1932

Abstract

The Arctic may seem remote, but the unprecedented environmental changes occurring there have important consequences for global society. Of all Arctic system components, changes in permafrost (perennially frozen ground) are one of the least documented. Permafrost is degrading as a result of climate warming, and evidence is mounting that changing permafrost will have significant impacts within and outside the region. This review asks: What are key structural and functional properties of ecosystems that interact with changing permafrost, and how do these ecosystem changes affect local and global society? Here, we look beyond the classic definition of permafrost to include a broadened focus on the composition of frozen ground, including the ice and the soil organic carbon content, and how it is changing. This ecological perspective of permafrost serves to identify areas of both vulnerability and resilience as climate, ecological disturbance regimes, and the human footprint all continue to change in this sensitive and critical region of Earth.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-121415-032349
2018-11-02
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/es/49/1/annurev-ecolsys-121415-032349.html?itemId=/content/journals/10.1146/annurev-ecolsys-121415-032349&mimeType=html&fmt=ahah

Literature Cited

  1. Abe M, Takata K, Kawamiya M, Watanabe S 2017. Vegetation masking effect on future warming and snow albedo feedback in a boreal forest region of northern Eurasia according to MIROC-ESM. J. Geophys. Res. Atmos. 122:9245–61
    [Google Scholar]
  2. AMAP (Arct. Monit. Assess. Programme) 2017. Snow, water, ice and permafrost. Summary for policy-makers Rep., Arct. Monit. Assess. Programme Oslo, Nor.:
  3. Anisimov OA, Borzenkova II, Lavrov SA, Strelchenko JG 2012. Dynamics of sub-aquatic permafrost and methane emission at eastern Arctic sea shelf under past and future climatic changes. Ice Snow 2:97–105 (From Russian)
    [Google Scholar]
  4. Balser AW, Jones JB, Gens R 2014. Timing of retrogressive thaw slump initiation in the Noatak Basin, northwest Alaska, USA. J. Geophys. Res. Earth Surf. 119:1106–20
    [Google Scholar]
  5. Baltzer JL, Veness T, Chasmer LE, Sniderhan AE, Quinton WL 2014. Forests on thawing permafrost: fragmentation, edge effects, and net forest loss. Glob. Change Biol. 20:824–34
    [Google Scholar]
  6. Beck PSA, Goetz SJ 2011. Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences. Environ. Res. Lett. 6:029501
    [Google Scholar]
  7. Belshe EF, Schuur EAG, Bolker BM 2013. Tundra ecosystems observed to be CO2 sources due to differential amplification of the carbon cycle. Ecol. Lett. 16:1307–15
    [Google Scholar]
  8. Biskaborn BK, Lanckman JP, Lantuit H, Elger K, Streletskiy DA et al. 2015. The new database of the Global Terrestrial Network for Permafrost (GTN-P). Earth Syst. Sci. Data 7:245–59
    [Google Scholar]
  9. Blaen P, Milner A, Hannah D, Brittain J, Brown L 2014. Impact of changing hydrology on nutrient uptake in high Arctic rivers. River Res. Appl. 30:1073–83
    [Google Scholar]
  10. Briggs M, Walvoord M, McKenzie J, Voss C, Day-Lewis F, Lane J 2014. New permafrost is forming around shrinking Arctic lakes, but will it last. Geophys. Res. Lett. 41:1585–92
    [Google Scholar]
  11. Brothers LL, Herman BM, Hart PE, Ruppel CD 2016. Subsea ice-bearing permafrost on the U.S. Beaufort Margin: 1. Minimum seaward extent defined from multichannel seismic reflection data. Geochem. Geophys. Geosyst. 17:4354–65 https://doi.org/10.1002/2016GC006584
    [Crossref] [Google Scholar]
  12. Brown D, Jorgenson MT, Douglas TA, Romanovsky VE, Kielland K et al. 2015. Interactive effects of wildfire and climate on permafrost degradation in Alaskan lowland forests. J. Geophys. Res. Biogeosciences 120:1619–37
    [Google Scholar]
  13. Brown J, Ferrians OJ Jr., Heginbottom JA, Melnikov ES 2002. Circum-arctic map of permafrost and ground-ice conditions, version 2 Natl. Snow Ice Data Cent./World Data Cent. Glaciol. Boulder, Colo.:
  14. Brown J, Romanovsky V 2008. Report from the International Permafrost Association: state of permafrost in the first decade of the 21st century. Permafrost Periglacial Process 19:255–60
    [Google Scholar]
  15. Burke E, Ekici A, Huang Y, Chadburn S, Huntingford C et al. 2017. Quantifying uncertainties of permafrost carbon-climate feedbacks. Biogeosciences 14:3051–66
    [Google Scholar]
  16. Cassidy AE, Christen A, Henry GHR 2017. Impacts of active retrogressive thaw slumps on vegetation, soil, and net ecosystem exchange of carbon dioxide in the Canadian High Arctic. Arctic Sci 3:179–202
    [Google Scholar]
  17. Celis G, Mauritz M, Bracho R, Salmon V, Webb E et al. 2017. Tundra is a consistent source of CO2 at a site with progressive permafrost thaw during 6 years of chamber and eddy covariance measurements. J. Geophys. Res. Biogeosciences 122:1471–85
    [Google Scholar]
  18. Commane R, Lindaas J, Benmergui J, Luus KA, Chang RYW et al. 2017. Carbon dioxide sources from Alaska driven by increasing early winter respiration from Arctic tundra. PNAS 114:5361–66
    [Google Scholar]
  19. Connon R, Quinton W, Craig J, Hayashi M 2014. Changing hydrologic connectivity due to permafrost thaw in the lower Liard River valley, NWT, Canada. Hydrol. Process. 28:4163–78
    [Google Scholar]
  20. Cory R, Ward C, Crump B, Kling G 2014. Sunlight controls water column processing of carbon in arctic fresh waters. Science 345:925–28
    [Google Scholar]
  21. Ding J, Li F, Yang G, Chen L, Zhang B et al. 2016. The permafrost carbon inventory on the Tibetan Plateau: a new evaluation using deep sediment cores. Glob. Change Biol. 22:2688–701
    [Google Scholar]
  22. Evengard B, McMichael A 2011. Vulnerable populations in the Arctic. Glob. Health Action 4:11210 https://doi.org/10.3402/gha.v4i0.11210
    [Crossref] [Google Scholar]
  23. Finger RA, Turetsky MR, Kielland K, Ruess RW, Mack MC, Euskirchen ES 2016. Effects of permafrost thaw on nitrogen availability and plant–soil interactions in a boreal Alaskan lowland. J. Ecol. 104:1542–54
    [Google Scholar]
  24. Fisher J, Estop-Aragones C, Thierry A, Charman D, Wolfe S et al. 2016. The influence of vegetation and soil characteristics on active-layer thickness of permafrost soils in boreal forest. Glob. Change Biol. 22:3127–40
    [Google Scholar]
  25. Fraser R, Lantz T, Olthof I, Kokelj S, Sims R 2014. Warming-induced shrub expansion and lichen decline in the western Canadian Arctic. Ecosystems 17:1151–68
    [Google Scholar]
  26. French NHF, Jenkins LK, Loboda TV, Flannigan M, Jandt R et al. 2015. Fire in arctic tundra of Alaska: past fire activity, future fire potential, and significance for land management and ecology. Int. J. Wildland Fire 24:1045–61
    [Google Scholar]
  27. Gersony J, Prager C, Boelman N, Eitel J, Gough L et al. 2016. Scaling thermal properties from the leaf to the canopy in the Alaskan arctic tundra. Arct. Antarct. Alp. Res. 48:739–54
    [Google Scholar]
  28. Gordon J, Quinton W, Branfireun BA, Olefeldt D 2016. Mercury and methylmercury biogeochemistry in a thawing permafrost wetland complex, Northwest Territories, Canada. Hydrological Process 30:3627–38
    [Google Scholar]
  29. Gorham E. 1991. Northern peatlands: role in the carbon-cycle and probable responses to climatic warming. Ecol. Appl. 1:182–95
    [Google Scholar]
  30. Grosse G, Harden J, Turetsky M, McGuire AD, Camill P et al. 2011. Vulnerability of high-latitude soil organic carbon in North America to disturbance. J. Geophys. Res. Biogeosciences 116:G00K06
    [Google Scholar]
  31. Harden J, Koven C, Ping C, Hugelius G, McGuire A et al. 2012. Field information links permafrost carbon to physical vulnerabilities of thawing. Geophys. Res. Lett. 39:L15704
    [Google Scholar]
  32. Harms T, Jones J 2012. Thaw depth determines reaction and transport of inorganic nitrogen in valley bottom permafrost soils. Glob. Change Biol. 18:2958–68
    [Google Scholar]
  33. Helbig M, Wischnewski K, Kljun N, Chasmer L, Quinton WL et al. 2016. Regional atmospheric cooling and wetting effect of permafrost thaw-induced boreal forest loss. Glob. Change Biol. 22:4048–66
    [Google Scholar]
  34. Hotaling S, Hood E, Hamilton T 2017. Microbial ecology of mountain glacier ecosystems: biodiversity, ecological connections and implications of a warming climate. Environ. Microbiol. 19:2935–48
    [Google Scholar]
  35. Hu FS, Higuera PE, Duffy P, Chipman ML, Rocha AV et al. 2015. Arctic tundra fires: natural variability and responses to climate change. Front. Ecol. Environ. 13:369–77
    [Google Scholar]
  36. Hu H, Lin H, Zheng W, Tomanicek SJ, Johs A et al. 2013. Oxidation and methylation of dissolved elemental mercury by anaerobic bacteria. Nat. Geosci. 6:751–54
    [Google Scholar]
  37. Hugelius G, Strauss J, Zubrzycki S, Harden JW, Schuur EAG et al. 2014. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11:6573–93
    [Google Scholar]
  38. ICC-AK (Inuit Circumpolar Counc.-Alaska) 2015. Alaskan Inuit food security conceptual framework: how to assess the Arctic from an Inuit perspective—summary and recommendations report Rep., ICC-AK Anchorage, AK: http://iccalaska.org/wp-icc/wp-content/uploads/2016/03/Food-Security-Summary-and-Recommendations-Report.pdf
  39. IPCC (Intergov. Panel Clim. Change) 2013. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change TF Stocker, D Qin, G-K Plattner, M Tignor, SK Allen et al. Cambridge, UK: Cambridge Univ. Press
  40. Jobbágy EG, Jackson RB 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10:423–36
    [Google Scholar]
  41. Johnstone JF, Chapin FS, Hollingsworth TN, Mack MC, Romanovsky V, Turetsky M 2010. Fire, climate change, and forest resilience in interior Alaska. Can. J. For. Res. 40:1302–12
    [Google Scholar]
  42. Johnstone JF, Kasischke ES 2005. Stand-level effects of soil burn severity on postfire regeneration in a recently burned black spruce forest. Can. J. For. Res. 35:2151–63
    [Google Scholar]
  43. Johnstone JF, Rupp TS, Olson M, Verbyla D 2011. Modeling impacts of fire severity on successional trajectories and future fire behavior in Alaskan boreal forests. Landsc. Ecol. 26:487–500
    [Google Scholar]
  44. Jones BM, Grosse G, Arp CD, Jones MC, Walter Anthony KM, Romanovsky VE 2011. Modern thermokarst lake dynamics in the continuous permafrost zone, northern Seward Peninsula, Alaska. J. Geophys. Res. Biogeosciences 116:G00M03
    [Google Scholar]
  45. Jorgenson MT. 2013. Thermokarst terrains. Treatise on Geomorphology 8 Glacial and Periglacial Geomorphology JF Shroder R Giardino, J Harbor313–24 San Diego: Academic Press
    [Google Scholar]
  46. Jorgenson MT, Grosse G 2016. Remote sensing of landscape change in permafrost regions. Permafrost Periglacial Process 27:324–38
    [Google Scholar]
  47. Jorgenson MT, Kanevskiy M, Shur Y, Moskalenko N, Brown DRN et al. 2015. Role of ground ice dynamics and ecological feedbacks in recent ice wedge degradation and stabilization. J. Geophys. Res. Earth Surf. 120:2280–97
    [Google Scholar]
  48. Jorgenson MT, Romanovsky V, Harden J, Shur Y, O'Donnell J et al. 2010. Resilience and vulnerability of permafrost to climate change. Can. J. For. Res. 40:1219–36
    [Google Scholar]
  49. Kanevskiy M, Shur Y, Fortier D, Jorgenson M, Stephani E 2011. Cryostratigraphy of late Pleistocene syngenetic permafrost (yedoma) in northern Alaska, Itkillik River exposure. Quaternary Res 75:584–96
    [Google Scholar]
  50. Karlsson J, Lyon S, Destouni G 2012. Thermokarst lake, hydrological flow and water balance indicators of permafrost change in Western Siberia. J. Hydrol. 464:459–66
    [Google Scholar]
  51. Kasischke ES, Johnstone JF 2005. Variation in postfire organic layer thickness in a black spruce forest complex in interior Alaska and its effects on soil temperature and moisture. Can. J. For. Res. 35:2164–77
    [Google Scholar]
  52. Kasischke ES, Turetsky MR 2006. Recent changes in the fire regime across the North American boreal region—spatial and temporal patterns of burning across Canada and Alaska. Geophys. Res. Lett. 33:L09703
    [Google Scholar]
  53. Keller K, Blum J, Kling G 2010. Stream geochemistry as an indicator of increasing permafrost thaw depth in an arctic watershed. Chem. Geol. 273:76–81
    [Google Scholar]
  54. Kelly R, Chipman ML, Higuera PE, Stefanova I, Brubaker LB, Hu FS 2013. Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years. PNAS 110:13055–60
    [Google Scholar]
  55. Keuper F, van Bodegom PM, Dorrepaal E, Weedon JT, van Hal J et al. 2012. A frozen feast: thawing permafrost increases plant-available nitrogen in subarctic peatlands. Glob. Change Biol. 18:1998–2007
    [Google Scholar]
  56. Knapp CN, Trainor SF 2015. Alaskan stakeholder-defined research needs in the context of climate change. Polar Geogr 38:42–69
    [Google Scholar]
  57. Kokelj S, Jorgenson M 2013. Advances in thermokarst research. Permafrost Periglacial Process 24:108–19
    [Google Scholar]
  58. Kokelj S, Lantz T, Tunnicliffe J, Segal R, Lacelle D 2017. Climate-driven thaw of permafrost preserved glacial landscapes, northwestern Canada. Geology 45:371–74
    [Google Scholar]
  59. Koven C, Friedlingstein P, Ciais P, Khvorostyanov D, Krinner G, Tarnocai C 2009. On the formation of high-latitude soil carbon stocks: effects of cryoturbation and insulation by organic matter in a land surface model. Geophys. Res. Lett. 36:L21501
    [Google Scholar]
  60. Koven CD, Riley WJ, Stern A 2013. Analysis of permafrost thermal dynamics and response to climate change in the CMIP5 Earth system models. J. Clim. 26:1877–900
    [Google Scholar]
  61. Koven CD, Schuur EAG, Schädel C, Bohn TJ, Burke EJ et al. 2015. A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback. Philos. Trans. R. Soc. A 373:20140423
    [Google Scholar]
  62. Kuhry P, Dorrepaal E, Hugelius G, Schuur EAG, Tarnocai C 2010. Potential remobilization of belowground permafrost carbon under future global warming. Permafrost Periglacial Process 21:208–14
    [Google Scholar]
  63. Lawrence DM, Slater AG 2005. A projection of severe near-surface permafrost degradation during the 21st century. Geophys. Res. Lett. 32:24401
    [Google Scholar]
  64. Lewkowicz A, Etzelmuller B, Smith S 2011. Characteristics of discontinuous permafrost based on ground temperature measurements and electrical resistivity tomography, Southern Yukon, Canada. Permafrost Periglacial Process 22:320–42
    [Google Scholar]
  65. Liljedahl AK, Boike J, Daanen RP, Fedorov AN, Frost GV et al. 2016. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nat. Geosci. 9:312–18
    [Google Scholar]
  66. Loranty MM, Berner LT, Goetz SJ, Jin Y, Randerson JT 2014. Vegetation controls on northern high latitude snow-albedo feedback: observations and CMIP5 model simulations. Glob. Change Biol. 20:594–606
    [Google Scholar]
  67. MacDougall A, Knutti R 2016. Projecting the release of carbon from permafrost soils using a perturbed parameter ensemble modelling approach. Biogeosciences 13:2123–36
    [Google Scholar]
  68. Mack MC, Schuur EAG, Bret-Harte MS, Shaver GR, Chapin FS 2004. Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature 431:440–43
    [Google Scholar]
  69. Mallory CD, Boyce MS 2018. Observed and predicted effects of climate change on Arctic caribou and reindeer. Environ. Rev. 26:13–25
    [Google Scholar]
  70. Mastepanov M, Sigsgaard C, Dlugokencky EJ, Houweling S, Strom L et al. 2008. Large tundra methane burst during onset of freezing. Nature 456:628–30
    [Google Scholar]
  71. Mauritz M, Bracho R, Celis G, Hutchings J, Natali SM et al. 2017. Nonlinear CO2 flux response to 7 years of experimentally induced permafrost thaw. Glob. Change Biol. 11:034014
    [Google Scholar]
  72. McGuire AD, Christensen TR, Hayes D, Heroult A, Euskirchen E et al. 2012. An assessment of the carbon balance of Arctic tundra: comparisons among observations, process models, and atmospheric inversions. Biogeosciences 9:3185–204
    [Google Scholar]
  73. McGuire AD, Koven C, Lawrence DM, Clein JS, Xia J et al. 2016. Variability in the sensitivity among model simulations of permafrost and carbon dynamics in the permafrost region between 1960 and 2009. Glob. Biogeochem. Cycles 30:1015–37
    [Google Scholar]
  74. Minsley B, Abraham J, Smith B, Cannia J, Voss C et al. 2012. Airborne electromagnetic imaging of discontinuous permafrost. Geophys. Res. Lett. 39:L02503
    [Google Scholar]
  75. Muster S, Roth K, Langer M, Lange S, Cresto Aleina F et al. 2017. PeRL: a circum-Arctic Permafrost Region Pond and Lake database. Earth Syst. Sci. Data 9:317–48
    [Google Scholar]
  76. Myers-Smith IH, Forbes BC, Wilmking M, Hallinger M, Lantz T et al. 2011. Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ. Res. Lett. 6:045509
    [Google Scholar]
  77. Natali SM, Schuur EAG, Mauritz M, Schade JD, Celis G et al. 2015. Permafrost thaw and soil moisture driving CO2 and CH4 release from upland tundra. J. Geophys. Res. Biogeosciences 120:525–37
    [Google Scholar]
  78. NSIDC (Natl. Snow Ice Data Cent.) 2018. Arctic sea ice news and analysis Natl. Snow Ice Data Cent. Boulder, Colo: Accessed January 18, 2018. https://nsidc.org/arcticseaicenews/
  79. Nelson FE, Shiklomanov NI, Christiansen HH, Hinkel KM 2004. The circumpolar-active-layer-monitoring (CALM) workshop: introduction. Permafrost Periglacial Process 15:99–101
    [Google Scholar]
  80. Olefeldt D, Goswami S, Grosse G, Hayes D, Hugelius G et al. 2016. Circumpolar distribution and carbon storage of thermokarst landscapes. Nat. Commun. 7:13043
    [Google Scholar]
  81. Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN et al. 2001. Terrestrial ecoregions of the world: a new map of life on Earth. BioScience 51:11933
    [Google Scholar]
  82. Osterkamp TE, Jorgenson MT, Schuur EAG, Shur YL, Kanevskiy MZ et al. 2009. Physical and ecological changes associated with warming permafrost and thermokarst in interior Alaska. Permafrost Periglacial Process 20:235–56
    [Google Scholar]
  83. Overland JE, Wang M, Walsh JE, Stroeve JC 2014. Future Arctic climate changes: adaptation and mitigation time scales. Earth's Future 2:68–74
    [Google Scholar]
  84. Pearson RG, Phillips SJ, Loranty MM, Beck PSA, Damoulas T et al. 2013. Shifts in Arctic vegetation and associated feedbacks under climate change. Nat. Clim. Change 3:673–77
    [Google Scholar]
  85. Ping CL, Michaelson GJ, Kimble JM, Romanovsky VE, Shur YL et al. 2008. Cryogenesis and soil formation along a bioclimate gradient in Arctic North America. J. Geophys. Res. Biogeosciences 113:G03S12
    [Google Scholar]
  86. Pizano MC, Baron-Lopez AF, Schuur EAG, Crummer KG, Mack MC 2014. Effects of thermo-erosional disturbance on surface soil carbon and nitrogen dynamics in upland arctic tundra. Environ. Res. Lett. 9:075006
    [Google Scholar]
  87. Raz-Yaseef N, Torn MS, Wu Y, Billesbach DP, Liljedahl AK et al. 2016. Large CO2 and CH4 emissions from polygonal tundra during spring thaw in northern Alaska. Geophys. Res. Lett. 44:504–13
    [Google Scholar]
  88. Repo M, Susiluoto S, Lind S, Jokinen S, Elsakov V et al. 2009. Large N2O emissions from cryoturbated peat soil in tundra. Nat. Geosci. 2:189–92
    [Google Scholar]
  89. Romanovsky V, Isaksen K, Drozdov D, Anisimov O, Instanes A et al. 2017. Changing permafrost and its impacts. Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 201765–102 Oslo, Nor.: Arct. Monit. Assess. Programme (AMAP)
    [Google Scholar]
  90. Rupp TS, Duffy P, Leonawicz M, Lindgren M, Breen A et al. 2016. Climate scenarios, land cover, and wildland fire. Baseline and projected future carbon storage and greenhouse-gas fluxes in ecosystems of Alaska Z Zhu, AD McGuire 17–52 Prof. Pap. 1826 US Geol. Surv. Reston, Va: https://dx.doi.org/10.3133/pp1826
    [Crossref] [Google Scholar]
  91. Schaefer K, Lantuit H, Romanovsky VE, Schuur EAG, Witt R 2014. The impact of the permafrost carbon feedback on global climate. Environ. Res. Lett. 9:085003
    [Google Scholar]
  92. Schneider von Deimling T, Grosse G, Strauss J, Schirrmeister L, Morgenstern A et al. 2015. Observation-based modelling of permafrost carbon fluxes with accounting for deep carbon deposits and thermokarst activity. Biogeosciences 12:3469–88
    [Google Scholar]
  93. Schuster PF, Schaefer KM, Aiken GR, Antweiler RC, Dewild JF et al. 2018. Permafrost stores a globally significant amount of mercury. Geophys. Res. Lett. 45:1463–71 https://doi.org/10.1002/2017GL075571
    [Crossref] [Google Scholar]
  94. Schuur EAG, Bockheim J, Canadell JG, Euskirchen E, Field CB et al. 2008. Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. Bioscience 58:701–14
    [Google Scholar]
  95. Schuur EAG, McGuire AD, Romanovsky VE 2018. Arctic and boreal carbon. Second State of the Carbon Cycle Report A Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. Natl. Ocean. Atmos. Adm., Natl. Clim. Data Cent. Asheville, NC: In press
    [Google Scholar]
  96. Schuur EAG, McGuire AD, Schädel C, Grosse G, Harden JW et al. 2015. Climate change and the permafrost carbon feedback. Nature 520:171–79
    [Google Scholar]
  97. Schuur EAG, Vogel JG, Crummer KG, Lee H, Sickman JO, Osterkamp TE 2009. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459:556–59
    [Google Scholar]
  98. Shur YL, Jorgenson MT 2007. Patterns of permafrost formation and degradation in relation to climate and ecosystems. Permafrost Periglacial Process 18:7–19
    [Google Scholar]
  99. Song C, Xu X, Sun X, Tian H, Sun L et al. 2012. Large methane emission upon spring thaw from natural wetlands in the northern permafrost region. Environ. Res. Lett. 7:034009
    [Google Scholar]
  100. Stern GA, Macdonald RW, Outridge PM, Wilson S, Chetelat J et al. 2012. How does climate change influence arctic mercury. Sci. Total Environ. 414:22–42
    [Google Scholar]
  101. Strauss J, Schirrmeister L, Grosse G, Fortier D, Hugelius G et al. 2017. Deep Yedoma permafrost: a synthesis of depositional characteristics and carbon vulnerability. Earth-Sci. Rev. 172:75–86
    [Google Scholar]
  102. Strauss J, Schirrmeister L, Grosse G, Wetterich S, Ulrich M et al. 2013. The deep permafrost carbon pool of the Yedoma region in Siberia and Alaska. Geophys. Res. Lett. 40:6165–70
    [Google Scholar]
  103. Striegl RG, Aiken GR, Dornblaser MM, Raymond PA, Wickland KP 2005. A decrease in discharge-normalized DOC export by the Yukon River during summer through autumn. Geophys. Res. Lett. 32:L21413
    [Google Scholar]
  104. Tarnocai C, Canadell JG, Schuur EAG, Kuhry P, Mazhitova G, Zimov S 2009. Soil organic carbon pools in the northern circumpolar permafrost region. Glob. Biogeochem. Cycles 23:Gb2023
    [Google Scholar]
  105. Ueyama M, Iwata H, Harazono Y, Euskirchen ES, Oechel WC, Zona D 2012. Growing season and spatial variations of carbon fluxes of Arctic and boreal ecosystems in Alaska (USA). Ecol. Appl. 23:81798–816
    [Google Scholar]
  106. van der Werf GR, Randerson JT, Giglio L, van Leeuwen TT, Chen Y et al. 2017. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 9:697–720 https://doi.org/10.5194/essd-9-697-2017, 2017
    [Crossref] [Google Scholar]
  107. Vonk J, Tank S, Bowden W, Laurion I, Vincent W et al. 2015. Reviews and syntheses: effects of permafrost thaw on Arctic aquatic ecosystems. Biogeosciences 12:7129–67
    [Google Scholar]
  108. Walker X, Mack M, Johnstone J 2015. Stable carbon isotope analysis reveals widespread drought stress in boreal black spruce forests. Glob. Change Biol. 21:3102–13
    [Google Scholar]
  109. Walter Anthony KM, Zimov SA, Grosse G, Jones MC, Anthony PM et al. 2014. A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch. Nature 511:452–56
    [Google Scholar]
  110. Walter KM, Edwards ME, Grosse G, Zimov SA, Chapin FS 2007. Thermokarst lakes as a source of atmospheric CH4 during the last deglaciation. Science 318:633–36
    [Google Scholar]
  111. Walter KM, Zimov SA, Chanton JP, Verbyla D, Chapin FS III. 2006. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443:71–75
    [Google Scholar]
  112. Walvoord MA, Kurylyk BL 2016. Hydrologic impacts of thawing permafrost–a review. Vadose Zone J 15: https://doi.org/10.2136/vzj2016.01.0010
    [Crossref] [Google Scholar]
  113. Webb EE, Schuur EAG, Natali SM, Oken KL, Bracho R et al. 2016. Increased wintertime CO2 loss as a result of sustained tundra warming. J. Geophys. Res. Biogeosciences 121:249–65
    [Google Scholar]
  114. Wiese DN, Yuan D-N, Boening C, Landerer WF, Watkins MM 2016. JPL GRACE Mascon Ocean, Ice, and Hydrology Equivalent Water Height RL05M.1 CRI Filtered Version 2 Phys. Ocean. Distrib. Act. Arch. Cent., Pasadena, Calif. Dataset accessed January 2018. https://doi.org/10.5067/TEMSC-2LCR5
    [Crossref]
  115. World Wildlife Fund 2012. Terrestrial ecoregions of the world World Wildlife Fund Washington, DC: https://www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-world
  116. Wrona F, Johansson M, Culp J, Jenkins A, Mard J et al. 2016. Transitions in Arctic ecosystems: ecological implications of a changing hydrological regime. J. Geophys. Res. Biogeosciences 121:650–74
    [Google Scholar]
  117. Xue K, Yuan MM, Shi ZJ, Qin Y, Deng Y et al. 2016. Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming. Nat. Clim. Change 6:595–600
    [Google Scholar]
  118. Zhang T, Barry RG, Knowles K, Heginbottom JA, Brown J 1999. Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere. Polar Geogr 23:132–54
    [Google Scholar]
  119. Zhang T, Heginbottom JA, Barry RG, Brown J 2000. Further statistics on the distribution of permafrost and ground ice in the Northern Hemisphere. Polar Geogr 24:126–31
    [Google Scholar]
  120. Zhu Z, McGuire AD, eds. 2016. Baseline and projected future carbon storage and greenhouse-gas fluxes in ecosystems of Alaska Prof. Pap. 1826 US Geol. Surv. Reston, Va: https://dx.doi.org/10.3133/pp1826
    [Crossref]
  121. Zimov SA, Schuur EAG, Chapin FS 2006. Permafrost and the global carbon budget. Science 312:1612–13
    [Google Scholar]
  122. Zona D, Gioli B, Commane R, Lindaas J, Wofsy SC et al. 2016. Cold season emissions dominate the Arctic tundra methane budget. PNAS 113:40–45
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-121415-032349
Loading
/content/journals/10.1146/annurev-ecolsys-121415-032349
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error