1932

Abstract

Earth's climate has experienced strong changes on timescales ranging from decades to millions of years. As biodiversity has evolved under these circumstances, dependence on these climate dynamics is expected. In this review, we assess the current state of knowledge on paleoclimatic legacies in biodiversity and ecosystem patterns. Paleoclimate has had strong impacts on past biodiversity dynamics, driving range shifts and extinctions as well as diversification. We outline theory for how these dynamics may have left legacies in contemporary patterns and review the empirical evidence. We report ample evidence that Quaternary glacial–interglacial climate change affects current patterns of species distributions and diversity across a broad range of organisms and regions. We also report emerging evidence for paleoclimate effects on current patterns in phylogenetic and functional diversity and ecosystem functioning and for legacies of deeper-time paleoclimate conditions. Finally, we discuss implications for Anthropocene ecology and outline an agenda to improve our understanding of paleoclimate's role in shaping contemporary biodiversity and ecosystems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-112414-054314
2015-12-04
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/46/1/annurev-ecolsys-112414-054314.html?itemId=/content/journals/10.1146/annurev-ecolsys-112414-054314&mimeType=html&fmt=ahah

Literature Cited

  1. Ackerly DD. 2003. Community assembly, niche conservatism, and adaptive evolution in changing environments. Int. J. Plant Sci. 164:Suppl. 3S165–84 [Google Scholar]
  2. Ackerly DD, Loarie SR, Cornwell WK, Weiss SB, Hamilton H. et al. 2010. The geography of climate change: implications for conservation biogeography. Divers. Distrib. 16:476–87 [Google Scholar]
  3. Araújo MB, Nogués-Bravo D, Diniz-Filho JAF, Haywood AM, Valdes PJ, Rahbek C. 2008. Quaternary climate changes explain diversity among reptiles and amphibians. Ecography 31:8–15 [Google Scholar]
  4. Azzaroli A, De Giuli C, Ficcarelli G, Torre D. 1988. Late Pliocene to early mid-Pleistocene mammals in Eurasia: faunal succession and dispersal events. Palaeogeogr. Palaeoclimatol. Palaeoecol. 66:77–100 [Google Scholar]
  5. Banin L, Lewis SL, Lopez-Gonzalez G, Baker TR, Quesada CA. et al. 2014. Tropical forest wood production: a cross-continental comparison. J. Ecol. 102:1025–37 [Google Scholar]
  6. Baselga A. 2008. Determinants of species richness, endemism and turnover in European longhorn beetles. Ecography 31:263–71 [Google Scholar]
  7. Baselga A, Gómez-Rodríguez C, Lobo JM. 2012a. Historical legacies in world amphibian diversity revealed by the turnover and nestedness components of beta diversity. PLOS ONE 7:e32341 [Google Scholar]
  8. Baselga A, Lobo JM, Svenning J-C, Aragón P, Araújo MB. 2012b. Dispersal ability modulates the strength of the latitudinal richness gradient in European beetles. Glob. Ecol. Biogeogr. 21:1106–13 [Google Scholar]
  9. Bertrand R, Lenoir J, Piedallu C, Riofrio-Dillon G, de Ruffray P. et al. 2011. Changes in plant community composition lag behind climate warming in lowland forests. Nature 479:517–20 [Google Scholar]
  10. Bhagwat SA, Willis KJ. 2008. Species persistence in northerly glacial refugia of Europe: a matter of chance or biogeographical traits?. J. Biogeogr. 35:464–82 [Google Scholar]
  11. Blach-Overgaard A, Kissling WD, Dransfield J, Balslev H, Svenning J-C. 2013. Multimillion-year climatic effects on palm species diversity in Africa. Ecology 94:2426–35 [Google Scholar]
  12. Blonder B, Nogués-Bravo D, Borregaard MK, Donoghue JC, Jørgensen PM. et al. 2015. Linking environmental filtering and disequilibrium to biogeography with a community climate framework. Ecology 96:972–85 [Google Scholar]
  13. Bowen GJ, Clyde WC, Koch PL, Ting S, Alroy J. et al. 2002. Mammalian dispersal at the Paleocene/Eocene boundary. Science 295:2062–65 [Google Scholar]
  14. Bowersox JR. 2005. Reassessment of extinction patterns of Pliocene molluscs from California and environmental forcing of extinction in the San Joaquin Basin. Palaeogeogr. Palaeoclimatol. Palaeoecol. 221:55–82 [Google Scholar]
  15. Caccianiga M, Payette S. 2006. Recent advance of white spruce (Picea glauca) in the coastal tundra of the eastern shore of Hudson Bay (Quebec, Canada). J. Biogeogr. 33:2120–35 [Google Scholar]
  16. Campbell ID, McAndrews JH. 1993. Forest disequilibrium caused by rapid Little Ice Age cooling. Nature 366:336–38 [Google Scholar]
  17. Carnaval AC, Hickerson MJ, Haddad CFB, Rodrigues MT, Moritz C. 2009. Stability predicts genetic diversity in the Brazilian Atlantic Forest hotspot. Science 323:785–89 [Google Scholar]
  18. Carnaval AC, Moritz C. 2008. Historical climate modelling predicts patterns of current biodiversity in the Brazilian Atlantic forest. J Biogeogr 35:1187–1201 [Google Scholar]
  19. Chapin FS, Starfield AM. 1997. Time lags and novel ecosystems in response to transient climate change in Arctic Alaska. Clim. Change 35:449–61 [Google Scholar]
  20. Condamine FL, Rolland J, Morlon H. 2013. Macroevolutionary perspectives to environmental change. Ecol. Lett. 16:72–85 [Google Scholar]
  21. Costion CM, Edwards W, Ford AJ, Metcalfe DJ, Cross HB. et al. 2015. Using phylogenetic diversity to identify ancient rain forest refugia and diversification zones in a biodiversity hotspot. Divers. Distrib. 21:279–89 [Google Scholar]
  22. Couvreur TLP, Kissling WD, Condamine FL, Svenning J-C, Rowe NP, Baker WJ. 2015. Global diversification of a tropical plant growth form: environmental correlates and historical contingencies in climbing palms. Front. Genet. 5:452 [Google Scholar]
  23. Crisp M, Cook L, Steane D. 2004. Radiation of the Australian flora: What can comparisons of molecular phylogenies across multiple taxa tell us about the evolution of diversity in present-day communities?. Philos. Trans. R. Soc. B 359:1551–71 [Google Scholar]
  24. Crisp MD, Cook LG. 2011. Cenozoic extinctions account for the low diversity of extant gymnosperms compared with angiosperms. New Phytol. 192:997–1009 [Google Scholar]
  25. Dalsgaard B, Magård E, Fjeldså J, Martín González AM, Rahbek C. et al. 2011. Specialization in plant-hummingbird networks is associated with species richness, contemporary precipitation and Quaternary climate-change velocity. PLOS ONE 6:e25891 [Google Scholar]
  26. Dalsgaard B, Trøjelsgaard K, Martín González AM, Nogués-Bravo D, Ollerton J. et al. 2013. Historical climate-change influences modularity and nestedness of pollination networks. Ecography 36:1331–40 [Google Scholar]
  27. Davis MB. 1986. Climatic instability, time lags, and community disequilibrium. Community Ecology J Diamond, TJ Case 269–84 New York: Harper & Row [Google Scholar]
  28. De Marco P, Diniz-Filho JAF, Bini LM. 2008. Spatial analysis improves species distribution modelling during range expansion. Biol. Lett. 4:577–80 [Google Scholar]
  29. de Vernal A, Hillaire-Marcel C. 2008. Natural variability of Greenland climate, vegetation, and ice volume during the past million years. Science 320:1622–25 [Google Scholar]
  30. Dobrovolski R, Melo AS, Cassemiro FAS, Diniz-Filho JAF. 2012. Climatic history and dispersal ability explain the relative importance of turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 21:191–97 [Google Scholar]
  31. Donoghue MJ, Smith SA. 2004. Patterns in the assembly of temperate forests around the Northern Hemisphere. Philos. Trans. R. Soc. B 359:1633–44 [Google Scholar]
  32. Dullinger S, Gattringer A, Thuiller W, Moser D, Zimmermann NE. et al. 2012a. Extinction debt of high-mountain plants under twenty-first-century climate change. Nat. Clim. Change 2:619–22 [Google Scholar]
  33. Dullinger S, Willner W, Plutzar C, Englisch T, Schratt-Ehrendorfer L. et al. 2012b. Post-glacial migration lag restricts range filling of plants in the European Alps. Glob. Ecol. Biogeogr. 21:829–40 [Google Scholar]
  34. Dynesius M, Jansson R. 2000. Evolutionary consequences of changes in species' geographical distributions driven by Milankovitch climate oscillations. PNAS 97:9115–20 [Google Scholar]
  35. Eiserhardt WL, Borchsenius F, Plum CM, Ordonez A, Svenning J-C. 2015a. Climate-driven extinctions shape the phylogenetic structure of temperate tree floras. Ecol. Lett. 18:263–272 [Google Scholar]
  36. Eiserhardt WL, Borchsenius F, Sandel B, Kissling WD, Svenning J-C. 2015b. Late Cenozoic climate and the phylogenetic structure of regional conifer floras worldwide. Glob. Ecol. Biogeogr. 10:1136–48 [Google Scholar]
  37. Eriksson O. 1996. Regional dynamics of plants: a review of evidence for remnant, source-sink and metapopulations. Oikos 77:248–58 [Google Scholar]
  38. Ewald J. 2003. The calcareous riddle: Why are there so many calciphilous species in the Central European flora?. Folia Geobot. 38:357–66 [Google Scholar]
  39. Feng G, Mi XC, Bøcher PK, Mao LF, Sandel B. et al. 2014. Relative roles of local disturbance, current climate and paleoclimate in determining phylogenetic and functional diversity in Chinese forests. Biogeosciences 11:1361–70 [Google Scholar]
  40. Feng G, Mi X, Eiserhardt WL, Jin G, Sang W. et al. 2015. Assembly of forest communities across East Asia—insights from phylogenetic community structure and species pool scaling. Sci. Rep. 5:9337 [Google Scholar]
  41. Fine PVA, Ree RH. 2006. Evidence for a time-integrated species-area effect on the latitudinal gradient in tree diversity. Am. Nat. 168:796–804 [Google Scholar]
  42. Fitzpatrick MC, Sanders NJ, Normand S, Svenning J-C, Ferrier S. et al. 2013. Environmental and historical imprints on beta diversity: insights from variation in rates of species turnover along gradients. Proc. R. Soc. B 280:20131201 [Google Scholar]
  43. Fjeldså J, Lovett JC. 1997. Geographical patterns of old and young species in African forest biota: the significance of specific montane areas as evolutionary centres. Biodivers. Conserv. 6:325–46 [Google Scholar]
  44. Fløjgaard C, Normand S, Skov F, Svenning J-C. 2010. Deconstructing the mammal species richness pattern in Europe—towards an understanding of the relative importance of climate, biogeographic history, habitat heterogeneity and humans. Glob. Ecol. Biogeogr. 20:218–30 [Google Scholar]
  45. Flynn DFB, Mirotchnick N, Jain M, Palmer MI, Naeem S. 2011. Functional and phylogenetic diversity as predictors of biodiversity–ecosystem-function relationships. Ecology 92:1573–81 [Google Scholar]
  46. Follieri M, Magri D, Sadori L. 1986. Late Pleistocene Zelkova extinction in central Italy. New Phytol. 103:269–73 [Google Scholar]
  47. Frelich LE, Hale CM, Scheu S, Holdsworth AR, Heneghan L. et al. 2006. Earthworm invasion into previously earthworm-free temperate and boreal forests. Biol. Invasions V8:1235–45 [Google Scholar]
  48. Fritz SA, Schnitzler J, Eronen JT, Hof C, Böhning-Gaese K, Graham CH. 2013. Diversity in time and space: wanted dead and alive. Trends Ecol. Evol. 28:509–16 [Google Scholar]
  49. Gavin DG. 2009. The coastal-disjunct mesic flora in the inland Pacific Northwest of USA and Canada: refugia, dispersal and disequilibrium. Divers. Distrib. 15:972–82 [Google Scholar]
  50. Graham CH, Moritz C, Williams SE. 2006. Habitat history improves prediction of biodiversity in rainforest fauna. PNAS 103:632–36 [Google Scholar]
  51. Haffer J. 1969. Speciation in Amazonian forest birds. Science 165:131–37 [Google Scholar]
  52. Hastings A. 2004. Transients: The key to long-term ecological understanding?. Trends Ecol. Evol. 19:39–45 [Google Scholar]
  53. Hawkins BA, Rueda M, Rangel TF, Field R, Diniz-Filho JAF. 2014. Community phylogenetics at the biogeographical scale: cold tolerance, niche conservatism and the structure of North American forests. J. Biogeogr. 41:23–38 [Google Scholar]
  54. Herrero C, García-Olivares A, Pelegrí JL. 2014. Impact of anthropogenic CO2 on the next glacial cycle. Clim. Change 122:283–98 [Google Scholar]
  55. Hewitt G. 2000. The genetic legacy of the Quaternary ice ages. Nature 405:907–13 [Google Scholar]
  56. Hill RS. 2004. Origins of the southeastern Australian vegetation. Philos. Trans. R. Soc. B 359:1537–49 [Google Scholar]
  57. Hinojosa LF, Pérez F, Gaxiola A, Sandoval I. 2011. Historical and phylogenetic constraints on the incidence of entire leaf margins: insights from a new South American model. Glob. Ecol. Biogeogr. 20:380–90 [Google Scholar]
  58. Hoffmann MH. 2012. Not across the North Pole: plant migration in the Arctic. New Phytol. 193:474–80 [Google Scholar]
  59. Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P. et al. 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75:3–35 [Google Scholar]
  60. Hoorn C, Wesselingh FP, ter Steege H, Bermudez MA, Mora A. et al. 2010. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330:927–31 [Google Scholar]
  61. Hortal J, Diniz-Filho JA, Bini LM, Rodríguez , Baselga A. et al. 2011. Ice age climate, evolutionary constraints and diversity patterns of European dung beetles. Ecol. Lett. 14:741–48 [Google Scholar]
  62. Hu Q-H, Sun L-G, Xie Z-Q, Emslie SD, Liu X-D. 2013. Increase in penguin populations during the Little Ice Age in the Ross Sea, Antarctica. Sci. Rep. 3:2472 [Google Scholar]
  63. Hubbell SP. 2001. The Unified Neutral Theory of Biodiversity and Biogeography Princeton, NJ: Princeton Univ. Press
  64. Huntley B, Allen JRM, Collingham YC, Hickler T, Lister AM. et al. 2013. Millennial climatic fluctuations are key to the structure of last glacial ecosystems. PLOS ONE 8:e61963 [Google Scholar]
  65. Huntley B, Webb T III. 1989. Migration: species' response to climatic variations caused by changes in the Earth's orbit. J. Biogeogr. 16:5–19 [Google Scholar]
  66. Hutchinson AH. 1918. Limiting factors in relation to specific ranges of tolerance of forest trees. Bot. Gaz. 66:465–93 [Google Scholar]
  67. Jackson ST, Weng C. 1999. Late Quaternary extinction of a tree species in eastern North America. PNAS 96:13847–52 [Google Scholar]
  68. Jansson R. 2003. Global patterns in endemism explained by past climatic change. Proc. R. Soc. B 270:583–90 [Google Scholar]
  69. Jansson R, Dynesius M. 2002. The fate of clades in a world of recurrent climatic change: Milankovitch oscillations and evolution. Annu. Rev. Ecol. Syst. 33:741–77 [Google Scholar]
  70. Jetz W, Fine PVA. 2012. Global gradients in vertebrate diversity predicted by historical area-productivity dynamics and contemporary environment. PLOS Biol. 10:e1001292 [Google Scholar]
  71. Johnstone JF, Chapin FS. 2003. Non-equilibrium succession dynamics indicate continued northern migration of lodgepole pine. Glob. Change Biol. 9:1401–9 [Google Scholar]
  72. Kissling WD, Baker WJ, Balslev H, Barfod AS, Borchsenius F. et al. 2012a. Quaternary and pre-Quaternary historical legacies in the global distribution of a major tropical plant lineage. Glob. Ecol. Biogeogr. 21:909–21 [Google Scholar]
  73. Kissling WD, Eiserhardt WL, Baker WJ, Borchsenius F, Couvreur TLP. et al. 2012b. Cenozoic imprints on the phylogenetic structure of palm species assemblages worldwide. PNAS 109:7379–84 [Google Scholar]
  74. Laliberté E, Zemunik G, Turner BL. 2014. Environmental filtering explains variation in plant diversity along resource gradients. Science 345:1602–5 [Google Scholar]
  75. LaMarche VC. 1973. Holocene climatic variations inferred from treeline fluctuations in the White Mountains, California. Quat. Res. 3:632–60 [Google Scholar]
  76. Latham RE, Ricklefs RE. 1993. Global patterns of tree species richness in moist forests: Energy-diversity theory does not account for variation in species richness. Oikos 67:325–33 [Google Scholar]
  77. Lavorel S, Garnier E. 2002. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 16:545–56 [Google Scholar]
  78. Lawing AM, Matzke NJ. 2014. Conservation paleobiology needs phylogenetic methods. Ecography 37:1109–22 [Google Scholar]
  79. Lenoir J, Gégout J-C, Guisan A, Vittoz P, Wohlgemuth T. et al. 2010. Cross-scale analysis of the region effect on vascular plant species diversity in southern and northern European mountain ranges. PLOS ONE 5:e15734 [Google Scholar]
  80. Leprieur F, Tedesco PA, Hugueny B, Beauchard O, Dürr HH. et al. 2011. Partitioning global patterns of freshwater fish beta diversity reveals contrasting signatures of past climate changes. Ecol. Lett. 14:325–34 [Google Scholar]
  81. Lewis AR, Marchant DR, Ashworth AC, Hedenäs L, Hemming SR. et al. 2008. Mid-Miocene cooling and the extinction of tundra in continental Antarctica. PNAS 105:10676–80 [Google Scholar]
  82. Lister AM. 2004. The impact of Quaternary ice ages on mammalian evolution. Philos. Trans. R. Soc. B 359:221–41 [Google Scholar]
  83. Lister AM. 2013. The role of behaviour in adaptive morphological evolution of African proboscideans. Nature 500:331–34 [Google Scholar]
  84. Livermore R, Nankivell A, Eagles G, Morris P. 2005. Paleogene opening of Drake Passage. Earth Planet. Sci. Lett. 236:459–70 [Google Scholar]
  85. Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD. 2009. The velocity of climate change. Nature 462:1052–55 [Google Scholar]
  86. Lobo JM, Castro I, Moreno JC. 2001. Spatial and environmental determinants of vascular plant species richness distribution in the Iberian Peninsula and Balearic Islands. Biol. J. Linn. Soc. 73:233–53 [Google Scholar]
  87. Lunt ID, Byrne M, Hellmann JJ, Mitchell NJ, Garnett ST. et al. 2013. Using assisted colonisation to conserve biodiversity and restore ecosystem function under climate change. Biol. Conserv. 157:172–77 [Google Scholar]
  88. MacPhail MK, Colhoun EA, Fitzsimons SJ. 1995. Key periods in the evolution of the Cenozoic vegetation and flora in western Tasmania: the Late Pliocene. Aust. J. Bot. 43:505–26 [Google Scholar]
  89. Maldonado-Coelho M. 2012. Climatic oscillations shape the phylogeographical structure of Atlantic Forest fire-eye antbirds (Aves: Thamnophilidae). Biol. J. Linn. Soc. 105:900–24 [Google Scholar]
  90. Manchester SR, Chen Z-D, Lu A-M, Uemura K. 2009. Eastern Asian endemic seed plant genera and their paleogeographic history throughout the Northern Hemisphere. J. Syst. Evol. 47:1–42 [Google Scholar]
  91. Mathieu J, Davies TJ. 2014. Glaciation as an historical filter of below-ground biodiversity. J. Biogeogr. 41:1204–14 [Google Scholar]
  92. May MR, Provance MC, Sanders AC, Ellstrand NC, Ross-Ibarra J. 2009. A Pleistocene clone of Palmer's oak persisting in southern California. PLOS ONE 4:e8346 [Google Scholar]
  93. Mayewski PA, Rohling EE, Stager JC, Karlen W, Maasch KA. et al. 2004. Holocene climate variability. Quat. Res. 62:243–55 [Google Scholar]
  94. Miller ET, Zanne AE, Ricklefs RE. 2013. Niche conservatism constrains Australian honeyeater assemblages in stressful environments. Ecol. Lett. 16:1186–94 [Google Scholar]
  95. Mittelbach GG, Schemske DW, Cornell HV, Allen AP, Brown JM. et al. 2007. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol. Lett. 10:315–31 [Google Scholar]
  96. Morlon H, Potts MD, Plotkin JB. 2010. Inferring the dynamics of diversification: a coalescent approach. PLOS Biol. 8:e1000493 [Google Scholar]
  97. Nobis MP, Normand S. 2014. KISSMig—a simple model for R to account for limited migration in analyses of species distributions. Ecography 37:1282–87 [Google Scholar]
  98. Nogués-Bravo D, Pulido F, Araújo MB, Diniz-Filho JAF, García-Valdés R. et al. 2014. Phenotypic correlates of potential range size and range filling in European trees. Perspect. Plant Ecol. Evol. Syst. 16:219–27 [Google Scholar]
  99. Normand S, Randin C, Ohlemüller R, Bay C, Høye TT. et al. 2013. A greener Greenland? Climatic potential and long-term constraints on future expansions of trees and shrubs. Philos. Trans. R. Soc. B 368:20120479 [Google Scholar]
  100. Normand S, Ricklefs RE, Skov F, Bladt J, Tackenberg O, Svenning J-C. 2011. Postglacial migration supplements climate in determining plant species ranges in Europe. Proc. R. Soc. B 278:3644–53 [Google Scholar]
  101. Ordonez A, Svenning J-C. 2015. Geographic patterns in functional diversity deficits are linked to glacial-interglacial climate stability and accessibility. Glob. Ecol. Biogeogr. 24:826–37 [Google Scholar]
  102. Pacala SW, Canham CD, Saponara J, Silander JA Jr, Kobe RK, Ribbens E. 1996. Forest models defined by field measurements: estimation, error analysis and dynamics. Ecol. Monogr. 66:1–43 [Google Scholar]
  103. Pan AD, Jacobs BF, Dransfield J, Baker WJ. 2006. The fossil history of palms (Arecaceae) in Africa and new records from the Late Oligocene (28–27 Mya) of north-western Ethiopia. Bot. J. Linn. Soc. 151:69–81 [Google Scholar]
  104. Paun O, Lehnebach C, Johansson JT, Lockhart P, Hörandl E. 2005. Phylogenetic relationships and biogeography of Ranunculus and allied genera (Ranunculaceae) in the Mediterranean region and in the European Alpine System. Taxon 54:911–30 [Google Scholar]
  105. Payette S. 2007. Contrasted dynamics of northern Labrador tree lines caused by climate change and migrational lags. Ecology 88:770–80 [Google Scholar]
  106. Pellissier L, Leprieur F, Parravicini V, Cowman PF, Kulbicki M. et al. 2014. Quaternary coral reef refugia preserved fish diversity. Science 344:1016–19 [Google Scholar]
  107. Pianka ER. 1966. Latitudinal gradients in species diversity: a review of concepts. Am. Nat. 100:33–46 [Google Scholar]
  108. Pigott CD. 1991. Tilia cordata Miller. J. Ecol. 79:1147–207 [Google Scholar]
  109. Pinto-Sánchez NR, Crawford AJ, Wiens JJ. 2014. Using historical biogeography to test for community saturation. Ecol. Lett. 17:1077–85 [Google Scholar]
  110. Postigo Mijarra JM, Morla C, Barrón E, Morales-Molino C, García S. 2010. Patterns of extinction and persistence of Arctotertiary flora in Iberia during the Quaternary. Rev. Palaeobot. Palynol. 162:416–26 [Google Scholar]
  111. Prentice IC, Bartlein PJ, Webb T III. 1991. Vegetation and climate change in eastern North America since the Last Glacial Maximum. Ecology 72:2038–56 [Google Scholar]
  112. Qian H, Ricklefs RE. 2007. A latitudinal gradient in large-scale beta diversity for vascular plants in North America. Ecol. Lett. 10:737–44 [Google Scholar]
  113. Raffi S, Stanley SM, Marasti R. 1985. Biogeographic patterns and Plio-Pleistocene extinction of Bivalvia in the Mediterranean and Southern North Sea. Paleobiology 11:368–88 [Google Scholar]
  114. Rakotoarinivo M, Blach-Overgaard A, Baker WJ, Dransfield J, Moat J, Svenning J-C. 2013. Palaeo-precipitation is a major determinant of palm species richness patterns across Madagascar: a tropical biodiversity hotspot. Proc. R. Soc. B 280:20123048 [Google Scholar]
  115. Richardson DM, Williams PA, Hobbs RJ. 1994. Pine invasions in the Southern Hemisphere: determinants of spread and invadability. J. Biogeogr. 21:511–27 [Google Scholar]
  116. Ricklefs RE, Latham RE. 1999. Global patterns of tree species richness in moist forests: distinguishing ecological influences and historical contingency. Oikos 86:369–73 [Google Scholar]
  117. Rodríguez J. 2006. Structural continuity and multiple alternative stable states in Middle Pleistocene European mammalian communities. Palaeogeogr. Palaeoclimatol. Palaeoecol. 239:355–73 [Google Scholar]
  118. Rolland J, Condamine FL, Jiguet F, Morlon H. 2014. Faster speciation and reduced extinction in the tropics contribute to the mammalian latitudinal diversity gradient. PLOS Biol. 12:1001775 [Google Scholar]
  119. Rosauer DF, Jetz W. 2015. Phylogenetic endemism in terrestrial mammals. Glob. Ecol. Biogeogr. 24:168–79 [Google Scholar]
  120. Ruddiman WF. 2014. Earth's Climate: Past and Future New York: Freeman
  121. Saltré F, Saint-Amant R, Gritti ES, Brewer S, Gaucherel C. et al. 2013. Climate or migration: what limited European beech post-glacial colonization?. Glob. Ecol. Biogeogr. 22:1217–27 [Google Scholar]
  122. Sandel B, Arge L, Dalsgaard B, Davies RG, Gaston KJ. et al. 2011. The influence of Late Quaternary climate-change velocity on species endemism. Science 334:660–64 [Google Scholar]
  123. Sandom C, Faurby S, Sandel B, Svenning J-C. 2014. Global late Quaternary megafauna extinctions linked to humans, not climate change. Proc. R. Soc. B 281:20133254 [Google Scholar]
  124. Sauer JD. 1988. Plant Migration: The Dynamics of Geographic Patterning of Seed Plant Species Berkeley: Univ. California Press
  125. Schleuning M, Fründ J, Klein A-M, Abrahamczyk S, Alarcón R. et al. 2012. Specialization of mutualistic interaction networks decreases toward tropical latitudes. Curr. Biol. 22:1925–31 [Google Scholar]
  126. Schleuning M, Ingmann L, Strauß R, Fritz SA, Dalsgaard B. et al. 2014. Ecological, historical and evolutionary determinants of modularity in weighted seed-dispersal networks. Ecol. Lett. 17:454–63 [Google Scholar]
  127. Sommer RS, Kalbe J, Ekström J, Benecke N, Liljegren R. 2014. Range dynamics of the reindeer in Europe during the last 25,000 years. J. Biogeogr. 41:298–306 [Google Scholar]
  128. Soria-Carrasco V, Castresana J. 2012. Diversification rates and the latitudinal gradient of diversity in mammals. Proc. R. Soc. B 279:4148–55 [Google Scholar]
  129. Stohlgren TJ, Barnett DT, Jarnevich CS, Flather C, Kartesz J. 2008. The myth of plant species saturation. Ecol. Lett. 11:313–22 [Google Scholar]
  130. Svenning J-C. 2003. Deterministic Plio-Pleistocene extinctions in the European cool-temperate tree flora. Ecol. Lett. 6:646–53 [Google Scholar]
  131. Svenning J-C, Borchsenius F, Bjorholm S, Balslev H. 2008a. High tropical net diversification drives the New World latitudinal gradient in palm (Arecaceae) species richness. J. Biogeogr. 35:394–406 [Google Scholar]
  132. Svenning J-C, Fitzpatrick MC, Normand S, Graham CH, Pearman PB. et al. 2010. Geography, topography, and history affect realized-to-potential tree species richness patterns in Europe. Ecography 33:1070–80 [Google Scholar]
  133. Svenning J-C, Gravel D, Holt RD, Schurr FM, Thuiller W. et al. 2014. The influence of interspecific interactions on species range expansion rates. Ecography 37:1198–209 [Google Scholar]
  134. Svenning J-C, Normand S, Skov F. 2008b. Postglacial dispersal limitation of widespread forest plant species in nemoral Europe. Ecography 31:316–26 [Google Scholar]
  135. Svenning J-C, Sandel B. 2013. Disequilibrium vegetation dynamics under future climate change. Am. J. Bot. 100:1266–86 [Google Scholar]
  136. Svenning J-C, Skov F. 2004. Limited filling of the potential range in European tree species. Ecol. Lett. 7:565–73 [Google Scholar]
  137. Svenning J-C, Skov F. 2007. Ice age legacies in the geographical distribution of tree species richness in Europe. Glob. Ecol. Biogeogr. 16:234–45 [Google Scholar]
  138. Szava-Kovats RC, Ronk A, Pärtel M. 2013. Pattern without bias: Local–regional richness relationship revisited. Ecology 94:1986–92 [Google Scholar]
  139. Tedesco PA, Leprieur F, Hugueny B, Brosse S, Dürr HH. et al. 2012. Patterns and processes of global riverine fish endemism. Glob. Ecol. Biogeogr. 21:977–87 [Google Scholar]
  140. Terry RC, Li C, Hadly EA. 2011. Predicting small-mammal responses to climatic warming: autecology, geographic range, and the Holocene fossil record. Glob. Change Biol. 17:3019–34 [Google Scholar]
  141. Thuiller W, Lavergne S, Roquet C, Boulangeat I, Lafourcade B, Araujo MB. 2011. Consequences of climate change on the tree of life in Europe. Nature 470:531–34 [Google Scholar]
  142. Thuiller W, Pironon S, Psomas A, Barbet-Massin M, Jiguet F. et al. 2014. The European functional tree of bird life in the face of global change. Nat. Commun. 5:3118 [Google Scholar]
  143. Wanner H, Beer J, Bütikofer J, Crowley TJ, Cubasch U. et al. 2008. Mid- to Late Holocene climate change: an overview. Quat. Sci. Rev. 27:1791–828 [Google Scholar]
  144. Watrin J, Lézine A-M, Hély C. 2008. Plant migration and plant communities at the time of the “green Sahara.”. C. R. Geosci. 341:656–70 [Google Scholar]
  145. Wiens JJ, Donoghue MJ. 2004. Historical biogeography, ecology and species richness. Trends Ecol. Evol. 19:639–44 [Google Scholar]
  146. Wilf P, Cúneo NR, Johnson KR, Hicks JF, Wing SL, Obradovich JD. 2003. High plant diversity in Eocene South America: evidence from Patagonia. Science 300:122–25 [Google Scholar]
  147. Willis CG, Ruhfel B, Primack RB, Miller-Rushing AJ, Davis CC. 2008. Phylogenetic patterns of species loss in Thoreau's woods are driven by climate change. PNAS 105:17029–33 [Google Scholar]
  148. Willis KJ, Kleczkowski A, Crowhurst SJ. 1999. 124,000-year periodicity in terrestrial vegetation change during the late Pliocene epoch. Nature 397:685–88 [Google Scholar]
  149. Willner W, Di Pietro R, Bergmeier E. 2009. Phytogeographical evidence for post-glacial dispersal limitation of European beech forest species. Ecography 32:1011–18 [Google Scholar]
  150. Wisz MS, Broennimann O, Gronkjaer P, Moller PR, Olsen SM. et al. 2015. Arctic warming will promote Atlantic-Pacific fish interchange. Nat. Clim. Change 5:261–65 [Google Scholar]
  151. Wolfe JA. 1995. Paleoclimatic estimates from Tertiary leaf assemblages. Annu. Rev. Earth Planet. Sci. 23:119–42 [Google Scholar]
  152. Woodard SC, Rosenthal Y, Miller KG, Wright JD, Chiu BK, Lawrence KT. 2014. Antarctic role in Northern Hemisphere glaciation. Science 346:847–51 [Google Scholar]
  153. Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Groom PK. et al. 2005. Modulation of leaf economic traits and trait relationships by climate. Glob. Ecol. Biogeogr. 14:411–21 [Google Scholar]
  154. Zobel M. 1997. The relative role of species pools in determining plant species richness: an alternative explanation of species coexistence?. Trends Ecol. Evol. 12:266–69 [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-112414-054314
Loading
/content/journals/10.1146/annurev-ecolsys-112414-054314
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error