2007. Untangling complex histories of genome merging in high polyploids. Syst. Biol. 56:467–76 [Google Scholar]
  11. Chen Z-Z, Wang L. 2010. HybridNET: a tool for constructing hybridization networks. Bioinformatics 26:2912–13 [Google Scholar]
  12. Chen Z-Z, Wang L. 2012. Algorithms for reticulate networks of multiple phylogenetic trees. IEEE/ACM Trans. Comput. Biol. Bioinform. 9:372–84 [Google Scholar]
  13. Crespo-López ME, Pala I, Duarte TL, Dowling TE, Coelho MM. 2007. Genetic structure of the diploid-polyploid fish Squalius alburnoides in southern Iberian basins Tejo and Guadiana, based on microsatellites. J. Fish Biol. 71:423–36 [Google Scholar]
  14. Davey JW, Blaxter ML. 2010. RADSeq: next-generation population genetics. Brief. Funct. Genom. 9:416–23 [Google Scholar]
  15. Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML. 2011. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat. Rev. Genet. 12:499–510 [Google Scholar]
  16. Degnan JH, Rosenberg NA. 2009. Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol. Evol. 24:332–40 [Google Scholar]
  17. Dodsworth S. 2015. Genome skimming for next-generation biodiversity analysis. Trends Plant Sci 20:525–27 [Google Scholar]
  18. Doyle JJ. 1992. Gene trees and species trees—molecular systematics as one-character taxonomy. Syst. Bot. 17:144–63 [Google Scholar]
  19. Doyle JJ, Doyle JL, Brown AHD, Pfeil BE. 2000. Confirmation of shared and divergent genomes in the Glycine tabacina polyploid complex (Leguminosae) using histone H3-D sequences. Syst. Bot. 25:437–48 [Google Scholar]
  20. Doyle JJ, Sherman-Broyles S. 2017. Double trouble: taxonomy and definitions of polyploidy. New Phytol 213:487–93 [Google Scholar]
  21. Drummond AJ, Suchard MA, Xie D, Rambaut A. 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7.. Mol. Biol. Evol. 29:1969–73 [Google Scholar]
  22. Edwards SV. 2009. Is a new and general theory of molecular systematics emerging. Evolution 63:1–19 [Google Scholar]
  23. Eriksson JS, Blanco Pastor JL, Sousa F, Bertrand YJK, Pfeil BE. 2017. A cryptic species produced by autopolyploidy and subsequent introgression involving Medicago prostrata (Fabaceae). Mol. Phylogenetics Evol. 107:367–81 [Google Scholar]
  24. Felsenstein J. 2004. Inferring Phylogenies Sunderland, MA: Sinauer
  25. Gasc C, Peyretaillade E, Peyret P. 2016. Sequence capture by hybridization to explore modern and ancient genomic diversity in model and nonmodel organisms. Nucleic Acids Res 44:4504–18 [Google Scholar]
  26. Gastony GJ. 1986. Electrophoretic evidence for the origin of fern species by unreduced spores. Am. J. Bot. 73:1563–69 [Google Scholar]
  27. Gerard D, Gibbs HL, Kubatko LS. 2011. Estimating hybridization in the presence of coalescence using phylogenetic intraspecific sampling. BMC Evol. Biol. 11:291 [Google Scholar]
  28. Green PJ. 1995. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82:711–32 [Google Scholar]
  29. Havananda T, Brummer EC, Doyle JJ. 2011. Complex patterns of autopolyploid evolution in alfalfa and allies (Medicago sativa; Leguminosae). Am. J. Bot. 98:1633–46 [Google Scholar]
  30. Hedrén M. 1996. Genetic differentiation, polyploidization and hybridization in northern European Dactylorhiza (Orchidaceae): evidence from allozyme markers. Plant Syst. Evol. 201:31–55 [Google Scholar]
  31. Hedrén M, Fay MF, Chase MW. 2001. Amplified fragment length polymorphisms (AFLP) reveal details of polyploid evolution in Dactylorhiza (Orchidaceae). Am. J. Bot. 88:1868–80 [Google Scholar]
  32. Heled J, Drummond AJ. 2010. Bayesian inference of species trees from multilocus data. Mol. Biol. Evol. 27:570–80 [Google Scholar]
  33. Henson R, Cetto L. 2005. The MATLAB bioinformatics toolbox. Online Encyclopedia of Genetics, Genomics, Proteomics, and Bioinformatics LB Jorde, PFR Little, MJ Dunn, S Subramaniam, Part 4 4.8105 Hoboken, NJ: Wiley https://doi.org/10.1002/047001153X.g409308 [Crossref] [Google Scholar]
  34. Huber KT, Oxelman B, Lott M, Moulton V. 2006. Reconstructing the evolutionary history of polyploids from multilabeled trees. Mol. Biol. Evol. 23:1784–91 [Google Scholar]
  35. Huson DH, Scornavacca C. 2012. Dendroscope 3—an interactive viewer for rooted phylogenetic trees and networks. Syst. Biol. 61:1061–67 [Google Scholar]
  36. Jones G. 2017. Bayesian phylogenetic analysis for diploid and allotetraploid species networks. bioRxiv 129361. https://doi.org/10.1101/129361 [Crossref]
  37. Jones G, Aydin Z, Oxelman B. 2014. DISSECT: an assignment-free Bayesian discovery method for species delimitation under the multispecies coalescent. Bioinformatics 31:991–98 [Google Scholar]
  38. Jones G, Sagitov S, Oxelman B. 2013. Statistical inference of allopolyploid species networks in the presence of incomplete lineage sorting. Syst. Biol. 62:467–78 [Google Scholar]
  39. Jones MR, Good JM. 2016. Targeted capture in evolutionary and ecological genomics. Mol. Ecol. 25:185–202 [Google Scholar]
  40. Kaljund K, Leht M. 2013. Extensive introgressive hybridization between cultivated lucerne and the native sickle medic (Medicago sativa ssp. falcata) in Estonia. Ann. Bot. Fenn. 50:23–31 [Google Scholar]
  41. Kingman JFC. 1982. On the genealogy of large populations. J. Appl. Probab. 19A:27–43 [Google Scholar]
  42. Kraytsberg Y, Khrapko K. 2005. Single-molecule PCR: an artifact-free PCR approach for the analysis of somatic mutations. Expert Rev. Mol. Diagn. 5:809–15 [Google Scholar]
  43. Kubatko LS. 2009. Identifying hybridization events in the presence of coalescence via model selection. Syst. Biol. 58:478–88 [Google Scholar]
  44. Leaché AD, Harris RB, Rannala B, Yang Z. 2014. The influence of gene flow on species tree estimation: a simulation study. Syst. Biol. 63:17–30 [Google Scholar]
  45. Lemmon EM, Lemmon AR. 2013. High-throughput genomic data in systematics and phylogenetics. Annu. Rev. Ecol. Evol. Syst. 44:99–121 [Google Scholar]
  46. Lesins KA, Lesins I. 1979. Genus Medicago (Leguminosae): A Taxogenetic Study The Hague, Neth.: Dr. W. Junk [Google Scholar]
  47. Lott M, Spillner A, Huber KT, Moulton V. 2009a. PADRE: a package for analyzing and displaying reticulate evolution. Bioinformatics 25:1199–200 [Google Scholar]
  48. Lott M, Spillner A, Huber KT, Petri A, Oxelman B, Moulton V. 2009b. Inferring polyploid phylogenies from multiply-labeled gene trees. BMC Evol. Biol. 9:216 [Google Scholar]
  49. Maddison WP. 1997. Gene trees in species trees. Syst. Biol. 46:523–36 [Google Scholar]
  50. Maddison WP, Knowles LL. 2006. Inferring phylogeny despite incomplete lineage sorting. Syst. Biol. 55:21–30 [Google Scholar]
  51. Marcussen T, Heier L, Brysting AK, Oxelman B, Jakobsen K. 2014. From gene trees to a dated allopolyploid network: insights from the angiosperm genus Viola (Violaceae). Syst. Biol 64:84–101 [Google Scholar]
  52. Marcussen T, Jakobsen K, Danihelka J, Ballard H, Blaxland K. et al. 2012. Inferring species networks from gene trees in high-polyploid North American and Hawaiian violets (Viola, Violaceae). Syst. Biol. 61:107–26 [Google Scholar]
  53. McCoy TJ, Bingham ET. 1988. Cytology and cytogenetics of alfalfa. Agron. Monogr. 29:737–76 [Google Scholar]
  54. Müntzing A. 1932. Cytogenetic investigations on synthetic Galeopsis tetrahit. Hereditas 16:105–54 [Google Scholar]
  55. Oberprieler C, Wagner F, Tomasello S, Konowalik K. 2017. A permutation approach for inferring species networks from gene trees in polyploid complexes by minimising deep coalescences. Methods Ecol. Evol. 8:835–49 [Google Scholar]
  56. Otto SP. 2007. The evolutionary consequences of polyploidy. Cell 131:452–62 [Google Scholar]
  57. Otto SP, Whitton J. 2000. Polyploid incidence and evolution. Annu. Rev. Genet. 34:401–37 [Google Scholar]
  58. Oxelman B. 1996. RAPD patterns, nrDNA ITS sequences, and morphological patterns in the Silene sedoides group (Caryophyllaceae). Plant Syst. Evol. 201:93–116 [Google Scholar]
  59. Pamilo P, Nei M. 1988. Relationships between gene trees and species trees. Mol. Biol. Evol. 5:568–83 [Google Scholar]
  60. Petri A, Pfeil BE, Oxelman B. 2013. Introgressive hybridization between anciently diverged lineages of Silene (Caryophyllaceae). PLOS ONE 8:e67729 [Google Scholar]
  61. Popp M, Erixon P, Eggens F, Oxelman B. 2005. Origin and evolution of a circumpolar polyploid species complex in Silene (Caryophyllaceae). Syst. Bot. 30:302–13 [Google Scholar]
  62. Popp M, Oxelman B. 2004. Evolution of a RNA polymerase gene family in Silene (Caryophyllaceae)—incomplete concerted evolution and topological congruence among paralogues. Syst. Biol. 53:914–932 [Google Scholar]
  63. Quiros CF, Bauchan GR. 1988. The genus Medicago and the origin of the Medicago sativa complex. Agron. Monogr. 29:737–76 [Google Scholar]
  64. Rannala B, Yang Z. 2003. Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci. Genetics 164:1645–56 [Google Scholar]
  65. Rautenberg A, Filatov D, Svennblad B, Heidari N, Oxelman B. 2008. Conflicting phylogenetic signals in the SlX1/Y1 gene in Silene. BMC Evol. Biol. 8:299 [Google Scholar]
  66. Renny-Byfield S, Gallagher JP, Grover CE, Szadkowski E, Page JT. et al. 2014. Ancient gene duplicates in Gossypium (cotton) exhibit near-complete expression divergence. Genome Biol. Evol. 6:559–71 [Google Scholar]
  67. Rieseberg LH, Archer MA, Wayne K. 1999. Transgressive segregation, adaptation and speciation. Heredity 83:363–72 [Google Scholar]
  68. Roose ML, Gottlieb LD. 1976. Genetic and biochemical consequences of polyploidy in Tragopogon. Evolution 30:818–30 [Google Scholar]
  69. Rosato M, Castro M, Rosselló JA. 2008. Relationships of the woody Medicago species (section Dendrotelis) assessed by molecular cytogenetic analyses. Ann. Bot. 102:15–22 [Google Scholar]
  70. Rothfels CJ, Pryer KM, Li FW. 2017. Next generation polyploid phylogenetics: rapid resolution of hybrid polyploid complexes using PacBio single-molecule sequencing. New Phytol 213:413–29 [Google Scholar]
  71. Sakiroglu M, Doyle JJ, Brummer EC. 2010. Inferring population structure and genetic diversity of broad range of wild diploid alfalfa (Medicago sativa L.) accessions using SSR markers. Theor. Appl. Genet. 121:403–15 [Google Scholar]
  72. Sang T. 2002. Utility of low-copy nuclear gene sequences in plant phylogenetics. Crit. Rev. Biochem. Mol. Biol. 37:121–47 [Google Scholar]
  73. Sang T, Zhang D. 1999. Reconstructing hybrid speciation using sequences of low-copy nuclear genes: hybrid origins of five Paeonia species based on Adh gene phylogenies. Syst. Bot. 24:148–63 [Google Scholar]
  74. Scheen A-C, Pfeil BE, Petri A, Heidari N, Nylinder S, Oxelman B. 2012. Use of allele-specific sequencing primers is an efficient alternative to PCR subcloning of low-copy nuclear genes. Mol. Ecol. Res. 12:128–35 [Google Scholar]
  75. Small E. 2011. Alfalfa and relatives: evolution and classification of Medicago. Ottawa, Can.: NRC Res.
  76. Small RL, Ryburn JA, Cronn RC, Seelanan T, Wendel JF. 1998. The tortoise and the hare: choosing between noncoding plastome and nuclear Adh sequences for phylogeny reconstruction in a recently diverged plant group. Am. J. Bot. 85:1301–15 [Google Scholar]
  77. Smedmark JEE, Eriksson T, Bremer B. 2005. Allopolyploid evolution in Geinae (Colurieae: Rosaceae)—building reticulate species trees from bifurcating gene trees. Org. Divers. Evol. 5:275–83 [Google Scholar]
  78. Soltis DE, Soltis PS, Tate JA. 2003. Advances in the study of polyploidy since Plant Speciation. New Phytol 161:173–91 [Google Scholar]
  79. Sousa F, Bertrand YJK, Doyle JJ, Oxelman B, Pfeil BE. 2017. Using genomic location and coalescent simulation to investigate gene tree discordance in Medicago. L. Syst. Biol https://doi.org/10.1093/sysbio/syx035 [Crossref] [Google Scholar]
  80. Sousa F, Bertrand YJK, Pfeil BE. 2016. Patterns of phylogenetic incongruence in Medicago found among six loci. Plant Syst. Evol. 302:493–513 [Google Scholar]
  81. Sukumarana J, Knowles LL. 2017. Multispecies coalescent delimits structure, not species. PNAS 114:1607–12 [Google Scholar]
  82. Than C, Nakhleh L. 2009. Species tree inference by minimizing deep coalescences. PLOS Comput. Biol. 5:e1000501 [Google Scholar]
  83. Than C, Nakhleh L. 2010. Inference of parsimonious species tree from multilocus data by minimizing deep coalescences. Estimating Species Trees: Practical and Theoretical Aspects LL Knowles, LS Kubatko 79–97 Hoboken, NJ: Wiley [Google Scholar]
  84. Than C, Ruths D, Nakhleh L. 2008. PhyloNet: a software package for analyzing and reconstructing reticulate evolutionary relationships. BMC Bioinform 9:322 [Google Scholar]
  85. Tian Y, Kubatko L. 2016. Distribution of coalescent histories under the coalescent model with gene flow. Mol. Phylogenetics Evol. 105:177–92 [Google Scholar]
  86. Toprak Z, Pfeil BE, Jones G, Marcussen T, Ertekin AS, Oxelman B. 2016. Species delimitation without prior knowledge: DISSECT reveals extensive cryptic speciation in the Silene aegyptiaca complex (Caryophyllaceae). Mol. Phylogenetics Evol. 102:1–8 [Google Scholar]
  87. Veronesi F, Mariani A, Bingham ET. 1986. Unreduced gametes in diploid Medicago and their importance in alfalfa breeding. Theor. Appl. Genet. 72:37–41 [Google Scholar]
  88. Wen D, Yu Y, Nakhleh L. 2016. Bayesian inference of reticulate phylogenies under the multispecies network coalescent. PLOS Genet 12:e1006006 [Google Scholar]
  89. Wen D, Nakhleh L. 2017. Co-estimating reticulate phylogenies and gene trees from multi-locus sequence data. bioRxiv 095539. http://dx.doi.org/10.1101/095539 [Crossref]
  90. Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH. 2009. The frequency of polyploid speciation in vascular plants. PNAS 106:13875–79 [Google Scholar]
  91. Zwickl DJ, Stein JC, Wing RA, Ware D, Sanderson MJ. 2014. Disentangling methodological and biological sources of gene tree discordance on Oryza (Poaceae) chromosome 3. Syst. Biol. 63:645–59 [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-110316-022729
Loading
/content/journals/10.1146/annurev-ecolsys-110316-022729
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error