1932

Abstract

Recent biogeographic and evolutionary studies have led to improved understanding of the origins of exceptionally high plant diversity in the California Floristic Province (CA-FP). Spatial analyses of Californian plant diversity and endemism reinforce the importance of geographically isolated areas of high topographic and edaphic complexity as floristic hot spots, in which the relative influence of factors promoting evolutionary divergence and buffering of lineages against extinction has gained increased attention. Molecular phylogenetic studies spanning the flora indicate that immediate sources of CA-FP lineages bearing endemic species diversity have been mostly within North America—especially within the west and southwest—even for groups of north temperate affinity, and that most diversification of extant lineages in the CA-FP has occurred since the mid-Miocene, with the transition toward summer-drying. Process-focused studies continue to implicate environmental heterogeneity at local or broad geographic scales in evolutionary divergence within the CA-FP, often associated with reproductive or life-history shifts or sometimes hybridization.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-110512-135847
2014-11-23
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/45/1/annurev-ecolsys-110512-135847.html?itemId=/content/journals/10.1146/annurev-ecolsys-110512-135847&mimeType=html&fmt=ahah

Literature Cited

  1. Ackerly DD. 2009. Evolution, origin and age of lineages in the Californian and Mediterranean floras. J. Biogeogr. 36:1221–33 [Google Scholar]
  2. Aguirre-Planter E, Jaramillo-Correa JP, Gómez-Acevedo S, Khasa DP, Bousquet J, Eguiarte LE. 2012. Phylogeny, diversification rates and species boundaries of Mesoamerican firs (Abies, Pinaceae) in a genus-wide context. Mol. Phylogenet. Evol. 62:263–74 [Google Scholar]
  3. Alexander PJ, Windham MD, Beck JB, Al-Shehbaz IA, Allphin L, Bailey CD. 2013. Molecular phylogenetics and taxonomy of the genus Boechera and related genera (Brassicaceae: Boechereae). Syst. Bot. 38:192–209 [Google Scholar]
  4. Allan GJ, Porter JM. 2000. Tribal delimitation and phylogenetic relationships of Loteae and Coronilleae (Faboideae: Fabaceae) with special reference to Lotus: evidence from nuclear ribosomal ITS sequences. Am. J. Bot. 87:1871–81 [Google Scholar]
  5. Alverson WS, Whitlock BA, Nyffeler R, Bayer C, Baum DA. 1999. Phylogeny of the core Malvales: evidence from ndhF sequence data. Am. J. Bot. 86:1474–86 [Google Scholar]
  6. Anacker BL, Harrison SP. 2012. Historical and ecological controls on phylogenetic diversity in Californian plant communities. Am. Nat. 180:257–69 [Google Scholar]
  7. Anacker BL, Strauss SY. 2014. The geography and ecology of plant speciation: range overlap and niche divergence in sister species. Proc. R. Soc. B-Biol. Sci. 281:20132980 [Google Scholar]
  8. Anacker BL, Whittall JB, Goldberg EE, Harrison SP. 2010. Origins and consequences of serpentine endemism in the California flora. Evolution 65:365–76 [Google Scholar]
  9. Anderson E, Stebbins Jr GL. 1954. Hybridization as an evolutionary stimulus. Evolution 8:378–88 [Google Scholar]
  10. Angert AL, Bradshaw HD Jr, Schemske DW. 2008. Using experimental evolution to investigate geographic range limits in monkeyflowers. Evolution 62:2660–75 [Google Scholar]
  11. Angert AL, Schemske DW. 2005. The evolution of species' distributions: reciprocal transplants across the elevation ranges of Mimulus cardinalis and M. lewisii. Evolution 59:1671–84 [Google Scholar]
  12. Armbruster WS, Muchhala N. 2009. Associations between floral specialization and species diversity: cause, effect, or correlation?. Evol. Ecol. 23:159–79 [Google Scholar]
  13. Armbruster WS, Mulder CPH, Baldwin BG, Kalisz S, Wessa B, Nute H. 2002. Comparative analysis of late floral development and mating-system evolution in tribe Collinsieae (Scrophulariaceae s.l.). Am. J. Bot. 89:37–49 [Google Scholar]
  14. Arrigo N, Therrien J, Anderson CL, Windham MD, Haufler CH, Barker MS. 2013. A total evidence approach to understanding phylogenetic and ecological diversity in Selaginella subg. Tetragonostachys. Am. J. Bot. 100:1672–82 [Google Scholar]
  15. Axelrod DI. 1958. Evolution of the Madro-Tertiary Geoflora. Bot. Rev. 24:433–509 [Google Scholar]
  16. Axelrod DI. 1967. Geological history of the Californian insular flora. Proc. Symp. Biol. Calif. Isl. RN Philbrick 267–315 Santa Barbara, CA: Santa Barbara Bot. Gard. [Google Scholar]
  17. Baldwin BG. 2000. Roles for modern plant systematics in discovery and conservation of fine-scale biodiversity. Madroño 47:219–29 [Google Scholar]
  18. Baldwin BG. 2001. Harmonia guggolziorum (Compositae–Madiinae), a new tarweed from ultramafics of southern Mendocino County, California. Madroño 48:293–97 [Google Scholar]
  19. Baldwin BG. 2005. Origin of the serpentine-endemic herb Layia discoidea from the widespread L. glandulosa (Compositae). Evolution 59:2473–79 [Google Scholar]
  20. Baldwin BG. 2006. Contrasting patterns and processes of evolutionary change in the tarweed–silversword lineage: revisiting Clausen, Keck, and Hiesey's findings. Ann. Mo. Bot. Gard. 93:64–93 [Google Scholar]
  21. Baldwin BG. 2007. Adaptive radiation of shrubby tarweeds (Deinandra) in the California Islands parallels diversification of the Hawaiian silversword alliance (Compositae–Madiinae). Am. J. Bot. 94:237–48 [Google Scholar]
  22. Baldwin BG, Goldman DH, Keil DJ, Patterson R, Rosatti TJ, Wilken DH. 2012. The Jepson Manual: Vascular Plants of California Berkeley: Univ. Calif. Press, 2nd. ed.
  23. Baldwin BG, Kalisz S, Armbruster WS. 2011. Phylogenetic perspectives on diversification, biogeography, and flora evolution of Collinsia and Tonella (Plantaginaceae). Am. J. Bot. 98:731–53 [Google Scholar]
  24. Baldwin BG, Wagner WL. 2010. Hawaiian angiosperm radiations of North American origin. Ann. Bot. 105:849–79 [Google Scholar]
  25. Baldwin BG, Wessa BL, Panero JL. 2002. Nuclear rDNA evidence for major lineages of helenioid Heliantheae (Compositae). Syst. Bot. 27:161–98 [Google Scholar]
  26. Barrett SCH. 2013. The evolution of plant reproductive systems: How often are transitions irreversible?. Proc. R. Soc. B-Biol. Sci. 280:20130913 [Google Scholar]
  27. Beardsley PM, Olmstead RG. 2002. Redefining Phrymaceae: the placement of Mimulus, tribe Mimuleae, and Phryma. Am. J. Bot. 89:1093–102 [Google Scholar]
  28. Bell CD, Patterson RW. 2000. Molecular phylogeny and biogeography of Linanthus (Polemoniaceae). Am. J. Bot. 87:1857–70 [Google Scholar]
  29. Bouillé M, Senneville S, Bousquet J. 2011. Discordant mtDNA and cpDNA phylogenies indicate geographic speciation and reticulation as driving factors for the diversification of the genus Picea. Tree Genet. Genomes 7:469–84 [Google Scholar]
  30. Bowen L, Van Vuren D. 1997. Insular endemic plants lack defenses against herbivores. Conserv. Biol. 11:1249–54 [Google Scholar]
  31. Boykin LM, Kubatko LS, Lowrey TK. 2010. Comparison of methods for rooting phylogenetic trees: a case study using Orcuttieae (Poaceae: Chloridoideae). Mol. Phylogenet. Evol. 54:687–700 [Google Scholar]
  32. Boykin LM, Vasey MC, Parker VT, Patterson R. 2005. Two lineages of Arctostaphylos (Ericaceae) identified using the internal transcribed spacer (ITS) region of the nuclear genome. Madroño 52:139–47 [Google Scholar]
  33. Bräuchler C, Meimberg H, Heubl G. 2010. Molecular phylogeny of Menthinae (Lamiaceae, Nepetoideae, Mentheae)—taxonomy, biogeography and conflicts. Mol. Phylogenet. Evol. 55:501–23 [Google Scholar]
  34. Brokaw JM, Hufford L. 2010. Origins and introgression of polyploid species in Mentzelia section Trachyphytum (Loasaceae). Am. J. Bot. 97:1457–73 [Google Scholar]
  35. Brouillet L. 2008. Lyonothamneae, a new tribe in the Rosaceae (Rosales). J. Bot. Res. Inst. Tex. 2:385–86 [Google Scholar]
  36. Buerki S, Manning JC, Forest F. 2013. Spatio-temporal history of the disjunct family Tecophilaeaceae: a tale involving the colonization of three Mediterranean-type ecosystems. Ann. Bot. 111:361–73 [Google Scholar]
  37. Burge DO, Erwin DM, Islam MB, Kellermann J, Kembel SW. et al. 2011. Diversification of Ceanothus (Rhamnaceae) in the California Floristic Province. Int. J. Plant Sci. 172:1137–64 [Google Scholar]
  38. Burge DO, Hopkins R, Tsai Y-HE, Manos PS. 2013. Limited hybridization across an edaphic disjunction between the gabbro-endemic shrub Ceanothus roderickii (Rhamnaceae) and the soil-generalist Ceanothus cuneatus. Am. J. Bot. 100:1883–95 [Google Scholar]
  39. Bushakra JM, Hodges SA, Cooper JB, Kaska DD. 1999. The extent of clonality and genetic diversity in the Santa Cruz Island ironwood, Lyonothamnus floribundus. Mol. Ecol. 8:471–75 [Google Scholar]
  40. Cacho NI, Burrell AM, Pepper AE, Strauss SY. 2014. Novel nuclear markers inform the systematics and the evolution of serpentine use in Streptanthus and allies (Thelypodieae, Brassicaceae). Mol. Phylogenet. Evol. 72:71–81 [Google Scholar]
  41. Calviño CI, Martínez SG, Downie SR. 2010. Unraveling the taxonomic complexity of Eryngium L. (Apiaceae, Saniculoideae): phylogenetic analysis of 11 non-coding cpDNA loci corroborates rapid radiations. Plant Div. Evol. 128:137–49 [Google Scholar]
  42. Carlquist S. 1962. A theory of paedomorphosis in dicotyledonous woods. Phytomorphology 12:30–45 [Google Scholar]
  43. Carlquist S. 1965. Island Life: A Natural History of the Islands of the World Garden City, NY: Nat. Hist.
  44. Carlquist S. 1974. Island Biology New York: Columbia Univ. Press
  45. Carlquist S, Baldwin BG, Carr GD. 2003. Tarweeds & Silverswords: Evolution of the Madiinae (Asteraceae) St. Louis: Mo. Bot. Gard. [Google Scholar]
  46. Chan R, Baldwin BG, Ornduff R. 2001. Goldfields revisited: a molecular phylogenetic perspective on the evolution of Lasthenia (Compositae: Heliantheae sensu lato). Int. J. Plant Sci. 162:1347–60 [Google Scholar]
  47. Chanderbali AS, van der Werff H, Renner SS. 2001. Phylogeny and historical biogeography of Lauraceae: evidence from the chloroplast and nuclear genomes. Ann. Missouri Bot. Gard. 88:104–34 [Google Scholar]
  48. Chen C-H, Huang J-P, Tsai C-C, Chaw S-M. 2009. Phylogeny of Calocedrus (Cupressaceae), an eastern Asian and western North American disjunct gymnosperm genus, inferred from nuclear ribosomal nrITS sequences. Bot. Stud. 50:425–33 [Google Scholar]
  49. Clausen J. 1951. Stages in the Evolution of Plant Species Ithaca: Cornell Univ. Press
  50. Costea M, Stefanovic S. 2009. Cucuta jepsonii (Convolvulaceae): an invasive weed or an extinct endemic?. Am. J. Bot. 96:1744–50 [Google Scholar]
  51. Davis WS. 1997. The systematics of annual species of Malacothrix (Asteraceae: Lactuceae) endemic to the California Islands. Madroño 44:223–44 [Google Scholar]
  52. Dierschke T, Mandáková T, Lysak MA, Mummenhoff K. 2009. A bicontinental origin of polyploid Australian/New Zealand Lepidium species (Brassicaceae)? Evidence from genomic in situ hybridization. Ann. Bot. 104:681–88 [Google Scholar]
  53. Donoghue MJ, Smith SA. 2004. Patterns in the assembly of temperate forests around the Northern Hemisphere. Philos. Trans. R. Soc. Lond. B 359:1633–44 [Google Scholar]
  54. Drummond CS. 2008. Diversification of Lupinus (Leguminosae) in the western New World: derived evolution of perennial life history and colonization of montane habitats. Mol. Phylogenet. Evol. 48:408–21 [Google Scholar]
  55. Eckert AJ, Hall BD. 2006. Phylogeny, historical biogeography, and patterns of diversification for Pinus (Pinaceae): phylogenetic tests of fossil-based hypotheses. Mol. Phylogenet. Evol. 40:166–82 [Google Scholar]
  56. Egan AN, Crandall KA. 2008. Divergence and diversification in North American Psoraleeae (Fabaceae) due to climate change. BMC Biol. 6:55 [Google Scholar]
  57. Ellison AM, Butler ED, Hicks EJ, Naczi RFC, Calie PJ. et al. 2012. Phylogeny and biogeography of the carnivorous plant family Sarraceniaceae. PLOS ONE 7:e39291 [Google Scholar]
  58. Ellison NW, Liston A, Steiner JJ, Williams WM, Taylor NL. 2006. Molecular phylogenetics of the clover genus (Trifolium–Leguminosae). Mol. Phylogenet. Evol. 39:688–705 [Google Scholar]
  59. Emery NC, Forrestel EJ, Jui G, Park MS, Baldwin BG, Ackerly DD. 2012. Niche evolution across spatial scales: climate and habitat specialization in California Lasthenia (Asteraceae). Ecology 93:8S151–66 [Google Scholar]
  60. Emery NC, Stanton ML, Rice KJ. 2009. Factors driving distribution limits in an annual plant community. New Phytol. 181:734–47 [Google Scholar]
  61. Escobar Garcia P, Schönswetter P, Fuertes Aguilar J, Nieto Feliner G, Schneeweiss GM. 2009. Five molecular markers reveal extensive morphological homoplasy and reticulate evolution in the Malva alliance (Malvaceae). Mol. Phylogenet. Evol. 50:226–39 [Google Scholar]
  62. Farmer SB, Schilling EE. 2002. Phylogenetic analyses of Trilliaceae based on morphological and molecular data. Syst. Bot. 27:674–92 [Google Scholar]
  63. Ford VS, Gottlieb LD. 1999. Molecular characterization of PgiC in a tetraploid plant and its diploid relatives. Evolution 53:1060–67 [Google Scholar]
  64. Galbany-Casals M, Andrés-Sánchez S, Garcia-Jacas N, Susanna A, Rico E, Montserrat Martínez-Ortega M. 2010. How many of Cassini anagrams should there be? Molecular systematics and phylogenetic relationships in the Filago group (Asteraceae, Gnaphalieae), with special focus on the genus Filago. Taxon 59:1671–89 [Google Scholar]
  65. George EE, Mansfield DH, Smith JF, Hartman RL, Downie SR, Hinchliff CE. 2014. Phylogenetic analysis reveals multiple cases of morphological parallelism and taxonomic polyphyly in Lomatium (Apiaceae). Syst. Bot 39:662–75 [Google Scholar]
  66. Gernandt DS, Hernández-León S, Salgado-Hernández E, Pérez de la Rosa JA. 2009. Phylogenetic relationships of Pinus subsection Ponderosae inferred from rapidly evolving cpDNA regions. Syst. Bot. 34:481–91 [Google Scholar]
  67. Goodwillie C. 1999. Multiple origins of self-compatibility in Linanthus section Leptosiphon (Polemoniaceae): phylogenetic evidence from internal-transcribed-spacer sequence data. Evolution 53:1387–95 [Google Scholar]
  68. Goodwillie C, Kalisz S, Eckert CG. 2005. The evolutionary enigma of mixed mating systems in plants: occurrence, theoretical explanations, and empirical evidence. Annu. Rev. Ecol. Evol. Syst. 36:47–79 [Google Scholar]
  69. Grant KA, Grant V. 1964. Mechanical isolation of Salvia apiana and Salvia mellifera (Labiatae). Evolution 18:196–212 [Google Scholar]
  70. Grossenbacher DL, Whittall JB. 2011. Increased floral divergence in sympatric monkeyflowers. Evolution 65:2712–18 [Google Scholar]
  71. Guo Y-L, Pais A, Weakley AS, Xiang Q-Y. 2013. Molecular phylogenetic analysis suggests paraphyly and early diversification of Philadelphus (Hydrangeaceae) in western North America: new insights into affinity with Carpenteria. J. Syst. Evol. 51:545–63 [Google Scholar]
  72. Halpin KM, Fishbein M. 2013. A chloroplast phylogeny of Agavaceae subfamily Chlorogaloideae: implications for the tempo of evolution on serpentine soils. Syst. Bot. 38:996–1011 [Google Scholar]
  73. Harris AJ, Wen J, Xiang Q-Y. 2013. Inferring the biogeographic origins of inter-continental disjunct endemics using a Bayes-DIVA approach. J. Syst. Evol. 51:117–33 [Google Scholar]
  74. Harris AJ, Xiang Q-Y, Thomas DT. 2009. Phylogeny, origin, and biogeographic history of Aesculus L. (Sapindales)—an update from combined analysis of DNA sequences, morphology, and fossils. Taxon 58:108–26 [Google Scholar]
  75. Harrison SP. 2013. Plant and Animal Endemism in California Berkeley: Univ. Calif. Press
  76. Haufler CH, Soltis DE, Soltis PS. 1995. Phylogeny of the Polypodium vulgare complex: insights from chloroplast DNA restriction site data. Syst. Bot. 20:110–19 [Google Scholar]
  77. Hegde SG, Nason JD, Clegg JM, Ellstrand NC. 2006. The evolution of California's wild radish has resulted in the extinction of its progenitors. Evolution 60:1187–97 [Google Scholar]
  78. Hershkovitz MA. 2006. Ribosomal and chloroplast DNA evidence for diversification of western American Portulacaceae in the Andean region. Gayana Bot. 63:13–74 [Google Scholar]
  79. Howell JT. 1957. The California flora and its province. Leafl. West. Bot. 8:133–38 [Google Scholar]
  80. Irwin DM, Schorn HE. 2000. Revision of Lyonothamnus A. Gray (Rosaceae) from the Neogene of western North America. Int. J. Plant Sci. 16:179–93 [Google Scholar]
  81. Ivey CT, Carr DE. 2012. Tests for the joint evolution of mating system and drought escape in Mimulus. Ann. Bot. 109:583–98 [Google Scholar]
  82. Jabbour F, Renner SS. 2012. A phylogeny of Delphinieae (Ranunculaceae) shows that Aconitum is nested within Delphinium and that Late Miocene transitions to long life cycles in the Himalayas and Southwest China coincide with bursts in diversification. Mol. Phylogenet. Evol. 62:928–42 [Google Scholar]
  83. Jacobs DK, Haney TA, Louie KD. 2004. Genes, diversity, and geologic process on the Pacific Coast. Annu. Rev. Earth Planet. Sci. 32:601–52 [Google Scholar]
  84. Jiménez-Moreno G, Fauquette S, Suc J-P. 2010. Miocene to Pliocene vegetation reconstruction and climate estimates in the Iberian Peninsula from pollen data. Rev. Palaeobot. Palyno. 162:403–15 [Google Scholar]
  85. Johnson LA, Gowen D, Jensen AB. 2013. Cryptic speciation: distinguishing serpentine affiliated sister species Navarretia paradoxiclara and N. paradoxinota from N. intertexta (Polemoniaceae). Phytotaxa 91:27–38 [Google Scholar]
  86. Kadereit JW, Baldwin BG. 2012. Western Eurasian–western North American disjunct plant taxa: the dry-adapted ends of formerly widespread north temperate mesic lineages—and examples of long-distance dispersal. Taxon 61:3–17 [Google Scholar]
  87. Kalisz S, Randle A, Chaiffetz D, Faigeles M, Butera A, Beight C. 2012. Dichogamy correlates with outcrossing rate and defines the selfing syndrome in the mixed-mating genus Collinsia. Ann. Bot. 109:571–82 [Google Scholar]
  88. Kartesz JT. The Biota of North America Program (BONAP) 2013. Taxonomic Data Center Chapel Hill, NC: BONAP ( http://www.bonap.net/tdc)
  89. Kay KM, Sargent RD. 2009. The role of animal pollination in plant speciation: integrating ecology, geography, and genetics. Annu. Rev. Ecol. Evol. Syst. 40:637–56 [Google Scholar]
  90. Kay KM, Ward KL, Watt LR, Schemske DW. 2011. Plant speciation. Serpentine: The Evolution and Ecology of a Model System S Harrison, N Rajakaruna 71–95 Berkeley: Univ. Calif. Press [Google Scholar]
  91. Keeley JE. 1998. C4 photosynthetic modifications in the evolutionary transition from land to water in aquatic grasses. Oecologia 116:85–97 [Google Scholar]
  92. Kelch DG, Baldwin BG. 2003. Phylogeny and ecological radiation of New World thistles (Cirsium, Carduae—Compositae) based on ITS and ETS rDNA sequence data. Mol. Ecol. 12:141–51 [Google Scholar]
  93. Kostikova A, Litsios G, Salamin N, Pearman PB. 2013. Linking life-history traits, ecology, and niche breadth evolution in North American eriogonoids (Polygonaceae). Am. Nat. 182:760–74 [Google Scholar]
  94. Kraft NJB, Baldwin BG, Ackerly DD. 2010. Range size, taxon age and hotspots of neoendemism in the California flora. Diversity Distrib. 16:403–13 [Google Scholar]
  95. Kruckeberg AR. 1954. Plant species in relation to serpentine soil. Ecology 35:267–74 [Google Scholar]
  96. Kruckeberg AR. 1984. California serpentines: flora, vegetation, geology, soils, and management problems. Univ. Calif. Publ. Bot. 78:1–180 [Google Scholar]
  97. Kuzoff RK, Soltis DE, Hufford L, Soltis PS. 1999. Phylogenetic relationships within Lithophragma (Saxifragaceae): hybridization, allopolyploidy, and ovary diversification. Syst. Bot. 24:598–615 [Google Scholar]
  98. Lancaster LT, Kay KM. 2013. Origin and diversification of the California flora: re-examining classic hypotheses with molecular phylogenies. Evolution 67:1041–54 [Google Scholar]
  99. Lee J, Baldwin BG, Gottlieb LD. 2003. Phylogenetic relationships among the primarily North American genera of Cichorieae (Compositae) based on analysis of 18S–26S nuclear rDNA ITS and ETS sequences. Syst. Bot. 28:616–26 [Google Scholar]
  100. Loarie SR, Carter BE, Hayhoe K, McMahon S, Moe R. et al. 2008. Climate change and the future of California's endemic flora. PLOS ONE 3:e2502 [Google Scholar]
  101. Lowry DB, Rockwood RC, Willis JH. 2008. Ecological reproductive isolation of coast and inland races of Mimulus guttatus. Evolution 62:2196–214 [Google Scholar]
  102. Manos PS, Doyle JJ, Nixon KC. 1999. Phylogeny, biogeography, and processes of molecular differentiation in Quercus subgenus Quercus (Fagaceae). Mol. Phylogenet. Evol. 12:333–49 [Google Scholar]
  103. Mansion G, Parolly G, Crowl AA, Mavrodiev E, Cellinese N. et al. 2012. How to handle speciose clades? Mass taxon-sampling as a strategy towards illuminating the natural history of Campanula (Campanuloideae). PLOS ONE 7:e50076 [Google Scholar]
  104. McGlaughlin ME, Wallace LE, Wheeler GL, Bresowar G, Riley L. et al. 2014. Do the island biogeography predictions of MacArthur and Wilson hold when examining genetic diversity on the near mainland California Channel Islands? Examples from endemic Acmispon (Fabaceae). Bot. J. Linn. Soc. 174:289–304 [Google Scholar]
  105. Millar CI. 2012. Geologic, climatic, and vegetation history of California. The Jepson Manual: Vascular Plants of California BG Baldwin, DH Goldman, DJ Keil, R Patterson, TJ Rosatti, DH Wilken 49–68 Berkeley: Univ. Calif. Press [Google Scholar]
  106. Mittermeier RA, Turner WR, Larsen FW, Brooks TM, Gascon C. 2011. Global biodiversity conservation: the critical role of hotspots. Biodiversity Hotspots: Distribution and Protection of Conservation Priority Areas FE Zachos, JC Habel 3–22 Berlin: Springer-Verlag [Google Scholar]
  107. Moore AJ, Bartoli A, Tortosa RD, Baldwin BG. 2012. Phylogeny, biogeography, and chromosome evolution of the amphitropical genus Grindelia (Asteraceae) inferred from nuclear ribosomal and chloroplast sequence data. Taxon 61:211–30 [Google Scholar]
  108. Moyers BT, Rieseberg LH. 2013. Divergence in gene expression is uncoupled from divergence in coding sequence in a secondarily woody sunflower. Int. J. Plant Sci. 174:1079–89 [Google Scholar]
  109. Moyle LC, Levine M, Stanton ML, Wright JW. 2012. Hybrid sterility over tens of meters between ecotypes adapted to serpentine and non-serpentine soils. Evol. Biol. 39:207–18 [Google Scholar]
  110. Nguyen NH, Driscoll HE, Specht CD. 2008. A molecular phylogeny of the wild onions (Allium; Alliaceae) with a focus on the western North American center of diversity. Mol. Phylogenet. Evol. 47:1157–72 [Google Scholar]
  111. Noyes RD, Rieseberg LH. 1999. ITS sequence data support a single origin for North American Astereae (Asteraceae) and reflect deep geographic divisions in Aster s.l. Am. J. Bot. 86:398–412 [Google Scholar]
  112. Oyama RK, Baum DA. 2004. Phylogenetic relationships of North American Antirrhinum (Veronicaceae). Am. J. Bot. 91:918–25 [Google Scholar]
  113. Patterson TB, Givnish TJ. 2003. Geographic cohesion, chromosomal evolution, parallel adaptive radiations, and consequent floral adaptations in Calochortus (Calochortaceae): evidence from a cpDNA phylogeny. New Phytol. 161:253–64 [Google Scholar]
  114. Pelser PB, Kennedy AH, Tepe EJ, Shidler JB, Nordenstam B. et al. 2010. Patterns and causes of incongruence between plastid and nuclear Senecioneae (Asteraceae) phylogenies. Am. J. Bot. 97:856–73 [Google Scholar]
  115. Pires JC, Sytsma KJ. 2002. A phylogenetic evaluation of a biosystematic framework: Brodiaea and related petaloid monocots (Themidaceae). Am. J. Bot. 89:1342–59 [Google Scholar]
  116. Popp M, Oxelman B. 2007. Origin and evolution of North American polyploid Silene (Caryophyllaceae). Am. J. Bot. 94:330–49 [Google Scholar]
  117. Potter D, Eriksson T, Evans RC, Oh S, Smedmark JEE. et al. 2007. Phylogeny and classification of Rosaceae. Pl. Syst. Evol. 266:5–43 [Google Scholar]
  118. Qi Y, Yang Y. 1999. Topographic effect on spatial variation of plant diversity in California. Ann. GIS 5:39–46 [Google Scholar]
  119. Ramsey J. 2011. Polyploidy and ecological adaptation in wild yarrow. Proc. Natl. Acad. Sci. USA 108:7096–101 [Google Scholar]
  120. Ramsey J, Bradshaw HD Jr, Schemske DW. 2003. Components of reproductive isolation between the monkeyflowers Mimulus lewisii and M. cardinalis (Phrymaceae). Evolution 57:1520–34 [Google Scholar]
  121. Ramsey J, Schemske DW. 1998. Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu. Rev. Ecol. Syst. 29:467–501 [Google Scholar]
  122. Rausher MD. 2008. Evolutionary transitions in floral color. Int. J. Plant Sci. 169:7–21 [Google Scholar]
  123. Raven PH. 1963. Amphitropical relationships in the floras of North and South America. Quart. Rev. Biol. 38:151–77 [Google Scholar]
  124. Raven PH. 1973. The evolution of Mediterranean floras. Mediterranean Type Ecosystems: Origin and Structure F di Castri, HA Mooney 213–24 New York: Springer-Verlag [Google Scholar]
  125. Raven PH, Axelrod DI. 1978. Origin and relationships of the California flora. Univ. Calif. Publ. Bot. 72:1–134 [Google Scholar]
  126. Ray MF. 1995. Systematics of Lavatera and Malva (Malvaceae, Malveae)—a new perspective. Pl. Syst. Evol. 198:29–53 [Google Scholar]
  127. Richerson PJ, Lum K-L. 1980. Patterns of plant species diversity in California: relation to weather and topography. Am. Nat. 116:504–36 [Google Scholar]
  128. Rieseberg LH. 1991. Homoploid reticulate evolution in Helianthus (Asteraceae): evidence from ribosomal genes. Am. J. Bot. 78:1218–37 [Google Scholar]
  129. Rieseberg LH. 2006. Hybrid speciation in wild sunflowers. Ann. Mo. Bot. Gard. 93:34–48 [Google Scholar]
  130. Salvo G, Ho SYW, Rosenbaum G, Ree R, Conti E. 2010. Tracing the temporal and spatial origins of island endemics in the Mediterranean region: a case study from the citrus family (Ruta L., Rutaceae). Syst. Biol 59:705–22 [Google Scholar]
  131. Schaefer H, Hechenleitner P, Santos-Guerra A, Menezes de Sequeria M, Pennington RT. et al. 2012. Systematics, biogeography, and character evolution of the legume tribe Fabeae with special focus on the middle-Atlantic island lineages. BMC Evol. Biol. 12:250 [Google Scholar]
  132. Scherson RA, Vidal R, Sanderson MJ. 2008. Phylogeny, biogeography, and rates of diversification of New World Astragalus (Leguminosae) with an emphasis on South American radiations. Am. J. Bot. 95:1030–39 [Google Scholar]
  133. Schueller SK. 2004. Self-pollination in island and mainland populations of the introduced hummingbird-pollinated plant, Nicotiana glauca (Solanaceae). Am. J. Bot. 91:672–81 [Google Scholar]
  134. Schultheis LM, Donoghue MJ. 2004. Molecular phylogeny and biogeography of Ribes (Grossulariaceae), with an emphasis on gooseberries (subg. Grossularia). Syst. Bot. 29:77–96 [Google Scholar]
  135. Sherman NA, Burke JM. 2009. Population genetic analysis reveals a homoploid hybrid origin of Stephanomeria diegensis (Asteraceae). Mol. Ecol. 18:4049–60 [Google Scholar]
  136. Soltis DE, Mort ME, Latvis M, Mavrodiev EV, O'Meara BC. et al. 2013. Phylogenetic relationships and character evolution analysis of Saxifragales using a supermatrix approach. Am. J. Bot. 100:916–29 [Google Scholar]
  137. Springer YP. 2009. Do extreme environments provide a refuge from pathogens? A phylogenetic test using serpentine flax. Am. J. Bot. 96:2010–21 [Google Scholar]
  138. Stebbins GL. 1942. The genetic approach to problems of rare and endemic species. Madroño 6:241–58 [Google Scholar]
  139. Stebbins GL. 1950. Variation and Evolution in Plants New York: Columbia Univ. Press
  140. Stebbins GL. 1957. Self fertilization and population variability in higher plants. Am. Nat. 91:337–54 [Google Scholar]
  141. Stebbins GL, Major J. 1965. Endemism and speciation in the California flora. Ecol. Monogr. 35:1–35 [Google Scholar]
  142. Strauss SY, Cacho NI. 2013. Nowhere to run, nowhere to hide: the importance of enemies and apparency in adaptation to harsh soil environments. Am. Nat. 182:E1–14 [Google Scholar]
  143. Sun F-J, Downie SR. 2010. Phylogenetic analyses of morphological and molecular data reveal major clades within the perennial, endemic western North American Apiaceae subfamily Apioideae. J. Torrey Bot. Soc. 137:133–56 [Google Scholar]
  144. Sytsma KJ, Gottlieb LD. 1986. Chloroplast DNA evidence for the origin of the genus Heterogaura from a species of Clarkia (Onagraceae). Proc. Natl. Acad. Sci. USA 83:5554–57 [Google Scholar]
  145. Tank DC, Olmstead RG. 2008. From annuals to perennials: phylogeny of subtribe Castillejinae (Orobanchaceae). Am. J. Bot. 95:608–25 [Google Scholar]
  146. Terry RG, Bartel JA, Adams RP. 2012. Phylogenetic relationships among the New World cypresses (Hesperocyparis; Cupressaceae): evidence from noncoding chloroplast DNA sequences. Plant Syst. Evol. 298:1987–2000 [Google Scholar]
  147. Thompson JN, Schwind C, Guimaräes PR Jr, Friberg M. 2013. Diversification through multitrait evolution in a coevolving interaction. Proc. Natl. Acad. Sci. USA 110:11487–92 [Google Scholar]
  148. Thorne JH, Viers JH, Price J, Stoms DM. 2009. Spatial patterns of endemic plants in California. Nat. Area. J. 29:344–66 [Google Scholar]
  149. Thorne RF. 1969. The California Islands. Ann. Mo. Bot. Gard. 56:391–408 [Google Scholar]
  150. Timme RE, Simpson BB, Linder CR. 2007. High-resolution phylogeny for Helianthus (Asteraceae) using the 18S-26S ribosomal DNA external transcribed spacer. Am. J. Bot. 94:1837–52 [Google Scholar]
  151. Töpel M, Antonelli A, Yesson C, Eriksen B. 2012. Past climate change and plant evolution in western North America: a case study in Rosaceae. PLOS ONE 7:e50358 [Google Scholar]
  152. Vargas P, Valente LM, Blanco-Pastor JL, Liberal I, Guzmán B. et al. 2014. Testing the biogeographical congruence of palaeofloras using molecular phylogenetics: snapdragons and the Madrean-Tethyan flora. J. Biogeogr. 41:932–43 [Google Scholar]
  153. Vijverberg K, Kuperus P, Beeuwer JAJ, Bachmann K. 2000. Incipient adaptive radiation of New Zealand and Australian Microseris (Asteraceae): an amplified fragment length polymorphism (AFLP) study. J. Evol. Biol. 13:997–1008 [Google Scholar]
  154. Walker JB, Sytsma KJ, Treutlein J, Wink M. 2004. Salvia (Lamiaceae) is not monophyletic: implications for the systematics, radiation, and ecological specializations of Salvia and tribe Mentheae. Am. J. Bot. 91:1115–25 [Google Scholar]
  155. Wallander E. 2008. Systematics of Fraxinus (Oleaceae) and evolution of dioecy. Plant Syst. Evol. 273:25–49 [Google Scholar]
  156. Wen J, Ickert-Bond S, Nie Z-L, Li R. 2010. Timing and modes of evolution of eastern Asian–North American biogeographic disjunctions in seed plants. Darwin's Heritage Today: Proceedings of the Darwin 200 Beijing International Conference M Long, H Gu, Z Zhou 252–69 Beijing: High. Educ.
  157. Wen J, Ickert-Bond SM. 2009. Evolution of the Madrean–Tethyan disjunctions and the North and South American amphitropical disjunctions in plants. J. Syst. Evol. 47:331–48 [Google Scholar]
  158. Wilson P, Wolfe AD, Armbruster WS, Thomson JD. 2007. Constrained lability in floral evolution: counting convergent origins of hummingbird pollination in Penstemon and Keckiella. New Phytol. 176:883–90 [Google Scholar]
  159. Wojciechowski MF. 2013. The origin and phylogenetic relationships of the Californian chaparral ‘paleoendemic’ Pickeringia (Leguminosae). Syst. Bot. 38:134–42 [Google Scholar]
  160. Wojciechowski MF, Sanderson MJ, Hu J-M. 1999. Evidence on the monophyly of Astragalus (Fabaceae) and its major subgroups based on nuclear ribosomal DNA ITS and chloroplast DNA trnL intron data. Syst. Bot. 24:409–37 [Google Scholar]
  161. Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH. 2009. The frequency of polyploid speciation in vascular plants. Proc. Natl. Acad. Sci. USA 106:13875–79 [Google Scholar]
  162. Wright KM, Lloyd D, Lowry DB, Macnair MR, Willis JH. 2013. Indirect evolution of hybrid lethality due to linkage with selected locus in Mimulus guttatus. PLOS Biol. 11:e1001497 [Google Scholar]
  163. Xiang Q-P, Xiang Q-Y, Guo Y-Y, Zhang X-C. 2009. Phylogeny of Abies (Pinaceae) inferred from nrITS sequence data. Taxon 58:141–52 [Google Scholar]
  164. Xiang Q-Y, Soltis DE, Soltis PS. 1998. The eastern Asian and eastern and western North American floristic disjunction: congruent phylogenetic patterns in seven diverse genera. Mol. Phylogenet. Evol. 10:178–90 [Google Scholar]
  165. Xiang Q-Y, Thorne JL, Seo T-K, Zhang W, Thomas DT, Ricklefs RE. 2008. Rates of nucleotide substitution in Cornaceae (Cornales)—pattern of variation and underlying causal factors. Mol. Phylogenet. Evol. 49:327–42 [Google Scholar]
  166. Yang Y, Berry PE. 2011. Phylogenetics of the Chamaesyce clade (Euphorbia, Euphorbiaceae): reticulate evolution and long-distance dispersal in a prominent C4 lineage. Am. J. Bot. 98:1486–503 [Google Scholar]
  167. Yang Z-Y, Ran J-H, Wang X-Q. 2012. Three genome-based phylogeny of Cupressaceae s.l.: further evidence for the evolution of gymnosperms and Southern Hemisphere biogeography. Mol. Phylogenet. Evol. 64:452–70 [Google Scholar]
  168. Yi T, Miller AJ, Wen J. 2004. Phylogenetic and biogeographic diversification of Rhus (Anacardiaceae) in the Northern Hemisphere. Mol. Phylogenet. Evol. 33:861–79 [Google Scholar]
  169. Yost JM, Barry T, Kay KM, Rajakaruna N. 2012. Edaphic adaptation maintains the coexistence of two cryptic species on serpentine soils. Am. J. Bot. 99:890–97 [Google Scholar]
  170. Yost JM, Bontrager M, McCabe SW, Burton D, Simpson MG. et al. 2013. Phylogenetic relationships and evolution in Dudleya (Crassulaceae). Syst. Bot. 38:1096–104 [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-110512-135847
Loading

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error